Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Resveratrol-Mediated Regulation of Mitochondria Biogenesis-associated Pathways in Neurodegenerative Diseases: Molecular Insights and Potential Therapeutic Applications

Author(s): Abdullah Shaito, Maryam Al-Mansoob, Salma M.S. Ahmad, Mohammad Z. Haider, Ali H. Eid, Anna Maria Posadino, Gianfranco Pintus* and Roberta Giordo

Volume 21, Issue 5, 2023

Published on: 08 March, 2023

Page: [1184 - 1201] Pages: 18

DOI: 10.2174/1570159X20666221012122855

Price: $65

Abstract

Neurodegenerative disorders include different neurological conditions that affect nerve cells, causing the progressive loss of their functions and ultimately leading to loss of mobility, coordination, and mental functioning. The molecular mechanisms underpinning neurodegenerative disease pathogenesis are still unclear. Nonetheless, there is experimental evidence to demonstrate that the perturbation of mitochondrial function and dynamics play an essential role. In this context, mitochondrial biogenesis, the growth, and division of preexisting mitochondria, by controlling mitochondria number, plays a vital role in maintaining proper mitochondrial mass and function, thus ensuring efficient synaptic activity and brain function. Mitochondrial biogenesis is tightly associated with the control of cell division and variations in energy demand in response to extracellular stimuli; therefore, it may represent a promising therapeutic target for developing new curative approaches to prevent or counteract neurodegenerative disorders. Accordingly, several inducers of mitochondrial biogenesis have been proposed as pharmacological targets for treating diverse central nervous system conditions. The naturally occurring polyphenol resveratrol has been shown to promote mitochondrial biogenesis in various tissues, including the nervous tissue, and an ever-growing number of studies highlight its neurotherapeutic potential. Besides preventing cognitive impairment and neurodegeneration through its antioxidant and anti-inflammatory properties, resveratrol has been shown to be able to enhance mitochondria biogenesis by acting on its main effectors, including PGC-1α, SIRT1, AMPK, ERRs, TERT, TFAM, NRF-1 and NRF-2. This review aims to present and discuss the current findings concerning the impact of resveratrol on the machinery and main effectors modulating mitochondrial biogenesis in the context of neurodegenerative diseases.

Graphical Abstract

[1]
Williams, A. Defining neurodegenerative diseases. BMJ, 2002, 324(7352), 1465-1466.
[http://dx.doi.org/10.1136/bmj.324.7352.1465] [PMID: 12077015]
[2]
Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2018, 10(4), a033118.
[http://dx.doi.org/10.1101/cshperspect.a033118] [PMID: 28716886]
[3]
Gerovska, D.; Araúzo-Bravo, M.J. The common incidence-age multistep model of neurodegenerative diseases revisited: wider general age range of incidence corresponds to fewer disease steps. Cell Biosci., 2022, 12(1), 11.
[http://dx.doi.org/10.1186/s13578-021-00737-8] [PMID: 35093175]
[4]
Pereira, T.M.C.; Côco, L.Z.; Ton, A.M.M.; Meyrelles, S.S.; Campos-Toimil, M.; Campagnaro, B.P.; Vasquez, E.C. The emerging scenario of the gut-brain axis: The therapeutic actions of the new actor kefir against neurodegenerative diseases. Antioxidants, 2021, 10(11), 1845.
[http://dx.doi.org/10.3390/antiox10111845] [PMID: 34829716]
[5]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[6]
Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology, 2018, 154(2), 204-219.
[http://dx.doi.org/10.1111/imm.12922] [PMID: 29513402]
[7]
Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006, 443(7113), 787-795.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[8]
Wang, C.; Youle, R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet., 2009, 43(1), 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[9]
Golpich, M.; Amini, E.; Mohamed, Z.; Azman, A.R.; Mohamed, I.N.; Ahmadiani, A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci. Ther., 2017, 23(1), 5-22.
[http://dx.doi.org/10.1111/cns.12655] [PMID: 27873462]
[10]
Okamoto, K.; Kondo-Okamoto, N. Mitochondria and autophagy: Critical interplay between the two homeostats. Biochim. Biophys. Acta, Gen. Subj., 2012, 1820(5), 595-600.
[http://dx.doi.org/10.1016/j.bbagen.2011.08.001] [PMID: 21846491]
[11]
Liu, Y.J.; McIntyre, R.L.; Janssens, G.E.; Houtkooper, R.H. Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mech. Ageing Dev., 2020, 186, 111212.
[http://dx.doi.org/10.1016/j.mad.2020.111212] [PMID: 32017944]
[12]
Gao, J.; Wang, L.; Liu, J.; Xie, F.; Su, B.; Wang, X. Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants, 2017, 6(2), 25.
[http://dx.doi.org/10.3390/antiox6020025] [PMID: 28379197]
[13]
Youle, R.J.; van der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science, 2012, 337(6098), 1062-1065.
[http://dx.doi.org/10.1126/science.1219855] [PMID: 22936770]
[14]
Zemirli, N.; Morel, E.; Molino, D. Mitochondrial dynamics in basal and stressful conditions. Int. J. Mol. Sci., 2018, 19(2), 564.
[http://dx.doi.org/10.3390/ijms19020564] [PMID: 29438347]
[15]
Sanchis-Gomar, F.; García-Giménez, J.; Gómez-Cabrera, M.; Pallardó, F. Mitochondrial biogenesis in health and disease. Molecular and therapeutic approaches. Curr. Pharm. Des., 2014, 20(35), 5619-5633.
[http://dx.doi.org/10.2174/1381612820666140306095106] [PMID: 24606801]
[16]
Valero, T. Mitochondrial biogenesis: pharmacological approaches. Curr. Pharm. Des., 2014, 20(35), 5507-5509.
[http://dx.doi.org/10.2174/138161282035140911142118] [PMID: 24606795]
[17]
Simmons, E.C.; Scholpa, N.E.; Schnellmann, R.G. Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp. Neurol., 2020, 329, 113309.
[http://dx.doi.org/10.1016/j.expneurol.2020.113309] [PMID: 32289315]
[18]
Atanasov, N.; Klisurova, V.; Katsarova, S.; Vlaĭkova, E. Daily individual fluctuations of 16 clinico-chemical indices of the blood serum in hospitalized patients. Lab. Delo, 1988, 7, 43-46.
[PMID: 2460680]
[19]
Cameron, R.B.; Beeson, C.C.; Schnellmann, R.G. Development of therapeutics that induce mitochondrial biogenesis for the treatment of acute and chronic degenerative diseases. J. Med. Chem., 2016, 59(23), 10411-10434.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00669] [PMID: 27560192]
[20]
Dong, W.; Gao, D.; Zhang, X. Mitochondria biogenesis induced by resveratrol against brain ischemic stroke. Med. Hypotheses, 2007, 69(3), 700-701.
[http://dx.doi.org/10.1016/j.mehy.2007.01.017] [PMID: 17368753]
[21]
Griñán-Ferré, C.; Bellver-Sanchis, A.; Izquierdo, V.; Corpas, R.; Roig-Soriano, J.; Chillón, M.; Andres-Lacueva, C.; Somogyvári, M.; Sőti, C.; Sanfeliu, C.; Pallàs, M. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy. Ageing Res. Rev., 2021, 67, 101271.
[http://dx.doi.org/10.1016/j.arr.2021.101271] [PMID: 33571701]
[22]
Donato, A.; Kagias, K.; Zhang, Y.; Hilliard, M.A. Neuronal sub‐compartmentalization: a strategy to optimize neuronal function. Biol. Rev. Camb. Philos. Soc., 2019, 94(3), 1023-1037.
[http://dx.doi.org/10.1111/brv.12487] [PMID: 30609235]
[23]
Cardanho-Ramos, C.; Morais, V.A. Mitochondrial Biogenesis in Neurons: How and Where. Int. J. Mol. Sci., 2021, 22(23), 13059.
[http://dx.doi.org/10.3390/ijms222313059] [PMID: 34884861]
[24]
Baker, M.J.; Frazier, A.E.; Gulbis, J.M.; Ryan, M.T. Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol., 2007, 17(9), 456-464.
[http://dx.doi.org/10.1016/j.tcb.2007.07.010] [PMID: 17825565]
[25]
Boguszewska, K.; Szewczuk, M.; Kaźmierczak-Barańska, J.; Karwowski, B.T. The Similarities between human mitochondria and bacteria in the context of structure, genome, and base excision repair system. Molecules, 2020, 25(12), 2857.
[http://dx.doi.org/10.3390/molecules25122857] [PMID: 32575813]
[26]
Fontana, G.A.; Gahlon, H.L. Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res., 2020, 48(20), 11244-11258.
[http://dx.doi.org/10.1093/nar/gkaa804] [PMID: 33021629]
[27]
Popov, L.D. Mitochondrial biogenesis: An update. J. Cell. Mol. Med., 2020, 24(9), 4892-4899.
[http://dx.doi.org/10.1111/jcmm.15194] [PMID: 32279443]
[28]
Rossi, A.; Pizzo, P.; Filadi, R. Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(7), 1068-1078.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.016] [PMID: 30982525]
[29]
Cheng, C.F.; Ku, H.C.; Lin, H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int. J. Mol. Sci., 2018, 19(11), 3447.
[http://dx.doi.org/10.3390/ijms19113447] [PMID: 30400212]
[30]
Yang, Z.F.; Drumea, K.; Mott, S.; Wang, J.; Rosmarin, A.G. GABP transcription factor (nuclear respiratory factor 2) is required for mitochondrial biogenesis. Mol. Cell. Biol., 2014, 34(17), 3194-3201.
[http://dx.doi.org/10.1128/MCB.00492-12] [PMID: 24958105]
[31]
Satoh, J.; Kawana, N.; Yamamoto, Y. Pathway analysis of ChIP-seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul. Syst. Bio., 2013, 7, GRSB.S13204.
[http://dx.doi.org/10.4137/GRSB.S13204] [PMID: 24250222]
[32]
Biswas, M.; Chan, J.Y. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharmacol., 2010, 244(1), 16-20.
[http://dx.doi.org/10.1016/j.taap.2009.07.034] [PMID: 19665035]
[33]
Nanjaiah, H.; Vallikannan, B. Lutein upregulates the PGC‐1α, NRF1, and TFAM expression by AMPK activation and downregulates ROS to maintain mtDNA integrity and mitochondrial biogenesis in hyperglycemic ARPE‐19 cells and rat retina. Biotechnol. Appl. Biochem., 2019, 66(6), 999-1009.
[http://dx.doi.org/10.1002/bab.1821] [PMID: 31529536]
[34]
Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev., 2006, 106(2), 383-405.
[http://dx.doi.org/10.1021/cr040463d] [PMID: 16464011]
[35]
Oláhová, M.; Peter, B.; Szilagyi, Z.; Diaz-Maldonado, H.; Singh, M.; Sommerville, E.W.; Blakely, E.L.; Collier, J.J.; Hoberg, E.; Stránecký, V.; Hartmannová, H.; Bleyer, A.J.; McBride, K.L.; Bowden, S.A.; Korandová, Z.; Pecinová, A.; Ropers, H.H.; Kahrizi, K.; Najmabadi, H.; Tarnopolsky, M.A.; Brady, L.I.; Weaver, K.N.; Prada, C.E.; Õunap, K.; Wojcik, M.H.; Pajusalu, S.; Syeda, S.B.; Pais, L.; Estrella, E.A.; Bruels, C.C.; Kunkel, L.M.; Kang, P.B.; Bonnen, P.E.; Mráček, T.; Kmoch, S.; Gorman, G.S.; Falkenberg, M.; Gustafsson, C.M.; Taylor, R.W. POLRMT mutations impair mitochondrial transcription causing neurological disease. Nat. Commun., 2021, 12(1), 1135.
[http://dx.doi.org/10.1038/s41467-021-21279-0] [PMID: 33602924]
[36]
Liu, Y.; Chen, Z.; Wang, Z-H. The PPR domain of mitochondrial RNA polymerase is a ribonuclease required for mtDNA replication. Nat. Cell Biol., 2021.
[http://dx.doi.org/10.1101/2021.03.12.435139]
[37]
Rebelo, A.P.; Dillon, L.M.; Moraes, C.T. Mitochondrial DNA transcription regulation and nucleoid organization. J. Inherit. Metab. Dis., 2011, 34(4), 941-951.
[http://dx.doi.org/10.1007/s10545-011-9330-8] [PMID: 21541724]
[38]
Metodiev, M.D.; Lesko, N.; Park, C.B.; Cámara, Y.; Shi, Y.; Wibom, R.; Hultenby, K.; Gustafsson, C.M.; Larsson, N.G. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab., 2009, 9(4), 386-397.
[http://dx.doi.org/10.1016/j.cmet.2009.03.001] [PMID: 19356719]
[39]
Kummer, E.; Ban, N. Mechanisms and regulation of protein synthesis in mitochondria. Nat. Rev. Mol. Cell Biol., 2021, 22(5), 307-325.
[http://dx.doi.org/10.1038/s41580-021-00332-2] [PMID: 33594280]
[40]
Gordon, D.M.; Santos, J.H. The emerging role of telomerase reverse transcriptase in mitochondrial DNA metabolism. J. Nucleic Acids, 2010, 2010, 390791.
[http://dx.doi.org/10.4061/2010/390791]
[41]
Singhapol, C.; Pal, D.; Czapiewski, R.; Porika, M.; Nelson, G.; Saretzki, G.C. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLoS One, 2013, 8(1), e52989.
[http://dx.doi.org/10.1371/journal.pone.0052989] [PMID: 23326372]
[42]
Green, P.; Sharma, N.; Santos, J. Santos JHJIjoms. Telomerase impinges on the cellular response to oxidative stress through mitochondrial ROS-mediated regulation of autophagy. Int. J. Mol. Sci., 2019, 20(6), 1509.
[http://dx.doi.org/10.3390/ijms20061509] [PMID: 30917518]
[43]
Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: from proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol., 2010, 11(9), 655-667.
[http://dx.doi.org/10.1038/nrm2959] [PMID: 20729931]
[44]
Callegari, S.; Cruz-Zaragoza, L.D.; Rehling, P. From TOM to the TIM23 complex – handing over of a precursor. Biol. Chem., 2020, 401(6-7), 709-721.
[http://dx.doi.org/10.1515/hsz-2020-0101] [PMID: 32074073]
[45]
Zorova, L.D.; Popkov, V.A.; Plotnikov, E.J. Functional significance of the mitochondrial membrane potential. Biochemistry (Moscow). Supplement Series A: Membrane and Cell Biology, 2018, 12(1), 20-26.
[http://dx.doi.org/10.1134/S1990747818010129]
[46]
Mårtensson, C.U.; Priesnitz, C.; Song, J.; Ellenrieder, L.; Doan, K.N.; Boos, F.; Floerchinger, A.; Zufall, N.; Oeljeklaus, S.; Warscheid, B.; Becker, T. Mitochondrial protein translocation-associated degradation. Nature, 2019, 569(7758), 679-683.
[http://dx.doi.org/10.1038/s41586-019-1227-y] [PMID: 31118508]
[47]
Mokranjac, D. How to get to the other side of the mitochondrial inner membrane – the protein import motor. Biol. Chem., 2020, 401(6-7), 723-736.
[http://dx.doi.org/10.1515/hsz-2020-0106] [PMID: 32142474]
[48]
Yu, L.; Yang, S.J. AMP-activated protein kinase mediates activity-dependent regulation of peroxisome proliferator-activated receptor γ coactivator-1α and nuclear respiratory factor 1 expression in rat visual cortical neurons. Neuroscience, 2010, 169(1), 23-38.
[http://dx.doi.org/10.1016/j.neuroscience.2010.04.063] [PMID: 20438809]
[49]
Jäger, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B.M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12017-12022.
[http://dx.doi.org/10.1073/pnas.0705070104] [PMID: 17609368]
[50]
Lee, H.; Zandkarimi, F.; Zhang, Y.; Meena, J.K.; Kim, J.; Zhuang, L.; Tyagi, S.; Ma, L.; Westbrook, T.F.; Steinberg, G.R.; Nakada, D.; Stockwell, B.R.; Gan, B. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol., 2020, 22(2), 225-234.
[http://dx.doi.org/10.1038/s41556-020-0461-8] [PMID: 32029897]
[51]
Fernandez-Marcos, P.J.; Auwerx, J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am. J. Clin. Nutr., 2011, 93(4), 884S-890S.
[http://dx.doi.org/10.3945/ajcn.110.001917] [PMID: 21289221]
[52]
Delghandi, M.P.; Johannessen, M.; Moens, U. The cAMP signalling pathway activates CREB through PKA, p38 and MSK1 in NIH 3T3 cells. Cell. Signal., 2005, 17(11), 1343-1351.
[http://dx.doi.org/10.1016/j.cellsig.2005.02.003] [PMID: 16125054]
[53]
Cantó, C.; Gerhart-Hines, Z.; Feige, J.N.; Lagouge, M.; Noriega, L.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241), 1056-1060.
[http://dx.doi.org/10.1038/nature07813] [PMID: 19262508]
[54]
Mattson, M.P.; Gleichmann, M.; Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron, 2008, 60(5), 748-766.
[http://dx.doi.org/10.1016/j.neuron.2008.10.010] [PMID: 19081372]
[55]
Li, P.A.; Hou, X.; Hao, S. Mitochondrial biogenesis in neurodegeneration. J. Neurosci. Res., 2017, 95(10), 2025-2029.
[http://dx.doi.org/10.1002/jnr.24042] [PMID: 28301064]
[56]
Uittenbogaard, M.; Chiaramello, A. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr. Pharm. Des., 2014, 20(35), 5574-5593.
[http://dx.doi.org/10.2174/1381612820666140305224906] [PMID: 24606804]
[57]
Zhang, Q.; Wu, Y.; Zhang, P.; Sha, H.; Jia, J.; Hu, Y.; Zhu, J. Exercise induces mitochondrial biogenesis after brain ischemia in rats. Neuroscience, 2012, 205, 10-17.
[http://dx.doi.org/10.1016/j.neuroscience.2011.12.053] [PMID: 22266265]
[58]
López-Lluch, G.; Hunt, N.; Jones, B.; Zhu, M.; Jamieson, H.; Hilmer, S.; Cascajo, M.V.; Allard, J.; Ingram, D.K.; Navas, P.; de Cabo, R. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc. Natl. Acad. Sci. USA, 2006, 103(6), 1768-1773.
[http://dx.doi.org/10.1073/pnas.0510452103] [PMID: 16446459]
[59]
Komen, J.C.; Thorburn, D.R. Turn up the power - pharmacological activation of mitochondrial biogenesis in mouse models. Br. J. Pharmacol., 2014, 171(8), 1818-1836.
[http://dx.doi.org/10.1111/bph.12413] [PMID: 24102298]
[60]
Singh, A.; Faccenda, D.; Campanella, M. Pharmacological advances in mitochondrial therapy. EBioMedicine, 2021, 65, 103244.
[http://dx.doi.org/10.1016/j.ebiom.2021.103244] [PMID: 33647769]
[61]
Chodari, L.; Dilsiz Aytemir, M.; Vahedi, P. Targeting mitochondrial biogenesis with polyphenol compounds. Oxid. Med. Cell. Longev., 2021, 2021, 4946711.
[http://dx.doi.org/10.1155/2021/4946711]
[62]
Davinelli, S.; Sapere, N.; Visentin, M.; Zella, D.; Scapagnini, G. Enhancement of mitochondrial biogenesis with polyphenols: combined effects of resveratrol and equol in human endothelial cells. Immun. Ageing, 2013, 10(1), 28.
[http://dx.doi.org/10.1186/1742-4933-10-28] [PMID: 23842073]
[63]
Park, S.J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; Kim, M.K.; Beaven, M.A.; Burgin, A.B.; Manganiello, V.; Chung, J.H. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell, 2012, 148(3), 421-433.
[http://dx.doi.org/10.1016/j.cell.2012.01.017] [PMID: 22304913]
[64]
D’Errico, I.; Salvatore, L.; Murzilli, S.; Lo Sasso, G.; Latorre, D.; Martelli, N.; Egorova, A.V.; Polishuck, R.; Madeyski-Bengtson, K.; Lelliott, C.; Vidal-Puig, A.J.; Seibel, P.; Villani, G.; Moschetta, A. Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) is a metabolic regulator of intestinal epithelial cell fate. Proc. Natl. Acad. Sci. USA, 2011, 108(16), 6603-6608.
[http://dx.doi.org/10.1073/pnas.1016354108] [PMID: 21467224]
[65]
Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; Kajimura, S.; Zingaretti, M.C.; Vind, B.F.; Tu, H.; Cinti, S.; Højlund, K.; Gygi, S.P.; Spiegelman, B.M.A. PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481(7382), 463-468.
[http://dx.doi.org/10.1038/nature10777] [PMID: 22237023]
[66]
Handschin, C.; Spiegelman, B.M. The role of exercise and PGC1α in inflammation and chronic disease. Nature, 2008, 454(7203), 463-469.
[http://dx.doi.org/10.1038/nature07206] [PMID: 18650917]
[67]
Wenz, T.; Rossi, S.G.; Rotundo, R.L.; Spiegelman, B.M.; Moraes, C.T. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20405-20410.
[http://dx.doi.org/10.1073/pnas.0911570106] [PMID: 19918075]
[68]
Piccinin, E.; Sardanelli, A.M.; Seibel, P.; Moschetta, A.; Cocco, T.; Villani, G. PGC-1s in the Spotlight with Parkinson’s Disease. Int. J. Mol. Sci., 2021, 22(7), 3487.
[http://dx.doi.org/10.3390/ijms22073487] [PMID: 33800548]
[69]
Mota, B.C.; Almpani, E.V.; Nikolaou, M.N.; Garcia-Segura, M.E.; Huang, Y-H.; Keniyopoullos, R.; Mazarakis, N.D.; Sastre, M. Investigation of the effect of PGC1A gene therapy at advanced stages of Alzheimer’s disease in an animal model of amyloid pathology. Alzheimers Dement., 2020, 16(S3), e047598.
[http://dx.doi.org/10.1002/alz.047598]
[70]
Yang, A.J.T.; Bagit, A.; MacPherson, R.E.K. Resveratrol, metabolic dysregulation, and Alzheimer’s disease: Considerations for neurogenerative disease. Int. J. Mol. Sci., 2021, 22(9), 4628.
[http://dx.doi.org/10.3390/ijms22094628] [PMID: 33924876]
[71]
Price, N.L.; Gomes, A.P.; Ling, A.J.Y.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; Hubbard, B.P.; Varela, A.T.; Davis, J.G.; Varamini, B.; Hafner, A.; Moaddel, R.; Rolo, A.P.; Coppari, R.; Palmeira, C.M.; de Cabo, R.; Baur, J.A.; Sinclair, D.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab., 2012, 15(5), 675-690.
[http://dx.doi.org/10.1016/j.cmet.2012.04.003] [PMID: 22560220]
[72]
Wang, X.L.; Li, T.; Li, J.H.; Miao, S.Y.; Xiao, X.Z. The effects of resveratrol on inflammation and oxidative stress in a rat model of chronic obstructive pulmonary disease. Molecules, 2017, 22(9), 1529.
[http://dx.doi.org/10.3390/molecules22091529] [PMID: 28895883]
[73]
Nishigaki, A.; Kido, T.; Kida, N.; Kakita-Kobayashi, M.; Tsubokura, H.; Hisamatsu, Y.; Okada, H. Resveratrol protects mitochondrial quantity by activating SIRT1/PGC‐1α expression during ovarian hypoxia. Reprod. Med. Biol., 2020, 19(2), 189-197.
[http://dx.doi.org/10.1002/rmb2.12323] [PMID: 32273826]
[74]
Zhang, T.; Chi, Y.; Ren, Y.; Du, C.; Shi, Y.; Li, Y. Resveratrol reduces oxidative stress and apoptosis in podocytes via Sir2-related enzymes, sirtuins1 (SIRT1)/peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α). Axis. Med. Sci. Monit., 2019, 25, 1220-1231.
[http://dx.doi.org/10.12659/MSM.911714] [PMID: 30765684]
[75]
Fang, W.; Wang, C.; He, Y.; Zhou, Y.; Peng, X.; Liu, S. Resveratrol alleviates diabetic cardiomyopathy in rats by improving mitochondrial function through PGC-1α deacetylation. Acta Pharmacol. Sin., 2018, 39(1), 59-73.
[http://dx.doi.org/10.1038/aps.2017.50] [PMID: 28770830]
[76]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006, 127(6), 1109-1122.
[http://dx.doi.org/10.1016/j.cell.2006.11.013] [PMID: 17112576]
[77]
Ljubicic, V.; Burt, M.; Lunde, J.A.; Jasmin, B.J. Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis. Am. J. Physiol. Cell Physiol., 2014, 307(1), C66-C82.
[http://dx.doi.org/10.1152/ajpcell.00357.2013] [PMID: 24760981]
[78]
Fu, B.; Zhao, J.; Peng, W.; Wu, H.; Zhang, Y. Resveratrol rescues cadmium-induced mitochondrial injury by enhancing transcriptional regulation of PGC-1α and SOD2 via the Sirt3/FoxO3a pathway in TCMK-1 cells. Biochem. Biophys. Res. Commun., 2017, 486(1), 198-204.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.027] [PMID: 28286268]
[79]
Zhou, J.; Yang, Z.; Shen, R.; Zhong, W.; Zheng, H.; Chen, Z.; Tang, J.; Zhu, J. Resveratrol improves mitochondrial biogenesis function and activates PGC-1α pathway in a preclinical model of early brain injury following subarachnoid hemorrhage. Front. Mol. Biosci., 2021, 8, 620683.
[http://dx.doi.org/10.3389/fmolb.2021.620683] [PMID: 33968980]
[80]
Baldelli, S.; Aquilano, K.; Ciriolo, M. PGC-1α buffers ROS-mediated removal of mitochondria during myogenesis. Cell Death Dis., 2014, 5(11), e1515.
[http://dx.doi.org/10.1038/cddis.2014.458] [PMID: 25375380]
[81]
St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; Simon, D.K.; Bachoo, R.; Spiegelman, B.M. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006, 127(2), 397-408.
[http://dx.doi.org/10.1016/j.cell.2006.09.024] [PMID: 17055439]
[82]
Chuang, Y.C.; Chen, S.D.; Hsu, C.Y.; Chen, S.F.; Chen, N.C.; Jou, S.B. Resveratrol promotes mitochondrial biogenesis and protects against seizure-induced neuronal cell damage in the hippocampus following status epilepticus by activation of the PGC-1α signaling pathway. Int. J. Mol. Sci., 2019, 20(4), 998.
[http://dx.doi.org/10.3390/ijms20040998] [PMID: 30823590]
[83]
Chen, S.; Fan, Q.; Li, A.; Liao, D.; Ge, J.; Laties, A.M.; Zhang, X. Dynamic mobilization of PGC-1α mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation. Apoptosis, 2013, 18(7), 786-799.
[http://dx.doi.org/10.1007/s10495-013-0837-3] [PMID: 23525928]
[84]
Harry, G.J. Microglia in neurodegenerative events—an initiator or a significant other? Int. J. Mol. Sci., 2021, 22(11), 5818.
[http://dx.doi.org/10.3390/ijms22115818] [PMID: 34072307]
[85]
Yang, X.; Xu, S.; Qian, Y.; Xiao, Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav. Immun., 2017, 64, 162-172.
[http://dx.doi.org/10.1016/j.bbi.2017.03.003] [PMID: 28268115]
[86]
Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction between the Nrf2 and PGC-1α signaling pathways. Front. Genet., 2019, 10, 435.
[http://dx.doi.org/10.3389/fgene.2019.00435]
[87]
Evans, M.J.; Scarpulla, R.C. NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev., 1990, 4(6), 1023-1034.
[http://dx.doi.org/10.1101/gad.4.6.1023] [PMID: 2166701]
[88]
Yan, X.; Shen, Z.; Yu, D.; Zhao, C.; Zou, H.; Ma, B.; Dong, W.; Chen, W.; Huang, D.; Yu, Z. Nrf2 contributes to the benefits of exercise interventions on age-related skeletal muscle disorder via regulating Drp1 stability and mitochondrial fission. Free Radic. Biol. Med., 2022, 178, 59-75.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.11.030] [PMID: 34823019]
[89]
Scarpulla, R.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev., 2008, 88(2), 611-638.
[http://dx.doi.org/10.1152/physrev.00025.2007] [PMID: 18391175]
[90]
Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An overview of Nrf2 signaling pathway and its role in inflammation. Molecules, 2020, 25(22), 5474.
[http://dx.doi.org/10.3390/molecules25225474] [PMID: 33238435]
[91]
Johri, A.; Chandra, A.; Flint Beal, M. PGC-1α, mitochondrial dysfunction, and Huntington’s disease. Free Radic. Biol. Med., 2013, 62, 37-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.016] [PMID: 23602910]
[92]
Ramsey, C.P.; Glass, C.A.; Montgomery, M.B.; Lindl, K.A.; Ritson, G.P.; Chia, L.A.; Hamilton, R.L.; Chu, C.T.; Jordan-Sciutto, K.L. Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neurol., 2007, 66(1), 75-85.
[http://dx.doi.org/10.1097/nen.0b013e31802d6da9] [PMID: 17204939]
[93]
Ikram, M.; Park, T.J.; Ali, T.; Kim, M.O. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: insight into the role of Nrf-2 and A2AR signaling. Antioxidants, 2020, 9(9), 902.
[http://dx.doi.org/10.3390/antiox9090902] [PMID: 32971922]
[94]
Uruno, A.; Matsumaru, D.; Ryoke, R.; Saito, R.; Kadoguchi, S.; Saigusa, D.; Saito, T.; Saido, T.C.; Kawashima, R.; Yamamoto, M. Nrf2 suppresses oxidative stress and inflammation in App knock-in Alzheimer’s disease model mice. Mol. Cell. Biol., 2020, 40(6), e00467-e19.
[http://dx.doi.org/10.1128/MCB.00467-19] [PMID: 31932477]
[95]
Sheng, B.; Wang, X.; Su, B.; Lee, H.; Casadesus, G.; Perry, G.; Zhu, X. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. J. Neurochem., 2012, 120(3), 419-429.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07581.x] [PMID: 22077634]
[96]
Franco-Iborra, S.; Vila, M.; Perier, C. Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front. Neurosci., 2018, 12, 342.
[http://dx.doi.org/10.3389/fnins.2018.00342] [PMID: 29875626]
[97]
Taherzadeh-Fard, E.; Saft, C.; Akkad, D.A.; Wieczorek, S.; Haghikia, A.; Chan, A.; Epplen, J.T.; Arning, L. PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol. Neurodegener., 2011, 6(1), 32.
[http://dx.doi.org/10.1186/1750-1326-6-32] [PMID: 21595933]
[98]
Yang, J.; Huang, J.; Shen, C.; Cheng, W.; Yu, P.; Wang, L.; Tang, F.; Guo, S.; Yang, Q.; Zhang, J. Resveratrol treatment in different time-attenuated neuronal apoptosis after oxygen and glucose deprivation/reoxygenation via enhancing the activation of Nrf-2 signaling pathway in vitro. Cell Transplant., 2018, 27(12), 1789-1797.
[http://dx.doi.org/10.1177/0963689718780930] [PMID: 30008229]
[99]
Abdel-Aleem, G.A.; Khaleel, E.F.; Mostafa, D.G.; Elberier, L.K. Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch. Physiol. Biochem., 2016, 122(4), 200-213.
[http://dx.doi.org/10.1080/13813455.2016.1182190] [PMID: 27109835]
[100]
Kesherwani, V.; Atif, F.; Yousuf, S.; Agrawal, S.K. Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2. Neuroscience, 2013, 241, 80-88.
[http://dx.doi.org/10.1016/j.neuroscience.2013.03.015] [PMID: 23523995]
[101]
Zhao, Q.; Tian, Z.; Zhou, G.; Niu, Q.; Chen, J.; Li, P.; Dong, L.; Xia, T.; Zhang, S.; Wang, A. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride. Theranostics, 2020, 10(11), 4822-4838.
[http://dx.doi.org/10.7150/thno.42387] [PMID: 32308752]
[102]
Ho, D.J.; Calingasan, N.Y.; Wille, E.; Dumont, M.; Beal, M.F. Resveratrol protects against peripheral deficits in a mouse model of Huntington’s disease. Exp. Neurol., 2010, 225(1), 74-84.
[http://dx.doi.org/10.1016/j.expneurol.2010.05.006] [PMID: 20561979]
[103]
Mattingly, K.A.; Klinge, C.M. Diesel exhaust particulate extracts inhibit transcription of nuclear respiratory factor-1 and cell viability in human umbilical vein endothelial cells. Arch. Toxicol., 2012, 86(4), 633-642.
[http://dx.doi.org/10.1007/s00204-011-0778-y] [PMID: 22105178]
[104]
Nirwane, A.; Majumdar, A. Resveratrol and pterostilbene attenuated smokeless tobacco induced cardiovascular aberrations in estrogen deficient female rats. Toxicol. Res. (Camb.), 2016, 5(6), 1604-1618.
[http://dx.doi.org/10.1039/C6TX00225K] [PMID: 30090461]
[105]
Chang, H.C.; Guarente, L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol. Metab., 2014, 25(3), 138-145.
[http://dx.doi.org/10.1016/j.tem.2013.12.001] [PMID: 24388149]
[106]
Rodgers, J.T.; Lerin, C.; Haas, W.; Gygi, S.P.; Spiegelman, B.M.; Puigserver, P. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 2005, 434(7029), 113-118.
[http://dx.doi.org/10.1038/nature03354] [PMID: 15744310]
[107]
Liu, Y.; Dentin, R.; Chen, D.; Hedrick, S.; Ravnskjaer, K.; Schenk, S.; Milne, J.; Meyers, D.J.; Cole, P.; Iii, J.Y.; Olefsky, J.; Guarente, L.; Montminy, M. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature, 2008, 456(7219), 269-273.
[http://dx.doi.org/10.1038/nature07349] [PMID: 18849969]
[108]
Purushotham, A.; Schug, T.T.; Xu, Q.; Surapureddi, S.; Guo, X.; Li, X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab., 2009, 9(4), 327-338.
[http://dx.doi.org/10.1016/j.cmet.2009.02.006] [PMID: 19356714]
[109]
Donmez, G.; Outeiro, T.F. SIRT1 and SIRT2: emerging targets in neurodegeneration. EMBO Mol. Med., 2013, 5(3), 344-352.
[http://dx.doi.org/10.1002/emmm.201302451] [PMID: 23417962]
[110]
Manjula, R.; Anuja, K.; Alcain, F.J. SIRT1 and SIRT2 activity control in neurodegenerative diseases. Front. Pharmacol., 2021, 11, 585821.
[http://dx.doi.org/10.3389/fphar.2020.585821] [PMID: 33597872]
[111]
Tanno, M.; Sakamoto, J.; Miura, T.; Shimamoto, K.; Horio, Y. Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem., 2007, 282(9), 6823-6832.
[http://dx.doi.org/10.1074/jbc.M609554200] [PMID: 17197703]
[112]
Donmez, G. The Effects of SIRT1 on Alzheimer’s Disease Models. Int. J. Alzheimers Dis., 2012, 2012, 509529.
[http://dx.doi.org/10.1155/2012/509529]
[113]
Li, X.; Feng, Y.; Wang, X.X.; Truong, D.; Wu, Y.C. The critical role of SIRT1 in Parkinson’s disease: mechanism and therapeutic considerations. Aging Dis., 2020, 11(6), 1608-1622.
[http://dx.doi.org/10.14336/AD.2020.0216] [PMID: 33269110]
[114]
Jeong, H.; Cohen, D.E.; Cui, L.; Supinski, A.; Savas, J.N.; Mazzulli, J.R.; Yates, J.R., III; Bordone, L.; Guarente, L.; Krainc, D. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med., 2012, 18(1), 159-165.
[http://dx.doi.org/10.1038/nm.2559] [PMID: 22179316]
[115]
Duan, W. Targeting sirtuin-1 in Huntington’s disease: rationale and current status. CNS Drugs, 2013, 27(5), 345-352.
[http://dx.doi.org/10.1007/s40263-013-0055-0] [PMID: 23549885]
[116]
Bagul, P.; Katare, P.; Bugga, P.; Dinda, A.; Banerjee, S.K. SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM. Cells, 2018, 7(12), 235.
[http://dx.doi.org/10.3390/cells7120235] [PMID: 30487434]
[117]
Denu, J.M. Fortifying the link between SIRT1, resveratrol, and mitochondrial function. Cell Metab., 2012, 15(5), 566-567.
[http://dx.doi.org/10.1016/j.cmet.2012.04.016] [PMID: 22560207]
[118]
Xu, Y.; Nie, L.; Yin, Y.G.; Tang, J.L.; Zhou, J.Y.; Li, D.D.; Zhou, S.W. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol. Appl. Pharmacol., 2012, 259(3), 395-401.
[http://dx.doi.org/10.1016/j.taap.2011.09.028] [PMID: 22015446]
[119]
Tanno, M.; Kuno, A.; Yano, T.; Miura, T.; Hisahara, S.; Ishikawa, S.; Shimamoto, K.; Horio, Y. Induction of manganese superoxide dismutase by nuclear translocation and activation of SIRT1 promotes cell survival in chronic heart failure. J. Biol. Chem., 2010, 285(11), 8375-8382.
[http://dx.doi.org/10.1074/jbc.M109.090266] [PMID: 20089851]
[120]
Olmos, Y.; Sánchez-Gómez, F.J.; Wild, B.; García-Quintans, N.; Cabezudo, S.; Lamas, S.; Monsalve, M. SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-1α complex. Antioxid. Redox Signal., 2013, 19(13), 1507-1521.
[http://dx.doi.org/10.1089/ars.2012.4713] [PMID: 23461683]
[121]
Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; dos Santos, S.M.; Rodrigues, C.A.; Gonçalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/8152373] [PMID: 30510627]
[122]
Venigalla, M.; Sonego, S.; Gyengesi, E.; Sharman, M.J.; Münch, G. Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem. Int., 2016, 95, 63-74.
[http://dx.doi.org/10.1016/j.neuint.2015.10.011] [PMID: 26529297]
[123]
Liu, Y.; Chen, X.; Li, J. Resveratrol protects against oxidized low-density lipoprotein-induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial-derived oxidative stress. Mol. Med. Rep., 2017, 15(5), 2457-2464.
[http://dx.doi.org/10.3892/mmr.2017.6304] [PMID: 28447714]
[124]
Corpas, R.; Griñán-Ferré, C.; Rodríguez-Farré, E.; Pallàs, M.; Sanfeliu, C. Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Mol. Neurobiol., 2019, 56(2), 1502-1516.
[http://dx.doi.org/10.1007/s12035-018-1157-y] [PMID: 29948950]
[125]
Zhang, L.; Tu, R.; Wang, Y.; Hu, Y.; Li, X.; Cheng, X.; Yin, Y.; Li, W.; Huang, H. Early-life exposure to lead induces cognitive impairment in elder mice targeting sirt1 phosphorylation and oxidative alterations. Front. Physiol., 2017, 8, 446.
[http://dx.doi.org/10.3389/fphys.2017.00446] [PMID: 28706491]
[126]
Porquet, D.; Griñán-Ferré, C.; Ferrer, I.; Camins, A.; Sanfeliu, C.; del Valle, J.; Pallàs, M. Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(4), 1209-1220.
[http://dx.doi.org/10.3233/JAD-140444] [PMID: 25024312]
[127]
Bai, L.; Liu, R.; Wang, R.; Xin, Y.; Wu, Z.; Ba, Y.; Zhang, H.; Cheng, X.; Zhou, G.; Huang, H. Attenuation of Pb-induced Aβ generation and autophagic dysfunction via activation of SIRT1: Neuroprotective properties of resveratrol. Ecotoxicol. Environ. Saf., 2021, 222, 112511.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112511] [PMID: 34273848]
[128]
Wang, R.; Zhang, Y.; Li, J.; Zhang, C. Resveratrol ameliorates spatial learning memory impairment induced by Aβ 1–42 in rats. Neuroscience, 2017, 344, 39-47.
[http://dx.doi.org/10.1016/j.neuroscience.2016.08.051] [PMID: 27600946]
[129]
Abozaid, O.A.R.; Sallam, M.W.; El-Sonbaty, S.; Aziza, S.; Emad, B.; Ahmed, E.S.A. Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating Sirt1/miRNA-134/GSK3β expression. Biol. Trace Elem. Res., 2022, 200(12), 5104-5114.
[http://dx.doi.org/10.1007/s12011-021-03073-7]
[130]
Simão, F.; Matté, A.; Pagnussat, A.S.; Netto, C.A.; Salbego, C.G. Resveratrol preconditioning modulates inflammatory response in the rat hippocampus following global cerebral ischemia. Neurochem. Int., 2012, 61(5), 659-665.
[http://dx.doi.org/10.1016/j.neuint.2012.06.009] [PMID: 22709670]
[131]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[132]
Anton, S.D.; Ebner, N.; Dzierzewski, J.M.; Zlatar, Z.Z.; Gurka, M.J.; Dotson, V.M.; Kirton, J.; Mankowski, R.T.; Marsiske, M.; Manini, T.M. Effects of 90 days of resveratrol supplementation on cognitive function in elders: A pilot study. J. Altern. Complement. Med., 2018, 24(7), 725-732.
[http://dx.doi.org/10.1089/acm.2017.0398] [PMID: 29583015]
[133]
Wang, X.; Ma, S.; Yang, B.; Huang, T.; Meng, N.; Xu, L.; Xing, Q.; Zhang, Y.; Zhang, K.; Li, Q.; Zhang, T.; Wu, J.; Yang, G.L.; Guan, F.; Wang, J. Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behav. Brain Res., 2018, 339, 297-304.
[http://dx.doi.org/10.1016/j.bbr.2017.10.032] [PMID: 29102593]
[134]
Gómez-Benito, M.; Granado, N.; García-Sanz, P.; Michel, A.; Dumoulin, M.; Moratalla, R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front. Pharmacol., 2020, 11, 356.
[http://dx.doi.org/10.3389/fphar.2020.00356] [PMID: 32390826]
[135]
Jin, F.; Wu, Q.; Lu, Y.F.; Gong, Q.H.; Shi, J.S. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. Eur. J. Pharmacol., 2008, 600(1-3), 78-82.
[http://dx.doi.org/10.1016/j.ejphar.2008.10.005] [PMID: 18940189]
[136]
Adedara, A.O.; Babalola, A.D.; Stephano, F.; Awogbindin, I.O.; Olopade, J.O.; Rocha, J.B.T.; Whitworth, A.J.; Abolaji, A.O. An assessment of the rescue action of resveratrol in parkin loss of function-induced oxidative stress in Drosophila melanogaster. Sci. Rep., 2022, 12(1), 3922.
[http://dx.doi.org/10.1038/s41598-022-07909-7] [PMID: 35273283]
[137]
Naia, L.; Rosenstock, T.R.; Oliveira, A.M.; Oliveira-Sousa, S.I.; Caldeira, G.L.; Carmo, C.; Laço, M.N.; Hayden, M.R.; Oliveira, C.R.; Rego, A.C. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington’s disease models. Mol. Neurobiol., 2017, 54(7), 5385-5399.
[http://dx.doi.org/10.1007/s12035-016-0048-3] [PMID: 27590140]
[138]
Herzig, S.; Shaw, R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol., 2018, 19(2), 121-135.
[http://dx.doi.org/10.1038/nrm.2017.95] [PMID: 28974774]
[139]
Zong, H.; Ren, J.M.; Young, L.H.; Pypaert, M.; Mu, J.; Birnbaum, M.J.; Shulman, G.I. AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 15983-15987.
[http://dx.doi.org/10.1073/pnas.252625599] [PMID: 12444247]
[140]
Marinangeli, C.; Didier, S.; Vingtdeux, V. AMPK in neurodegenerative diseases: implications and therapeutic perspectives. Curr. Drug Targets, 2016, 17(8), 890-907.
[http://dx.doi.org/10.2174/1389450117666160201105645] [PMID: 26073858]
[141]
Muraleedharan, R.; Dasgupta, B. AMPK in the brain: Its roles in glucose and neural metabolism. FEBS J., 2022, 289(8), 2247-2262.
[http://dx.doi.org/10.1111/febs.16151] [PMID: 34355526]
[142]
Hwang, J.T.; Kwon, D.Y.; Park, O.J.; Kim, M.S. Resveratrol protects ROS-induced cell death by activating AMPK in H9c2 cardiac muscle cells. Genes Nutr., 2008, 2(4), 323-326.
[http://dx.doi.org/10.1007/s12263-007-0069-7] [PMID: 18850225]
[143]
Patel, M.I.; Gupta, A.; Dey, C.S. Potentiation of neuronal insulin signaling and glucose uptake by resveratrol: the involvement of AMPK. Pharmacol. Rep., 2011, 63(5), 1162-1168.
[http://dx.doi.org/10.1016/S1734-1140(11)70635-1] [PMID: 22180358]
[144]
Vlavcheski, F.; Den Hartogh, D.J.; Giacca, A.; Tsiani, E. Amelioration of high-insulin-induced skeletal muscle cell insulin resistance by resveratrol is linked to activation of AMPK and restoration of GLUT4 translocation. Nutrients, 2020, 12(4), 914.
[http://dx.doi.org/10.3390/nu12040914] [PMID: 32230718]
[145]
Kim, M.Y.; Lim, J.H.; Youn, H.H.; Hong, Y.A.; Yang, K.S.; Park, H.S.; Chung, S.; Koh, S.H.; Shin, S.J.; Choi, B.S.; Kim, H.W.; Kim, Y.S.; Lee, J.H.; Chang, Y.S.; Park, C.W. Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK–SIRT1–PGC1α axis in db/db mice. Diabetologia, 2013, 56(1), 204-217.
[http://dx.doi.org/10.1007/s00125-012-2747-2] [PMID: 23090186]
[146]
Kang, R.R.; Sun, Q.; Chen, K.G.; Cao, Q.T.; Liu, C.; Liu, K.; Ma, Z.; Deng, Y.; Liu, W.; Xu, B. Resveratrol prevents benzo(a)pyrene-induced disruption of mitochondrial homeostasis via the AMPK signaling pathway in primary cultured neurons. Environ. Pollut., 2020, 261, 114207.
[http://dx.doi.org/10.1016/j.envpol.2020.114207] [PMID: 32220751]
[147]
Lin, C.H.; Nicol, C.J.B.; Cheng, Y.C.; Yen, C.; Wang, Y.S.; Chiang, M.C. Neuroprotective effects of resveratrol against oxygen glucose deprivation induced mitochondrial dysfunction by activation of AMPK in SH-SY5Y cells with 3D gelatin scaffold. Brain Res., 2020, 1726, 146492.
[http://dx.doi.org/10.1016/j.brainres.2019.146492] [PMID: 31586626]
[148]
Dasgupta, B.; Milbrandt, J. Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA, 2007, 104(17), 7217-7222.
[http://dx.doi.org/10.1073/pnas.0610068104] [PMID: 17438283]
[149]
Wu, Y.; Li, X.; Zhu, J.X.; Xie, W.; Le, W.; Fan, Z.; Jankovic, J.; Pan, T. Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals, 2011, 19(3), 163-174.
[http://dx.doi.org/10.1159/000328516] [PMID: 21778691]
[150]
Ferretta, A.; Gaballo, A.; Tanzarella, P.; Piccoli, C.; Capitanio, N.; Nico, B.; Annese, T.; Di Paola, M.; Dell’Aquila, C.; De Mari, M.; Ferranini, E.; Bonifati, V.; Pacelli, C.; Cocco, T. Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(7), 902-915.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.010] [PMID: 24582596]
[151]
Pineda-Ramírez, N.; Alquisiras-Burgos, I.; Ortiz-Plata, A.; Ruiz-Tachiquín, M.E.; Espinoza-Rojo, M.; Aguilera, P. Resveratrol Activates Neuronal Autophagy Through AMPK in the Ischemic Brain. Mol. Neurobiol., 2020, 57(2), 1055-1069.
[http://dx.doi.org/10.1007/s12035-019-01803-6] [PMID: 31667715]
[152]
Jang, B.G.; Lee, J.; Choi, B.; Koh, Y.H.; Kim, M.J. Unexpected beta-amyloid production by middle doses of resveratrol through stabilization of APP protein and AMPK-mediated inhibition of trypsin-like proteasome activity in a cell model of Alzheimer’s disease. Food Chem. Toxicol., 2021, 152, 112185.
[http://dx.doi.org/10.1016/j.fct.2021.112185] [PMID: 33845068]
[153]
Porquet, D.; Casadesús, G.; Bayod, S.; Vicente, A.; Canudas, A.M.; Vilaplana, J.; Pelegrí, C.; Sanfeliu, C.; Camins, A.; Pallàs, M.; del Valle, J. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. Age (Omaha), 2013, 35(5), 1851-1865.
[http://dx.doi.org/10.1007/s11357-012-9489-4] [PMID: 23129026]
[154]
Vingtdeux, V.; Giliberto, L.; Zhao, H.; Chandakkar, P.; Wu, Q.; Simon, J.E.; Janle, E.M.; Lobo, J.; Ferruzzi, M.G.; Davies, P.; Marambaud, P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem., 2010, 285(12), 9100-9113.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[155]
Qi, Y.; Shang, L.; Liao, Z.; Su, H.; Jing, H.; Wu, B.; Bi, K.; Jia, Y. Intracerebroventricular injection of resveratrol ameliorated Aβ-induced learning and cognitive decline in mice. Metab. Brain Dis., 2019, 34(1), 257-266.
[http://dx.doi.org/10.1007/s11011-018-0348-6] [PMID: 30460524]
[156]
Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; Pintus, G. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci., 2020, 21(6), 2084.
[http://dx.doi.org/10.3390/ijms21062084] [PMID: 32197410]
[157]
Posadino, A.M.; Giordo, R.; Cossu, A.; Nasrallah, G.K.; Shaito, A.; Abou-Saleh, H.; Eid, A.H.; Pintus, G. Flavin oxidase-induced ROS generation modulates PKC biphasic effect of resveratrol on endothelial cell survival. Biomolecules, 2019, 9(6), 209.
[http://dx.doi.org/10.3390/biom9060209] [PMID: 31151226]
[158]
Posadino, A.M.; Cossu, A.; Giordo, R.; Zinellu, A.; Sotgia, S.; Vardeu, A.; Hoa, P.T.; Nguyen, L.H.V.; Carru, C.; Pintus, G. Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death. Food Chem. Toxicol., 2015, 78, 10-16.
[http://dx.doi.org/10.1016/j.fct.2015.01.017] [PMID: 25656643]
[159]
Giordo, R.; Cossu, A.; Pasciu, V.; Hoa, P.T.; Posadino, A.M.; Pintus, G. Different redox response elicited by naturally occurring antioxidants in human endothelial cells. Open Biochem. J., 2013, 7, 44-53.
[http://dx.doi.org/10.2174/1874091X01307010044] [PMID: 23730364]
[160]
Pasciu, V.; Posadino, A.M.; Cossu, A.; Sanna, B.; Tadolini, B.; Gaspa, L.; Marchisio, A.; Dessole, S.; Capobianco, G.; Pintus, G. Akt downregulation by flavin oxidase-induced ROS generation mediates dose-dependent endothelial cell damage elicited by natural antioxidants. Toxicol. Sci., 2010, 114(1), 101-112.
[http://dx.doi.org/10.1093/toxsci/kfp301] [PMID: 20015842]
[161]
Klinge, C.M. Estrogenic control of mitochondrial function. Redox Biol., 2020, 31, 101435.
[http://dx.doi.org/10.1016/j.redox.2020.101435] [PMID: 32001259]
[162]
Cho, Y.; Hazen, B.C.; Russell, A.P.; Kralli, A. Peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1)- and estrogen-related receptor (ERR)-induced regulator in muscle 1 (Perm1) is a tissue-specific regulator of oxidative capacity in skeletal muscle cells. J. Biol. Chem., 2013, 288(35), 25207-25218.
[http://dx.doi.org/10.1074/jbc.M113.489674] [PMID: 23836911]
[163]
Tang, Y.; Min, Z.; Xiang, X.J.; Liu, L.; Ma, Y.L.; Zhu, B.L.; Song, L.; Tang, J.; Deng, X.J.; Yan, Z.; Chen, G.J. Estrogen-related receptor alpha is involved in Alzheimer’s disease-like pathology. Exp. Neurol., 2018, 305, 89-96.
[http://dx.doi.org/10.1016/j.expneurol.2018.04.003] [PMID: 29641978]
[164]
Ren, Y.; Jiang, H.; Ma, D.; Nakaso, K.; Feng, J. Parkin degrades estrogen-related receptors to limit the expression of monoamine oxidases. Hum. Mol. Genet., 2011, 20(6), 1074-1083.
[http://dx.doi.org/10.1093/hmg/ddq550] [PMID: 21177257]
[165]
Chaturvedi, R.K.; Calingasan, N.Y.; Yang, L.; Hennessey, T.; Johri, A.; Beal, M.F. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington’s disease following chronic energy deprivation. Hum. Mol. Genet., 2010, 19(16), 3190-3205.
[http://dx.doi.org/10.1093/hmg/ddq229] [PMID: 20529956]
[166]
Naia, L.; Rego, A.C. Sirtuins: double players in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(10)(10 Pt A), 2183-2194.
[http://dx.doi.org/10.1016/j.bbadis.2015.07.003] [PMID: 26163995]
[167]
Lopes Costa, A.; Le Bachelier, C.; Mathieu, L.; Rotig, A.; Boneh, A.; De Lonlay, P.; Tarnopolsky, M.A.; Thorburn, D.R.; Bastin, J.; Djouadi, F. Beneficial effects of resveratrol on respiratory chain defects in patients’ fibroblasts involve estrogen receptor and estrogen-related receptor alpha signaling. Hum. Mol. Genet., 2014, 23(8), 2106-2119.
[http://dx.doi.org/10.1093/hmg/ddt603] [PMID: 24365713]
[168]
Lu, Y.; Lu, X.; Wang, L.; Yang, W. Resveratrol attenuates high fat diet-induced mouse cardiomyopathy through upregulation of estrogen related receptor-α. Eur. J. Pharmacol., 2019, 843, 88-95.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.018] [PMID: 30342030]
[169]
Dratwa, M.; Wysoczańska, B.; Łacina, P.; Kubik, T.; Bogunia-Kubik, K. TERT—Regulation and roles in cancer formation. Front. Immunol., 2020, 11, 589929.
[http://dx.doi.org/10.3389/fimmu.2020.589929] [PMID: 33329574]
[170]
Saretzki, G. Extra-telomeric functions of human telomerase: cancer, mitochondria and oxidative stress. Curr. Pharm. Des., 2014, 20(41), 6386-6403.
[http://dx.doi.org/10.2174/1381612820666140630095606] [PMID: 24975608]
[171]
Lionaki, E.; Gkikas, I.; Tavernarakis, N. Differential protein distribution between the nucleus and mitochondria: implications in aging. Front. Genet., 2016, 7, 162.
[http://dx.doi.org/10.3389/fgene.2016.00162] [PMID: 27695477]
[172]
Spilsbury, A.; Miwa, S.; Attems, J.; Saretzki, G. The role of telomerase protein TERT in Alzheimer’s disease and in tau-related pathology in vitro. J. Neurosci., 2015, 35(4), 1659-1674.
[http://dx.doi.org/10.1523/JNEUROSCI.2925-14.2015] [PMID: 25632141]
[173]
Saretzki, G.; Wan, T. Telomerase in brain: The new kid on the block and its role in neurodegenerative diseases. Biomedicines, 2021, 9(5), 490.
[http://dx.doi.org/10.3390/biomedicines9050490] [PMID: 33946850]
[174]
Huang, P.; Riordan, S.M.; Heruth, D.P.; Grigoryev, D.N.; Zhang, L.Q.; Ye, S.Q. A critical role of nicotinamide phosphoribosyltransferase in human telomerase reverse transcriptase induction by resveratrol in aortic smooth muscle cells. Oncotarget, 2015, 6(13), 10812-10824.
[http://dx.doi.org/10.18632/oncotarget.3580] [PMID: 25926556]
[175]
Wang, X-B.; Zhu, L.; Huang, J.; Yin, Y.G.; Kong, X.Q.; Rong, Q.F.; Shi, A.W.; Cao, K.J. Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells. Chin. Med. J. (Engl.), 2011, 124(24), 4310-4315.
[PMID: 22340406]
[176]
Martí-Centelles, R.; Falomir, E.; Murga, J.; Carda, M.; Marco, J.A. Inhibitory effect of cytotoxic stilbenes related to resveratrol on the expression of the VEGF, hTERT and c-Myc genes. Eur. J. Med. Chem., 2015, 103, 488-496.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.014] [PMID: 26402726]
[177]
Kim, S.H.; Cho, K.H.; Kim, Y.N.; Jeong, B.Y.; Park, C.G.; Hur, G.M.; Lee, H.Y. Resveratrol attenuates norepinephrine-induced ovarian cancer invasiveness through downregulating hTERT expression. Arch. Pharm. Res., 2016, 39(2), 240-248.
[http://dx.doi.org/10.1007/s12272-015-0666-8] [PMID: 26428673]
[178]
Sheikhha, M.H.; Mirzazadeh, A.; Kheirollahi, M.; Farashahi, E.; Sadeghian-Nodoushan, F.; Aflatoonian, B. Assessment effects of resveratrol on human telomerase reverse transcriptase messenger ribonucleic acid transcript in human glioblastoma. Adv. Biomed. Res., 2017, 6(1), 73.
[http://dx.doi.org/10.4103/2277-9175.209047] [PMID: 28706881]
[179]
Sun, Q.; Kang, R.R.; Chen, K.G.; Liu, K.; Ma, Z.; Liu, C.; Deng, Y.; Liu, W.; Xu, B. Sirtuin 3 is required for the protective effect of Resveratrol on Manganese‐induced disruption of mitochondrial biogenesis in primary cultured neurons. J. Neurochem., 2021, 156(1), 121-135.
[http://dx.doi.org/10.1111/jnc.15095] [PMID: 32426865]
[180]
Tian, Z.Y.; Chen, J.W.; Zhou, G.Y.; Li, P.; Zhou, Q.; Luo, C.; Zhang, S.; Wang, A.G. The effects of resveratrol on mitochondrial biogenesis dysfunction induced by fluoride in human neuroblastoma SH-SY5Y cells. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 2018, 36(10), 721-727.
[http://dx.doi.org/10.3760/cma.j.issn.1001-9391.2018.10.001] [PMID: 30541189]
[181]
Salehi, B.; Mishra, A.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018, 6(3), 91.
[http://dx.doi.org/10.3390/biomedicines6030091] [PMID: 30205595]
[182]
Giordo, R.; Wehbe, Z.; Posadino, A.M.; Erre, G.L.; Eid, A.H.; Mangoni, A.A.; Pintus, G. Disease-associated regulation of non-coding RNAs by resveratrol: Molecular insights and therapeutic applications. Front. Cell Dev. Biol., 2022, 10, 894305.
[http://dx.doi.org/10.3389/fcell.2022.894305] [PMID: 35912113]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy