Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Hybrid Microfluidic-Flow Injection System for Determining Copper(II) in Aqueous Solution by Homemade Microfluidic-Chip

Author(s): Ahmed S. Farhood* and Dakhil N. Taha

Volume 19, Issue 2, 2023

Published on: 27 December, 2022

Page: [176 - 183] Pages: 8

DOI: 10.2174/1573411019666221019121249

Price: $65

Abstract

Background: A new technique was designed for determining copper in an aqueous solution. Copper was determined by a hybrid system microfluidic coupled with flow injection. The homemade microfluidic chip (MFC) is used for injecting copper and 2,9-Dimethyl-1,10-phenanthroline (2,9 DMP) reagent as a merging zone technique, whereas uric acid is used as a reducing agent and carrier.

Methods: A microfluidic chip was made by a Computer Numerical Control (CNC) laser machine using the AutoCAD application for the study of copper by the hybrid system. The chip contains two microchannels with a volume of 60 μL for copper(II) and 2,9 DMP reagent. As a carrier solution and reducing agent, 40 mg/L of uric acid was pumped at a flow rate of 5.2 mL/min. Conditions of the coupled technique and analyses were measured at 454 nm.

Results: This system's approach has a linear range, a detection limit (S/N = 3), and a quantitation limit (S/N = 10) at 0.1-25 mg/L (r2 0.9979), 0.03 and 0.09 mg/L, respectively. Also, there was a repeatability of analyses (n = 7) with an average RSD of 0.97 % for concentrations of 5, 10, and 20 mg/L. The dispersion coefficients were 1.977, 1.789, and 1.555 for the three concentrations 5,10, and 20 mg/L, respectively. The recovery of copper in the aqueous solution was estimated to be 103.5%. Dead volume and throughput were zero and 62 per hour, respectively. Sandell’s sensitivity and molar absorptivity were 2.467×10-3 μg/cm2 and 1.947×105 L/mol cm, respectively.

Conclusion: The analysis in the novel hybrid microfluidic-flow injection system is efficient, simple, and fast, and it can be used to determine the concentration of copper in an aqueous solution. The homemade microfluidic chip is a low-cost component that uses only an small volume of copper and reagent during analysis.

Graphical Abstract

[1]
Raouf, M.S. A.; Raheim ARM, A. Removal of heavy metals from industrial waste water by biomass-based materials: A Review. J. Pollution Effects Control, 2016, 5(1), 180-193.
[http://dx.doi.org/10.4172/2375-4397.1000180]
[2]
Hao, W.; Zhang, Y.; Fan, J.; Liu, H.; Shi, Q.; Liu, W.; Peng, Q.; Zang, G. Copper nanowires modified with graphene oxide nanosheets for simultaneous voltammetric determination of ascorbic acid, dopamine and acetaminophen. Molecules, 2019, 24(12), 2320-2335.
[http://dx.doi.org/10.3390/molecules24122320] [PMID: 31238523]
[3]
Losev, V.N.; Didukh, S.L.; Trofimchuk, A.K.; Zaporozhets, O.A. Adsorption–Photometric and test determination of copper using silica gel sequentially modified with polyhexamethylene guanidine and bathocuproinedisulphonic acid. Adsorpt. Sci. Technol., 2014, 32(6), 443-452.
[http://dx.doi.org/10.1260/0263-6174.32.6.443]
[4]
Tobiasz, A.; Walas, S.; Buda, M.; Laszczyk, K.; Trzewik, B.; Mrowiec, H. Application of grafted silica gel for improvement of FAAS conditions of copper(II) determination in water samples. Curr. Anal. Chem., 2014, 10(2), 288-295.
[http://dx.doi.org/10.2174/15734110113090990014]
[5]
Kraljević T.; Jelić-Knezović N.; Marković B.M.; Ćurlin, M. Spectrophotometric hybrid flow system for determination of n-acetyl-l-cysteine in pharmaceuticals. J. App. Chem., 2020, 13(5), 27-34.
[http://dx.doi.org/10.9790/5736-1305032734]
[6]
Segundo, M.A.; Tóth, I.V.; Magalhães, L.M.; Reis, S. Automatic flow injection analysis (FIA) determination of total reducing capacity in serum and urine samples. Meth. Mol. Biol. J., 2015, 1208, 277-284.
[http://dx.doi.org/10.1007/978-1-4939-1441-8_20]
[7]
Do Carmo, S.N.; Damásio, F.Q.; Alves, V.N.; Marques, T.L.; Coelho, N.M.M. Direct determination of copper in gasoline by flame atomic absorption spectrometry after sorption and preconcentration on Moringa oleifera husks. Microchem. J., 2013, 110, 320-325.
[http://dx.doi.org/10.1016/j.microc.2013.04.010]
[8]
Ozcan, Y.; Orhan, M.K.; Ali, R.T. Preconcentration of trace copper, cobalt and lead from various samples by hybrid nano sorbent and determination by FAAS. Curr. Anal. Chem., 2011, 7(3), 225-234.
[http://dx.doi.org/10.2174/1573411011107030225]
[9]
Mohadesi, A.; Taher, M. Voltammetric determination of Cu(II) in natural waters and human hair at a meso-2,3-dimercaptosuccinic acid self-assembled gold electrode. Talanta, 2007, 72(1), 95-100.
[http://dx.doi.org/10.1016/j.talanta.2006.09.031] [PMID: 19071587]
[10]
Wainwright, P.; Wadey, D.; Cook, P. An inductively coupled plasma mass spectrometry method for relative free copper determination and generation of a paediatric reference interval. Ann. Clin. Biochem., 2018, 55(4), 485-490.
[http://dx.doi.org/10.1177/0004563217744809] [PMID: 29153026]
[11]
Ohno, S.; Tanaka, M.; Teshima, N.; Sakai, T. Successive determination of copper and iron by a flow injection-catalytic photometric method using a serial flow cell. Anal. Sci., 2004, 20(1), 171-175.
[http://dx.doi.org/10.2116/analsci.20.171] [PMID: 14753278]
[12]
Wei, J.; Teshima, N.; Ohno, S.; Sakai, T. Catalytic flow-injection determination of sub-ppb copper(II) using the redox reaction of cysteine with iron(III) in the presence of 2,4,6-tris(2-pyridyl)-1,3,5-triazine. Anal. Sci., 2003, 19(5), 731-735.
[http://dx.doi.org/10.2116/analsci.19.731] [PMID: 12769374]
[13]
Şahin, Ç.A.; Tokgöz, İ. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry. Anal. Chim. Acta, 2010, 667(1-2), 83-87.
[http://dx.doi.org/10.1016/j.aca.2010.04.012] [PMID: 20441870]
[14]
Cassella, R.; Magalhães, O.; Couto, M.; Lima, E.; Neves, M.; Coutinho, F. Synthesis and application of a functionalized resin for flow injection/F AAS copper determination in waters. Talanta, 2005, 67(1), 121-128.
[http://dx.doi.org/10.1016/j.talanta.2005.02.019] [PMID: 18970145]
[15]
Ayaz, S.; Dilgin, Y.; Apak, R. Flow injection amperometric determination of hydrazine at a cupric-neocuproine complex/anionic surfactant modified disposable electrode. Microchem. J., 2020, 159, 105457.
[http://dx.doi.org/10.1016/j.microc.2020.105457]
[16]
Chandramouleeswaran, S.; Ramkumar, J. Insight of spectrophotometric determination using 4-(2-pyridylazo)- resorcinol: Application of stop flow injection analysis. Der Chemica Sinica, 2018, 9(2), 605-608.
[17]
Duffy, C.D.; McDonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal. Chem., 1998, 70(23), 4974-4984.
[18]
Trinh, K.T.L.; Thai, D.A.; Chae, W.R.; Lee, N.Y. Rapid fabrication of poly(methyl methacrylate) devices for Lab-ona-Chip applications using acetic acid and UV treatment. ACS Omega, 2020, 5(28), 17396-17404.
[http://dx.doi.org/10.1021/acsomega.0c01770] [PMID: 32715224]
[19]
Niculescu, A.G.; Chircov, C. Bîrcă A.C.; Grumezescu, A.M. Fabrication and applications of microfluidic devices: A review. Int. J. Mol. Sci., 2021, 22(4), 2011.
[http://dx.doi.org/10.3390/ijms22042011] [PMID: 33670545]
[20]
Scott, S.; Ali, Z. Fabrication methods for microfluidic devices: An overview. Micromachines (Basel), 2021, 12(3), 319-357.
[http://dx.doi.org/10.3390/mi12030319] [PMID: 33803689]
[21]
Pengpumkiat, S.; Wu, Y.; Boonloed, A.; Bandara, G.C.; Remcho, V.T. A microfluidic detection system for quantitation of copper incorporating a wavelength-ratiometric fluorescent quantum dot pair. Anal. Methods, 2017, 9(7), 1125-1132.
[http://dx.doi.org/10.1039/C6AY02718K]
[22]
Lace, A.; Cleary, J. Review of microfluidic detection strategies for heavy metals in water. Chemosensors (Basel), 2021, 9(4), 60-86.
[http://dx.doi.org/10.3390/chemosensors9040060]
[23]
Jiang, T.; Xie, D.; Wu, J.; He, H.; Wang, H.; Wang, N.; Zhu, Z.; Wang, Y.; Yang, T. Association between serum copper levels and prevalence of hyperuricemia: A cross-sectional study. Sci. Rep., 2020, 10(1), 8687-8694.
[http://dx.doi.org/10.1038/s41598-020-65639-0] [PMID: 32457333]
[24]
Mazurek, A. Włodarczyk-Stasiak, M.; Pankiewicz, U.; Kowalski, R.; Jamroz, J. Development and validation of a differential pulse polarography method for determination of total vitamin C and dehydroascorbic acid contents in foods. Lebensm. Wiss. Technol., 2020, 118, 108828.
[http://dx.doi.org/10.1016/j.lwt.2019.108828]
[25]
Swislocka, R.; Tomicka, H. Extraction-Spectrophotometric determination of uric acid. Chem. Anal., 1996, 41, 793-801.
[26]
da Silva, J.C.; Suarez, W.T.; de Oliveira Krambeck Franco, M. Flow-Injection spectrophotometric determination of methimazole in pharmaceuticals using a charge transfer complex Cu(i)‒neocuproine. J. Anal. Chem., 2018, 73(3), 243-248.
[http://dx.doi.org/10.1134/S1061934818030061]
[27]
Proskurnin, M.; Chernysh, V.V.; Pakhomova, S.V.; Kononets, M.Y.; Sheshenev, A.A. Investigation of the reaction of copper(I) with 2,9-dimethyl-1,10-phenanthroline at trace level by thermal lensing. Talanta, 2002, 57(5), 831-839.
[http://dx.doi.org/10.1016/S0039-9140(02)00128-5] [PMID: 18968686]
[28]
Turkoglu, O.; Soylak, M. Spectrophotometric determination of copper in natural waters and pharmaceutical samples with chloro(phenyl) glyoxime. J. Chin. Chem. Soc. (Taipei), 2005, 52(3), 575-579.
[http://dx.doi.org/10.1002/jccs.200500085]
[29]
Toniolo, R.; Pizzariello, A.; Susmel, S.; Dossi, N.; Bontempelli, G. A sensor based on electrodes supported on ion-exchange membranes for the flow-injection monitoring of sulphur dioxide in wines and grape juices. Talanta, 2010, 80(5), 1809-1815.
[http://dx.doi.org/10.1016/j.talanta.2009.10.024] [PMID: 20152415]
[30]
Nakajima, J.; Ohno, M.; Chikama, K.; Seki, T.; Oguma, K. Determination of traces of palladium in stream sediment and auto catalyst by FI-ICP-OES using on-line separation and preconcentration with QuadraSil TA. Talanta, 2009, 79(4), 1050-1054.
[http://dx.doi.org/10.1016/j.talanta.2009.02.035] [PMID: 19615507]
[31]
Shoji, T.; Nakamura, E. Flow injection analysis with spectrophotometry for ammonium ion with 1-naphthol and dichloroisocyanurate. J. Flow Injection Anal, 2009, 26(1), 37-41.
[http://dx.doi.org/10.24688/jfia.26.1_37]
[32]
Taufiq, A.S.; Abulkibash, A. Differential electrolytic potentiometric detector in flow injection analysis for cyanide determination. J. Flow Injection Anal., 2007, 24(1), 9-12.
[http://dx.doi.org/10.24688/jfia.24.1_9]
[33]
Koga, T.; Sakata, Y.; Terasaki, N. Accumulation and analysis of cuprous ions in a copper sulfate plating. J. Vis. Exp., 2019, 145(145), 1-8.
[http://dx.doi.org/10.3791/59376] [PMID: 30958462]
[34]
Gouda, A.A.; Amin, A.S. Copper(II)–neocuproine reagent for spectrophotometric determination of captopril in pure form and pharmaceutical formulations. Arab. J. Chem., 2010, 3(3), 159-165.
[http://dx.doi.org/10.1016/j.arabjc.2010.04.004]
[35]
Babayeva, K.; Demir, S.; Andac, M. A novel spectrophotometric method for the determination of copper ion by using a salophen ligand, N,N′-disalicylidene-2,3-diaminopyridine. J. Taibah Univ. Sci., 2017, 11(5), 808-814.
[http://dx.doi.org/10.1016/j.jtusci.2017.02.001]
[36]
Çağlar, Y.; Saka, E.T. Ionic liquid based dispersive liquid–liquid microextraction procedure for the spectrophotometric determination of copper using 3-dimethylamino rhodanine as a chelating agent in natural waters. Karbala Int. J. Modern Sci., 2017, 3(4), 185-190.
[http://dx.doi.org/10.1016/j.kijoms.2017.09.002]
[37]
Oliveira, P.R.; Lamy-Mendes, A.C.; Rezende, E.I.P.; Mangrich, A.S.; Marcolino, Junior, L.H.; Bergamini, M.F. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chem., 2015, 171, 426-431.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.023] [PMID: 25308690]
[38]
Kulkarni, A.A; Vaidya, I.S. Flow injection analysis: An overview. Journal of critical reviews 2015, 2(4), 19-24.
[39]
Amal, S. Eco-friendly design of flow injection system for the determination of bismarck brown R dye. Int. J. Pharmaceut. Res., 2018, 10(3), 1-8.
[http://dx.doi.org/10.31838/ijpr/2018.10.03.030]
[40]
Mashhadizadeh, M.H.; Pesteh, M.; Talakesh, M.; Sheikhshoaie, I.; Ardakani, M.M.; Karimi, M.A. Solid phase extraction of copper (II) by sorption on octadecyl silica membrane disk modified with a new Schiff base and determination with atomic absorption spectrometry. Spectrochim. Acta B At. Spectrosc., 2008, 63(8), 885-888.
[http://dx.doi.org/10.1016/j.sab.2008.03.018]
[41]
Omarova, S.; Demir, S.; Andac, M. Development of a New spectrophotometric based flow injection analysis method for the determination of copper (II). J. Taibah Univ. Sci., 2018, 12(6), 820-825.
[http://dx.doi.org/10.1080/16583655.2018.1521710]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy