Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Research Article

Neurocognitive Correlates of Cerebellar Volumetric Alterations in Youth with Pediatric Bipolar Spectrum Disorders and Bipolar Offspring

Author(s): Kirti Saxena, Alessio Simonetti, Christopher D. Verrico, Delfina Janiri, Marco Di Nicola*, Antonello Catinari, Sherin Kurian, Johanna Saxena, Benson Mwangi and Jair C. Soares

Volume 21, Issue 6, 2023

Published on: 25 January, 2023

Page: [1367 - 1378] Pages: 12

DOI: 10.2174/1570159X21666221014120332

Price: $65

Abstract

Background: Emerging evidence points towards the involvement of the cerebellum in the processing of emotions and pathophysiology of mood disorders. However, cerebellar and related cognitive alterations in youth with pediatric bipolar disorder (PBD) and those at high risk to develop the disorder, such as bipolar offspring (BD-OFF) are not clearly defined.

Objective: To investigate cerebellar gray and white matter volumes, cognition, and their relationship in youth with PBD and BD-OFF.

Methods: Thirty youth (7 to 17 years, inclusive) with PBD, 30 BD-OFF and 40 healthy controls (HC) were recruited. Study participants underwent a computer-based cognitive battery assessing affective processing, executive function, attention, psychomotor speed, and learning. Three-tesla MRI scan was performed to assess cerebellar white and gray matter volumes. Cerebellar segmentation was performed with FreeSurfer. Statistical analyses include between-group differences in cognitive domains, cerebellar gray, and white matter volumes. Relationships between cerebellar volumes and cognitive domains were examined.

Results: Youth with PBD showed greater cerebellar gray matter volumes than both BD-OFF and HC, whereas no differences were present between BD-OFF and HC. Both youth with PBD and BD-OFF showed altered processing of negative emotions and a bias towards positive emotions. In youth with PBD and BD-OFF, greater impairment in the processing of emotions correlated with greater cerebellar gray matter volumes.

Conclusion: The present findings corroborate hypotheses on cerebellar involvement in the processing of emotions and the pathophysiology of PBD. The presence of cerebellar dysfunction in BD-OFF is unclear.

Graphical Abstract

[1]
Geller, B.; Tillman, R.; Craney, J.L.; Bolhofner, K. Four-year prospective outcome and natural history of mania in children with a prepubertal and early adolescent bipolar disorder phenotype. Arch. Gen. Psychiatry, 2004, 61(5), 459-467.
[http://dx.doi.org/10.1001/archpsyc.61.5.459] [PMID: 15123490]
[2]
Pavuluri, M.N.; Birmaher, B.; Naylor, M.W. Pediatric bipolar disorder: a review of the past 10 years. J. Am. Acad. Child Adolesc. Psychiatry, 2005, 44(9), 846-871.
[http://dx.doi.org/10.1097/01.chi.0000170554.23422.c1] [PMID: 16113615]
[3]
Singh, M.K.; Chang, K.D.; Kelley, R.G.; Saggar, M.; Reiss, A.L.; Gotlib, I.H. Early signs of anomalous neural functional connectivity in healthy offspring of parents with bipolar disorder. Bipolar Disord., 2014, 16(7), 678-689.
[http://dx.doi.org/10.1111/bdi.12221] [PMID: 24938878]
[4]
Karakurt, M.N.; Karabekiroğllu, M.Z.; Yüce, M.; Baykal, S.; Şenses, A. Neuropsychological profiles of adolescents with bipolar disorder and adolescents with a high risk of bipolar disorder. Turk Psikiyatr. Derg., 2013, 24(4), 221-230.
[PMID: 24310088]
[5]
Gotlib, I.H.; Traill, S.K.; Montoya, R.L.; Joormann, J.; Chang, K. Attention and memory biases in the offspring of parents with bipolar disorder: indications from a pilot study. J. Child Psychol. Psychiatry, 2005, 46(1), 84-93.
[http://dx.doi.org/10.1111/j.1469-7610.2004.00333.x] [PMID: 15660646]
[6]
Meluken, I.; Ottesen, N.M.; Phan, K.L.; Goldin, P.R.; Di Simplicio, M.; Macoveanu, J.; Siebner, H.R.; Kessing, L.V.; Vinberg, M.; Miskowiak, K.W. Neural response during emotion regulation in monozygotic twins at high familial risk of affective disorders. Neuroimage Clin., 2019, 21(21), 101598.
[http://dx.doi.org/10.1016/j.nicl.2018.11.008] [PMID: 30527356]
[7]
Diwadkar, V.A.; Goradia, D.; Hosanagar, A.; Mermon, D.; Montrose, D.M.; Birmaher, B.; Axelson, D.; Rajarathinem, R.; Haddad, L.; Amirsadri, A.; Zajac-Benitez, C.; Rajan, U.; Keshavan, M.S. Working memory and attention deficits in adolescent offspring of schizophrenia or bipolar patients: Comparing vulnerability markers. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(5), 1349-1354.
[http://dx.doi.org/10.1016/j.pnpbp.2011.04.009] [PMID: 21549798]
[8]
Udal, A.H.; Øygarden, B.; Egeland, J.; Malt, U.F.; Løvdahl, H.; Pripp, A.H.; Grøholt, B. Executive deficits in early onset bipolar disorder versus ADHD: Impact of processing speed and lifetime psychosis. Clin. Child Psychol. Psychiatry, 2013, 18(2), 284-299.
[http://dx.doi.org/10.1177/1359104512455181] [PMID: 22977268]
[9]
Urošević, S.; Youngstrom, E.A.; Collins, P.; Jensen, J.B.; Luciana, M. Associations of age with reward delay discounting and response inhibition in adolescents with bipolar disorders. J. Affect. Disord., 2016, 190(190), 649-656.
[http://dx.doi.org/10.1016/j.jad.2015.11.005] [PMID: 26590512]
[10]
Wessa, M.; Kollmann, B.; Linke, J.; Schönfelder, S.; Kanske, P. Increased impulsivity as a vulnerability marker for bipolar disorder: Evidence from self-report and experimental measures in two high-risk populations. J. Affect. Disord., 2015, 178(178), 18-24.
[http://dx.doi.org/10.1016/j.jad.2015.02.018] [PMID: 25770479]
[11]
Bauer, I.E.; Frazier, T.W.; Meyer, T.D.; Youngstrom, E.; Zunta-Soares, G.B.; Soares, J.C. Affective Processing in Pediatric Bipolar Disorder and Offspring of Bipolar Parents. J. Child Adolesc. Psychopharmacol., 2015, 25(9), 684-690.
[http://dx.doi.org/10.1089/cap.2015.0076] [PMID: 26468988]
[12]
Simonetti, A.; Lijffijt, M.; Kahlon, R.S.; Gandy, K.; Arvind, R.P.; Amin, P.; Arciniegas, D.B.; Swann, A.C.; Soares, J.C.; Saxena, K. Early and late cortical reactivity to passively viewed emotional faces in pediatric bipolar disorder. J. Affect. Disord., 2019, 253, 240-247.
[http://dx.doi.org/10.1016/j.jad.2019.04.076] [PMID: 31060010]
[13]
Khafif, T.C.; Rotenberg, L.S.; Nascimento, C.; Beraldi, G.H.; Lafer, B. Emotion regulation in pediatric bipolar disorder: A meta-analysis of published studies. J. Affect. Disord., 2021, 285(285), 86-96.
[http://dx.doi.org/10.1016/j.jad.2021.02.010] [PMID: 33639359]
[14]
Thomas, L.A.; Brotman, M.A.; Muhrer, E.J.; Rosen, B.H.; Bones, B.L.; Reynolds, R.C.; Deveney, C.M.; Pine, D.S.; Leibenluft, E. Parametric modulation of neural activity by emotion in youth with bipolar disorder, youth with severe mood dysregulation, and healthy volunteers. Arch. Gen. Psychiatry, 2012, 69(12), 1257-1266.
[http://dx.doi.org/10.1001/archgenpsychiatry.2012.913] [PMID: 23026912]
[15]
Lu, X.; Zhong, Y.; Ma, Z.; Wu, Y.; Fox, P.T.; Zhang, N.; Wang, C. Structural imaging biomarkers for bipolar disorder: Meta‐analyses of whole‐brain voxel‐based morphometry studies. Depress. Anxiety, 2019, 36(4), 353-364.
[http://dx.doi.org/10.1002/da.22866] [PMID: 30475436]
[16]
Pavuluri, M.N.; Passarotti, A. Neural bases of emotional processing in pediatric bipolar disorder. Expert Rev. Neurother., 2008, 8(9), 1381-1387.
[http://dx.doi.org/10.1586/14737175.8.9.1381] [PMID: 18759550]
[17]
de Zwarte, S.M.C.; Brouwer, R.M.; Agartz, I.; Alda, M.; Aleman, A.; Alpert, K.I.; Bearden, C.E.; Bertolino, A.; Bois, C.; Bonvino, A.; Bramon, E.; Buimer, E.E.L.; Cahn, W.; Cannon, D.M.; Cannon, T.D.; Caseras, X.; Castro-Fornieles, J.; Chen, Q.; Chung, Y.; De la Serna, E.; Di Giorgio, A.; Doucet, G.E.; Eker, M.C.; Erk, S.; Fears, S.C.; Foley, S.F.; Frangou, S.; Frankland, A.; Fullerton, J.M.; Glahn, D.C.; Goghari, V.M.; Goldman, A.L.; Gonul, A.S.; Gruber, O.; de Haan, L.; Hajek, T.; Hawkins, E.L.; Heinz, A.; Hillegers, M.H.J.; Hulshoff Pol, H.E.; Hultman, C.M.; Ingvar, M.; Johansson, V.; Jönsson, E.G.; Kane, F.; Kempton, M.J.; Koenis, M.M.G.; Kopecek, M.; Krabbendam, L.; Krämer, B.; Lawrie, S.M.; Lenroot, R.K.; Marcelis, M.; Marsman, J.B.C.; Mattay, V.S.; McDonald, C.; Meyer-Lindenberg, A.; Michielse, S.; Mitchell, P.B.; Moreno, D.; Murray, R.M.; Mwangi, B.; Najt, P.; Neilson, E.; Newport, J.; van Os, J.; Overs, B.; Ozerdem, A.; Picchioni, M.M.; Richter, A.; Roberts, G.; Aydogan, A.S.; Schofield, P.R.; Simsek, F.; Soares, J.C.; Sugranyes, G.; Toulopoulou, T.; Tronchin, G.; Walter, H.; Wang, L.; Weinberger, D.R.; Whalley, H.C.; Yalin, N.; Andreassen, O.A.; Ching, C.R.K.; van Erp, T.G.M.; Turner, J.A.; Jahanshad, N.; Thompson, P.M.; Kahn, R.S.; van Haren, N.E.M. The association between familial risk and brain abnormalities is disease specific: An ENIGMA-relatives study of schizophrenia and bipolar disorder. Biol. Psychiatry, 2019, 86(7), 545-556.
[http://dx.doi.org/10.1016/j.biopsych.2019.03.985] [PMID: 31443932]
[18]
Soares, J.C.; Mann, J.J. The functional neuroanatomy of mood disorders. J. Psychiatr. Res., 1997, 31(4), 393-432.
[http://dx.doi.org/10.1016/S0022-3956(97)00016-2] [PMID: 9352470]
[19]
Phillips, M.L.; Drevets, W.C.; Rauch, S.L.; Lane, R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol. Psychiatry, 2003, 54(5), 504-514.
[http://dx.doi.org/10.1016/S0006-3223(03)00168-9] [PMID: 12946879]
[20]
Phillips, M.L.; Drevets, W.C.; Rauch, S.L.; Lane, R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol. Psychiatry, 2003, 54(5), 515-528.
[http://dx.doi.org/10.1016/S0006-3223(03)00171-9] [PMID: 12946880]
[21]
Schmahmann, J.; Sherman, J.C. The cerebellar cognitive affective syndrome. Brain, 1998, 121(4), 561-579.
[http://dx.doi.org/10.1093/brain/121.4.561] [PMID: 9577385]
[22]
Schmahmann, J.D.; Pandya, D.N. The cerebrocerebellar system. Int. Rev. Neurobiol., 1997, 41, 31-60.
[http://dx.doi.org/10.1016/S0074-7742(08)60346-3] [PMID: 9378595]
[23]
Middleton, F.A.; Strick, P.L. Cerebellar output channels. Int. Rev. Neurobiol., 1997, 41, 61-82.
[http://dx.doi.org/10.1016/S0074-7742(08)60347-5] [PMID: 9378611]
[24]
Chiaie, R.D.; Minichino, A.; Salviati, M.; Fiorentini, S.; Tonini, A.; Bersani, F.S.; De Michele, F.; Caredda, M.; Biondi, M. Bipolar Spectrum Disorders in Patients With Cerebellar Lesions. J. Nerv. Ment. Dis., 2015, 203(9), 725-729.
[http://dx.doi.org/10.1097/NMD.0000000000000359] [PMID: 26313038]
[25]
Lupo, M.; Olivito, G.; Siciliano, L.; Masciullo, M.; Molinari, M.; Cercignani, M.; Bozzali, M.; Leggio, M. Evidence of cerebellar involvement in the onset of a manic state. Front. Neurol., 2018, 9, 774.
[http://dx.doi.org/10.3389/fneur.2018.00774] [PMID: 30258401]
[26]
Bellebaum, C.; Daum, I. Cerebellar involvement in executive control. Cerebellum, 2007, 6(3), 184-192.
[http://dx.doi.org/10.1080/14734220601169707] [PMID: 17786814]
[27]
Gottwald, B.; Mihajlovic, Z.; Wilde, B.; Mehdorn, H.M. Does the cerebellum contribute to specific aspects of attention? Neuropsychologia, 2003, 41(11), 1452-1460.
[http://dx.doi.org/10.1016/S0028-3932(03)00090-3] [PMID: 12849763]
[28]
Molinari, M.; Petrosini, L.; Misciagna, S.; Leggio, M.G. Visuospatial abilities in cerebellar disorders. J. Neurol. Neurosurg. Psychiatry, 2004, 75(2), 235-240.
[PMID: 14742596]
[29]
Peterburs, J.; Bellebaum, C.; Koch, B.; Schwarz, M.; Daum, I. Working memory and verbal fluency deficits following cerebellar lesions: relation to interindividual differences in patient variables. Cerebellum, 2010, 9(3), 375-383.
[http://dx.doi.org/10.1007/s12311-010-0171-z] [PMID: 20387024]
[30]
Demirgören, B.S.; Özbek, A.; Göçmen Karabekir, N.; Ay, B.; Turan, S.; Yonguç, G.N.; Karabekir, S.; Polat, A.İ.; Hız, A.S.; Gencer Kıdak, Ö. Cerebellar volumes in early-onset bipolar disorder: a pilot study of a stereological measurement technique. Psychiatry Clin. Psychopharmacol., 2019, 29(3), 293-297.
[http://dx.doi.org/10.1080/24750573.2019.1637040]
[31]
James, A.; Hough, M.; James, S.; Burge, L.; Winmill, L.; Nijhawan, S.; Matthews, P.M.; Zarei, M. Structural brain and neuropsychometric changes associated with pediatric bipolar disorder with psychosis. Bipolar Disord., 2011, 13(1), 16-27.
[http://dx.doi.org/10.1111/j.1399-5618.2011.00891.x] [PMID: 21320249]
[32]
Kempton, M.J.; Haldane, M.; Jogia, J.; Grasby, P.M.; Collier, D.; Frangou, S. Dissociable brain structural changes associated with predisposition, resilience, and disease expression in bipolar disorder. J. Neurosci., 2009, 29(35), 10863-10868.
[http://dx.doi.org/10.1523/JNEUROSCI.2204-09.2009] [PMID: 19726644]
[33]
Frangou, S. Brain structural and functional correlates of resilience to Bipolar Disorder. Front. Hum. Neurosci., 2012, 5, 184.
[http://dx.doi.org/10.3389/fnhum.2011.00184] [PMID: 22363273]
[34]
Sarıçiçek, A.; Yalın, N.; Hıdıroğlu, C.; Çavuşoğlu, B.; Taş, C.; Ceylan, D.; Zorlu, N.; Ada, E.; Tunca, Z.; Özerdem, A. Neuroanatomical correlates of genetic risk for bipolar disorder: A voxel-based morphometry study in bipolar type I patients and healthy first degree relatives. J. Affect. Disord., 2015, 186, 110-118.
[http://dx.doi.org/10.1016/j.jad.2015.06.055] [PMID: 26233321]
[35]
Lin, K.; Xu, G.; Wong, N.M.L.; Wu, H.; Li, T.; Lu, W.; Chen, K.; Chen, X.; Lai, B.; Zhong, L.; So, K.; Lee, T.M.C.A. Multi-Dimensional and integrative approach to examining the high-risk and ultra-high-risk stages of bipolar disorder. EBioMedicine, 2015, 2(8), 919-928.
[http://dx.doi.org/10.1016/j.ebiom.2015.06.027] [PMID: 26425699]
[36]
Adler, C.M.; DelBello, M.P.; Jarvis, K.; Levine, A.; Adams, J.; Strakowski, S.M. Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biol. Psychiatry, 2007, 61(6), 776-781.
[http://dx.doi.org/10.1016/j.biopsych.2006.05.042] [PMID: 17027928]
[37]
Singh, A.; Arya, A.; Agarwal, V.; Shree, R.; Kumar, U. Grey and white matter alteration in euthymic children with bipolar disorder: a combined source‐based morphometry (SBM) and voxel‐based morphometry (VBM) study. Brain Imaging Behav., 2022, 16(1), 22-30.
[http://dx.doi.org/10.1007/s11682-021-00473-0] [PMID: 33846953]
[38]
Xiao, Q.; Wu, Z.; Jiao, Q.; Zhong, Y.; Zhang, Y.; Lu, G. Children with euthymic bipolar disorder during an emotional go/nogo task: Insights into the neural circuits of cognitive-emotional regulation. J. Affect. Disord., 2021, 282, 669-676.
[http://dx.doi.org/10.1016/j.jad.2020.12.157] [PMID: 33445090]
[39]
Simonetti, A.; Saxena, K.; Koukopoulos, A.E.; Janiri, D.; Lijffijt, M.; Swann, A.C.; Kotzalidis, G.D.; Sani, G. Amygdala structure and function in paediatric bipolar disorder and high-risk youth: A systematic review of magnetic resonance imaging findings. World J. Biol. Psychiatry, 2022, 23(2), 103-126.
[http://dx.doi.org/10.1080/15622975.2021.1935317] [PMID: 34165050]
[40]
Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry, 1998, 59(Suppl. 20), 22-33.
[PMID: 9881538]
[41]
Wechsler, D. Wechsler Abbreviated Scale of Intelligence; The Psychological Corporation: San Antonio, TX, 1999.
[42]
Young, R.C.; Biggs, J.T.; Ziegler, V.E.; Meyer, D.A. A rating scale for mania: reliability, validity and sensitivity. Br. J. Psychiatry, 1978, 133(5), 429-435.
[http://dx.doi.org/10.1192/bjp.133.5.429] [PMID: 728692]
[43]
Mayes, T.L.; Bernstein, I.H.; Haley, C.L.; Kennard, B.D.; Emslie, G.J. Psychometric properties of the Children’s depression rating scale-revised in adolescents. J. Child Adolesc. Psychopharmacol., 2010, 20(6), 513-516.
[http://dx.doi.org/10.1089/cap.2010.0063] [PMID: 21186970]
[44]
Frey, B.N.; Zunta-Soares, G.B.; Caetano, S.C.; Nicoletti, M.A.; Hatch, J.P.; Brambilla, P.; Mallinger, A.G.; Soares, J.C. Illness duration and total brain gray matter in bipolar disorder: Evidence for neurodegeneration? Eur. Neuropsychopharmacol., 2008, 18(10), 717-722.
[http://dx.doi.org/10.1016/j.euroneuro.2008.04.015] [PMID: 18554875]
[45]
Simonetti, A.; Sani, G.; Dacquino, C.; Piras, F.; De Rossi, P.; Caltagirone, C.; Coryell, W.; Spalletta, G. Hippocampal subfield volumes in short- and long-term lithium-treated patients with bipolar I disorder. Bipolar Disord., 2016, 18(4), 352-362.
[http://dx.doi.org/10.1111/bdi.12394] [PMID: 27237705]
[46]
Bauer, I.E.; Meyer, T.D.; Sanches, M.; Zunta-Soares, G.; Soares, J.C. Does a history of substance abuse and illness chronicity predict increased impulsivity in bipolar disorder? J. Affect. Disord., 2015, 179, 142-147.
[http://dx.doi.org/10.1016/j.jad.2015.03.010] [PMID: 25863910]
[47]
Udal, A.H.; Øygarden, B.; Egeland, J.; Malt, U.F.; Groholt, B. Memory in early onset bipolar disorder and attention-deficit/hyperactivity disorder: similarities and differences. J. Abnorm. Child Psychol., 2012, 40(7), 1179-1192.
[http://dx.doi.org/10.1007/s10802-012-9631-x] [PMID: 22622490]
[48]
El Ray, L.; Khoweiled, A.; Abdou, H.; El-Mawella, S.; Samie, M. Cognitive functions in euthymic adolescents with juvenile bipolar disorder. Egypt. J. Psychiatry, 2012, 33(1), 40-44.
[http://dx.doi.org/10.7123/01.EJP.0000411121.54126.e5]
[49]
Adler, C.M.; Levine, A.D.; DelBello, M.P.; Strakowski, S.M. Changes in gray matter volume in patients with bipolar disorder. Biol. Psychiatry, 2005, 58(2), 151-157.
[http://dx.doi.org/10.1016/j.biopsych.2005.03.022] [PMID: 15922309]
[50]
Moberget, T.; Alnæs, D.; Kaufmann, T.; Doan, N.T.; Córdova-Palomera, A.; Norbom, L.B.; Rokicki, J.; van der Meer, D.; Andreassen, O.A.; Westlye, L.T. Cerebellar gray matter volume is associated with cognitive function and psychopathology in adolescence. Biol. Psychiatry, 2019, 86(1), 65-75.
[http://dx.doi.org/10.1016/j.biopsych.2019.01.019] [PMID: 30850129]
[51]
Giedd, J.N.; Raznahan, A.; Mills, K.L.; Lenroot, R.K. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol. Sex Differ., 2012, 3(1), 19.
[http://dx.doi.org/10.1186/2042-6410-3-19] [PMID: 22908911]
[52]
Marsh, R.; Gerber, A.J.; Peterson, B.S. Neuroimaging studies of normal brain development and their relevance for understanding childhood neuropsychiatric disorders. J. Am. Acad. Child Adolesc. Psychiatry, 2008, 47(11), 1233-1251.
[http://dx.doi.org/10.1097/CHI.0b013e318185e703] [PMID: 18833009]
[53]
Patel, N.C.; Cecil, K.M.; Strakowski, S.M.; Adler, C.M.; DelBello, M.P. Neurochemical alterations in adolescent bipolar depression: a proton magnetic resonance spectroscopy pilot study of the prefrontal cortex. J. Child Adolesc. Psychopharmacol., 2008, 18(6), 623-627.
[http://dx.doi.org/10.1089/cap.2007.151] [PMID: 19108667]
[54]
Seredenina, T.; Sorce, S.; Herrmann, F.R.; Ma Mulone, X-J.; Plastre, O.; Aguzzi, A.; Jaquet, V.; Krause, K-H. Decreased NOX2 expression in the brain of patients with bipolar disorder: association with valproic acid prescription and substance abuse. Transl. Psychiatry, 2017, 7(8), e1206.
[http://dx.doi.org/10.1038/tp.2017.175] [PMID: 28809856]
[55]
Ducharme, S.; Albaugh, M.D.; Hudziak, J.J.; Botteron, K.N.; Nguyen, T.V.; Truong, C.; Evans, A.C.; Karama, S.; Ball, W.S.; Byars, A.W.; Schapiro, M.; Bommer, W.; Carr, A.; German, A.; Dunn, S.; Rivkin, M.J.; Waber, D.; Mulkern, R.; Vajapeyam, S.; Chiverton, A.; Davis, P.; Koo, J.; Marmor, J.; Mrakotsky, C.; Robertson, R.; McAnulty, G.; Brandt, M.E.; Fletcher, J.M.; Kramer, L.A.; Yang, G.; McCormack, C.; Hebert, K.M.; Volero, H.; Botteron, K.; McKinstry, R.C.; Warren, W.; Nishino, T.; Almli, C.R.; Todd, R.; Constantino, J.; McCracken, J.T.; Levitt, J.; Alger, J.; O’Neil, J.; Toga, A.; Asarnow, R.; Fadale, D.; Heinichen, L.; Ireland, C.; Wang, D-J.; Moss, E.; Zimmerman, R.A.; Bintliff, B.; Bradford, R.; Newman, J.; Evans, A.C.; Arnaoutelis, R.; Pike, G.B.; Collins, D.L.; Leonard, G.; Paus, T.; Zijdenbos, A.; Das, S.; Fonov, V.; Fu, L.; Harlap, J.; Leppert, I.; Milovan, D.; Vins, D.; Zeffiro, T.; Van Meter, J.; Lange, N.; Froimowitz, M.P.; Botteron, K.; Almli, C.R.; Rainey, C.; Henderson, S.; Nishino, T.; Warren, W.; Edwards, J.L.; Dubois, D.; Smith, K.; Singer, T.; Wilber, A.A.; Pierpaoli, C.; Basser, P.J.; Chang, L-C.; Koay, C.G.; Walker, L.; Freund, L.; Rumsey, J.; Baskir, L.; Stanford, L.; Sirocco, K.; Gwinn-Hardy, K.; Spinella, G.; McCracken, J.T.; Alger, J.R.; Levitt, J.; O’Neill, J. Anxious/depressed symptoms are linked to right ventromedial prefrontal cortical thickness maturation in healthy children and young adults. Cereb. Cortex, 2014, 24(11), 2941-2950.
[http://dx.doi.org/10.1093/cercor/bht151] [PMID: 23749874]
[56]
Papmeyer, M.; Giles, S.; Sussmann, J.E.; Kielty, S.; Stewart, T.; Lawrie, S.M.; Whalley, H.C.; McIntosh, A.M. Cortical thickness in individuals at high familial risk of mood disorders as they develop major depressive disorder. Biol. Psychiatry, 2015, 78(1), 58-66.
[http://dx.doi.org/10.1016/j.biopsych.2014.10.018] [PMID: 25534753]
[57]
de Nooij, L.; Harris, M.A.; Hawkins, E.L.; Clarke, T.K.; Shen, X.; Chan, S.W.Y.; Ziermans, T.B.; McIntosh, A.M.; Whalley, H.C. Longitudinal trajectories of brain age in young individuals at familial risk of mood disorder from the Scottish Bipolar Family Study. Wellcome Open Res., 2019, 4, 206.
[http://dx.doi.org/10.12688/wellcomeopenres.15617.2] [PMID: 32954013]
[58]
Koutsouleris, N.; Davatzikos, C.; Borgwardt, S.; Gaser, C.; Bottlender, R.; Frodl, T.; Falkai, P.; Riecher-Rössler, A.; Möller, H.J.; Reiser, M.; Pantelis, C.; Meisenzahl, E. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr. Bull., 2014, 40(5), 1140-1153.
[http://dx.doi.org/10.1093/schbul/sbt142] [PMID: 24126515]
[59]
Sibille, E. Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders. Dialogues Clin. Neurosci., 2013, 15(1), 53-65.
[http://dx.doi.org/10.31887/DCNS.2013.15.1/esibille] [PMID: 23576889]
[60]
Wolkowitz, O.M.; Reus, V.I.; Mellon, S.H. Of sound mind and body: depression, disease, and accelerated aging. Dialogues Clin. Neurosci., 2011, 13(1), 25-39.
[http://dx.doi.org/10.31887/DCNS.2011.13.1/owolkowitz] [PMID: 21485744]
[61]
Sang, L.; Qin, W.; Liu, Y.; Han, W.; Zhang, Y.; Jiang, T.; Yu, C. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. Neuroimage, 2012, 61(4), 1213-1225.
[http://dx.doi.org/10.1016/j.neuroimage.2012.04.011] [PMID: 22525876]
[62]
Roy, A.K.; Shehzad, Z.; Margulies, D.S.; Kelly, A.M.C.; Uddin, L.Q.; Gotimer, K.; Biswal, B.B.; Castellanos, F.X.; Milham, M.P. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage, 2009, 45(2), 614-626.
[http://dx.doi.org/10.1016/j.neuroimage.2008.11.030] [PMID: 19110061]
[63]
Allen, G.; McColl, R.; Barnard, H.; Ringe, W.K.; Fleckenstein, J.; Cullum, C.M. Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity. Neuroimage, 2005, 28(1), 39-48.
[http://dx.doi.org/10.1016/j.neuroimage.2005.06.013] [PMID: 16023375]
[64]
Picard, H.; Amado, I.; Mouchet-Mages, S.; Olié, J.P.; Krebs, M.O. The role of the cerebellum in schizophrenia: an update of clinical, cognitive, and functional evidences. Schizophr. Bull., 2007, 34(1), 155-172.
[http://dx.doi.org/10.1093/schbul/sbm049] [PMID: 17562694]
[65]
Adamaszek, M.; D’Agata, F.; Ferrucci, R.; Habas, C.; Keulen, S.; Kirkby, K.C.; Leggio, M.; Mariën, P.; Molinari, M.; Moulton, E.; Orsi, L.; Van Overwalle, F.; Papadelis, C.; Priori, A.; Sacchetti, B.; Schutter, D.J.; Styliadis, C.; Verhoeven, J. Consensus paper: Cerebellum and emotion. Cerebellum, 2017, 16(2), 552-576.
[http://dx.doi.org/10.1007/s12311-016-0815-8] [PMID: 27485952]
[66]
Ferrucci, R.; Giannicola, G.; Rosa, M.; Fumagalli, M.; Boggio, P.S.; Hallett, M.; Zago, S.; Priori, A. Cerebellum and processing of negative facial emotions: Cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cogn. Emotion, 2012, 26(5), 786-799.
[http://dx.doi.org/10.1080/02699931.2011.619520] [PMID: 22077643]
[67]
Park, J.Y.; Gu, B.M.; Kang, D.H.; Shin, Y.W.; Choi, C.H.; Lee, J.M.; Kwon, J.S. Integration of cross-modal emotional information in the human brain: An fMRI study. Cortex, 2010, 46(2), 161-169.
[http://dx.doi.org/10.1016/j.cortex.2008.06.008] [PMID: 18691703]
[68]
Chan, S.W.Y.; Sussmann, J.E.; Romaniuk, L.; Stewart, T.; Lawrie, S.M.; Hall, J.; McIntosh, A.M.; Whalley, H.C. Deactivation in anterior cingulate cortex during facial processing in young individuals with high familial risk and early development of depression: fMRI findings from the Scottish Bipolar Family Study. J. Child Psychol. Psychiatry, 2016, 57(11), 1277-1286.
[http://dx.doi.org/10.1111/jcpp.12591] [PMID: 27418025]
[69]
Dickstein, D.P.; Brazel, A.C.; Goldberg, L.D.; Hunt, J.I. Affect regulation in pediatric bipolar disorder. Child Adolesc. Psychiatr. Clin. N. Am., 2009, 18(2), 405-420. ix.
[http://dx.doi.org/10.1016/j.chc.2008.12.003] [PMID: 19264270]
[70]
Miskowiak, K.W.; Mariegaard, J.; Jahn, F.S.; Kjærstad, H.L. Associations between cognition and subsequent mood episodes in patients with bipolar disorder and their unaffected relatives: A systematic review. J. Affect. Disord., 2022, 297, 176-188.
[http://dx.doi.org/10.1016/j.jad.2021.10.044] [PMID: 34699850]
[71]
van Haren, N.E.M.; Setiaman, N.; Koevoets, M.G.J.C.; Baalbergen, H.; Kahn, R.S.; Hillegers, M.H.J. Brain structure, IQ, and psychopathology in young offspring of patients with schizophrenia or bipolar disorder. Eur. Psychiatry, 2020, 63(1), e5.
[http://dx.doi.org/10.1192/j.eurpsy.2019.19] [PMID: 32093799]
[72]
Fjell, A.M.; Sneve, M.H.; Grydeland, H.; Storsve, A.B.; Amlien, I.K.; Yendiki, A.; Walhovd, K.B. Relationship between structural and functional connectivity change across the adult lifespan: A longitudinal investigation. Hum. Brain Mapp., 2017, 38(1), 561-573.
[http://dx.doi.org/10.1002/hbm.23403] [PMID: 27654880]
[73]
Sani, G.; Kotzalidis, G.D.; Vöhringer, P.; Pucci, D.; Simonetti, A.; Manfredi, G.; Savoja, V.; Tamorri, S.M.; Mazzarini, L.; Pacchiarotti, I.; Telesforo, C.L.; Ferracuti, S.; Brugnoli, R.; Ambrosi, E.; Caloro, M.; Del Casale, A.; Koukopoulos, A.E.; Vergne, D.E.; Girardi, P.; Ghaemi, S.N. Effectiveness of short-term olanzapine in patients with bipolar I disorder, with or without comorbidity with substance use disorder. J. Clin. Psychopharmacol., 2013, 33(2), 231-235.
[http://dx.doi.org/10.1097/JCP.0b013e318287019c] [PMID: 23422396]
[74]
De Filippis, S.; Cuomo, I.; Lionetto, L.; Janiri, D.; Simmaco, M.; Caloro, M.; De Persis, S.; Piazzi, G.; Simonetti, A.; Telesforo, C.L.; Sciarretta, A.; Caccia, F.; Gentile, G.; Kotzalidis, G.D.; Girardi, P. Intramuscular aripiprazole in the acute management of psychomotor agitation. Pharmacotherapy, 2013, 33(6), 603-614.
[http://dx.doi.org/10.1002/phar.1260] [PMID: 23505124]
[75]
Janiri, D.; Simonetti, A.; Piras, F.; Ciullo, V.; Spalletta, G.; Sani, G. Predominant polarity and hippocampal subfield volumes in Bipolar disorders. Bipolar Disord., 2020, 22(5), 490-497.
[http://dx.doi.org/10.1111/bdi.12857] [PMID: 31630469]
[76]
Kotzalidis, G.; Rapinesi, C.; Savoja, V.; Cuomo, I.; Simonetti, A.; Ambrosi, E.; Panaccione, I.; Gubbini, S.; Rossi, P.; Chiara, L.; Janiri, D.; Sani, G.; Koukopoulos, A.; Manfredi, G.; Napoletano, F.; Caloro, M.; Pancheri, L.; Puzella, A.; Callovini, G.; Angeletti, G.; Casale, A. Neurobiological evidence for the primacy of mania hypothesis. Curr. Neuropharmacol., 2017, 15(3), 339-352.
[http://dx.doi.org/10.2174/1570159X14666160708231216] [PMID: 28503105]
[77]
Koukopoulos, A.; Sani, G.; Koukopoulos, A.E.; Albert, M.J.; Girardi, P.; Tatarelli, R. Endogenous and exogenous cyclicity and temperament in bipolar disorder: Review, new data and hypotheses. J. Affect. Disord., 2006, 96(3), 165-175.
[http://dx.doi.org/10.1016/j.jad.2006.08.031] [PMID: 16997381]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy