Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Systematic Review Article

Narrative Review: Edible Plants as a Source of Valuable Flavonoids and Their Role as Neuroprotector Agents

Author(s): Rosa Martha Pérez Gutiérrez* and Julio Téllez Gómez

Volume 19, Issue 4, 2023

Published on: 23 December, 2022

Page: [442 - 460] Pages: 19

DOI: 10.2174/1573401318666221005124312

Price: $65

Abstract

Background: Neurodegenerative disorder is a consequence of the gradual and progressive deterioration of the function and structure of the peripheral nervous system or central nervous system or both. Currently, effective treatment for this neurodegenerative disease does not exist, thus, flavonoids abundant in fruits and vegetables have attracted attention as potential neuroprotective agents.

Objective: The aim of this review was to discuss the existing scientific literature data regarding flavonoids from edible plants and their potential as neuroprotective agents to provide constituent compound and pharmacological relevance in the prevention or treatment of age-related deficits in learning, memory, and Alzheimer’s disorder.

Methods: Exhaustive bibliographic investigation on phytochemistry and pharmacology associated with flavonoids from edible plants was performed using scientific databases like Science Direct, PubMed, Google Scholar, Scopus, EMBASE, Google Scholar, ChemSpider. “Cognitive deficits”, “age-related cognitive”, “Alzheimer disease” “flavonoids” and “phenolic compounds” utilized as keywords in the search in the databases. Published articles from 1992 to 2022 were collected and studied.

Results: The finding indicated that flavonoids in edible plants can exert powerful effects on cognition and consequently can reverse the age-related deficit in learning and memory and retard the development of Alzheimer’s disorder due to their capacity to interact with the molecular architecture of the brain responsible of the memory. Mechanisms of actions were analyzed, including the effect on neuroinflammation, synaptic plasticity, signaling pathways, Aβ peptides, and hippocampus, among others.

Conclusion: This study can be used as scientific support for the development of alternative drugs, food supplements, and nutraceuticals to prevent, maintain and enhance the neurophysiological status.

Keywords: Flavonoids, memory, learning, neurodegenerative, Alzheimer’s disease, age-related deficit

Graphical Abstract

[1]
Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 1998; 88(9): 1337-42.
[http://dx.doi.org/10.2105/AJPH.88.9.1337] [PMID: 9736873]
[2]
Wagner W, Bork S, Horn P, et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS One 2009; 4(6): e5846.
[http://dx.doi.org/10.1371/journal.pone.0005846] [PMID: 19513108]
[3]
Dixon RA, Wahlin Å, Maitland SB, Hultsch DF, Hertzog C, Bäckman L. Episodic memory change in late adulthood: Generalizability across samples and performance indices. Mem Cognit 2004; 32(5): 768-78.
[http://dx.doi.org/10.3758/BF03195867] [PMID: 15552354]
[4]
Joseph JA, Shukitt-Hale B, Denisova NA, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 1999; 19(18): 8114-21.
[http://dx.doi.org/10.1523/JNEUROSCI.19-18-08114.1999] [PMID: 10479711]
[5]
Koppel J, Greenwald B. Optimal treatment of Alzheimer’s disease psychosis: Challenges and solutions. Neuropsychiatr Dis Treat 2014; 10: 2253-62.
[http://dx.doi.org/10.2147/NDT.S60837] [PMID: 25473289]
[6]
Hardy JA, Higgins GA. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
[http://dx.doi.org/10.1126/science.1566067]
[7]
Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced Tau-pathology: The long and “folded” road to understand the mechanism. Mol Neurodegener 2014; 9(1): 51-5.
[http://dx.doi.org/10.1186/1750-1326-9-51] [PMID: 25407337]
[8]
Zhang Y, Wang ZZ, Sun HM, Li P, Li YF, Chen NH. Systematic review of traditional chinese medicine for depression in Parkinson’s disease. Am J Chin Med 2014; 42(5): 1035-51.
[http://dx.doi.org/10.1142/S0192415X14500657] [PMID: 25183301]
[9]
Carvalho C, Correia SC, Cardoso S, Placido AI, Candeias E, Duarte AI. The role of mitochondrial disturbances in Alzheimer’s, Parkinson and Huntington’s diseases. Expert Rev Neurother 2015; 15(1): 1-18.
[PMID: 25576088]
[10]
Lakey-Beitia J, Berrocal R, Rao KS, Durant AA. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol Neurobiol 2015; 51(2): 466-79.
[http://dx.doi.org/10.1007/s12035-014-8722-9] [PMID: 24826916]
[11]
Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer’s disease and its models. Neuroscience 2013; 251: 51-65.
[http://dx.doi.org/10.1016/j.neuroscience.2012.05.050] [PMID: 22687952]
[12]
Ulrich D. Amyloid-beta impairs synaptic inhibition via GABA (A) receptor endocytosis. J Neurosci 2015; 35(24): 9205-10.
[http://dx.doi.org/10.1523/JNEUROSCI.0950-15.2015] [PMID: 26085642]
[13]
Varga E, Juhász G, Bozsó Z, Penke B, Fülöp L, Szegedi V. Amyloid-β1-42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. J Alzheimers Dis 2015; 45(2): 449-56.
[http://dx.doi.org/10.3233/JAD-142367] [PMID: 25547631]
[14]
Viola KL, Klein WL. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129(2): 183-206.
[http://dx.doi.org/10.1007/s00401-015-1386-3] [PMID: 25604547]
[15]
Tuma RF, Legos JJ, Barone FC. Pharmacological interventions for stroke: Failures and future. Expert Opin Investig Drugs 2002; 11(5): 603-14.
[http://dx.doi.org/10.1517/13543784.11.5.603] [PMID: 11996643]
[16]
Badshah H, Kim TH, Kim MO. Protective effects of anthocyanins against amyloid beta-induced neurotoxicity in vivo and in vitro. Neurochem Int 2015; 80(1): 51-9.
[http://dx.doi.org/10.1016/j.neuint.2014.10.009] [PMID: 25451757]
[17]
Spencer JPE. The interactions of flavonoids within neuronal signalling pathways. Genes Nutr 2007; 2(3): 257-73.
[http://dx.doi.org/10.1007/s12263-007-0056-z] [PMID: 18850181]
[18]
Yang H, Wang S, Yu L, Zhu X, Xu Y. Esculentoside A suppresses Aβ 1–42 -induced neuroinflammation by down-regulating MAPKs pathways in vivo. Neurol Res 2015; 37(10): 859-66.
[http://dx.doi.org/10.1179/1743132815Y.0000000066] [PMID: 26104317]
[19]
Rojo LE, Fernández JA, Maccioni AA, Jimenez JM, Maccioni RB. Neuroinflammation: Implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res 2008; 39(1): 1-16.
[http://dx.doi.org/10.1016/j.arcmed.2007.10.001] [PMID: 18067990]
[20]
Gundimeda U, McNeill TH, Schiffman JE, Hinton DR, Gopalakrishna R. Green tea polyphenols potentiate the action of nerve growth factor to induce neuritogenesis: Possible role of reactive oxygen species. J Neurosci Res 2010; 88(16): 3644-55.
[http://dx.doi.org/10.1002/jnr.22519] [PMID: 20936703]
[21]
Phan CW, David P, Sabaratnam V. Edible, and medicinal mushrooms: Emerging brain food for the mitigation of neurodegenerative diseases. J Med Food 2017; 20(1): 1-10.
[http://dx.doi.org/10.1089/jmf.2016.3740] [PMID: 28098514]
[22]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004; 79(5): 727-47.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[23]
Su B, Tian J, Liu M, et al. Analysis of the chemical components of pomelo peels (Citrus grandis [L. Osbeck) from different cultivars by using supercritical CO 2 fluid extraction and ultra‐high‐performance liquid chromatography‐tandem mass spectrometry. J Sep Sci 2022; 45(15): 3031-42.
[http://dx.doi.org/10.1002/jssc.202200242] [PMID: 35608564]
[24]
Manthey J, Guthrie N, Grohmann K. Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr Med Chem 2001; 8(2): 135-53.
[http://dx.doi.org/10.2174/0929867013373723] [PMID: 11172671]
[25]
Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J Agric Food Chem 2005; 53: 2009-14.
[http://dx.doi.org/10.1021/jf0484632]
[26]
Narang N, Jiraungkoorskul W. Anticancer activity of key lime Citrus aurantifolia. Phcog Rev 2016; 10: 118-22.
[27]
Chaiyana W, Okonogi S. Inhibition of cholinesterase by essential oil from food plant. Phytomedicine 2012; 19(8-9): 836-9.
[http://dx.doi.org/10.1016/j.phymed.2012.03.010] [PMID: 22510493]
[28]
Giuffrè AM, Riccardo R. Citrus bergamia, Risso: The peel, the juice and the seed oil of the bergamot fruit of Reggio calabria (South Italy). Emir J Food Agric 2020; 32(7): 522-32.
[http://dx.doi.org/10.9755/ejfa.2020.v32.i7.2128]
[29]
Angelo MG, Zappia C, Capocasale M. Physico-chemical stability of blood orange juice during frozen storage. Int J Food Prop 2017; 20(S2): 1930-43.
[http://dx.doi.org/10.1080/10942912.2017.1359184]
[30]
Rao YK, Lee MJ, Chen K, Lee YC, Wu WS, Tzeng YM. Insulin-mimetic action of rhoifolin and cosmosiin isolated from Citrus grandis (L.) Osbeck leaves: Enhanced adiponectin secretion and insulin receptor phosphorylation in 3T3-L1 cells. Evid Based Complement Alternat Med 2011; 2011: 1-9.
[http://dx.doi.org/10.1093/ecam/nep204] [PMID: 20008903]
[31]
Brinza I, Abd-Alkhalek AM, El-Raey MA, Boiangiu RS, Eldahshan OA, Hritcu L. ameliorative effects of rhoifolin in scopolamine-induced amnesic Zebrafish (Danio rerio). Model Antioxidants 2020; 9(7): 580-9.
[http://dx.doi.org/10.3390/antiox9070580] [PMID: 32635149]
[32]
Butryee C, Sungpuag P, Chitchumroonchokchai C. Effect of processing on the flavonoid content and antioxidant capacity of Citrus hystrix leaf. Int J Food Sci Nutr 2009; 60(S2): 162-74.
[http://dx.doi.org/10.1080/09637480903018816] [PMID: 19572229]
[33]
Hajialyani M, Hosein FM, Echeverría J, Nabavi S, Uriarte E, Sobarzo-Sánchez E. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules 2019; 24(3): 648.
[http://dx.doi.org/10.3390/molecules24030648] [PMID: 30759833]
[34]
González-Molina E, Domínguez-Perles R, Moreno DA, García-Viguera C. Natural bioactive compounds of Citrus limon for food and health. J Pharm Biomed Anal 2010; 51(2): 327-45.
[http://dx.doi.org/10.1016/j.jpba.2009.07.027] [PMID: 19748198]
[35]
Liu G, Hou C, Li W, Tsao R. Extraction and isolation of acetylcholinesterase inhibitors from Citrus limon peel using an in vitro method. J Sep Sci 2020; 43(8): 1531-43.
[http://dx.doi.org/10.1002/jssc.201901252]
[36]
Yang ZY, Kuboyama T, Kazuma K, Konno K, Tohda C. Active constituents from Drynaria fortunei rhizomes on the attenuation of Aβ 25–35 -induced axonal atrophy. J Nat Prod 2015; 78(9): 2297-300.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00290] [PMID: 26299900]
[37]
Li S, Lo CY, Ho CT. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J Agric Food Chem 2006; 54(12): 4176-85.
[http://dx.doi.org/10.1021/jf060234n] [PMID: 16756344]
[38]
Ademosun AO, Oboh G. Inhibition of acetylcholinesterase activity and Fe2+-induced lipid peroxidation in rat brain in vitro by some citrus fruit juices. J Med Food 2012; 15(5): 428-34.
[http://dx.doi.org/10.1089/jmf.2011.0226] [PMID: 22400910]
[39]
Nakajima A, Ohizumi Y. Review potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Int J Mol Sci 2019; 20(14): 3380.
[http://dx.doi.org/10.3390/ijms20143380]
[40]
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011; 11(4): 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[41]
Okuyama S, Sawamoto A, Nakajima M, Furukawa Y. The search for citrus components with neuroprotective and anti-dementia effects in the mouse brain. Yakugaku Zasshi 2021; 141(6): 819-24.
[http://dx.doi.org/10.1248/yakushi.20-00251-1] [PMID: 34078788]
[42]
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem 2022; 383: 132531.
[http://dx.doi.org/10.1016/j.foodchem.2022.132531] [PMID: 35413752]
[43]
Albuquerque TG, Silva MA, Oliveira MBPP, Costa HS. Analysis, identification, and quantification of anthocyanins in fruit juices. In: Rajauria G, Tiwari BK, Eds. Fruit juices extraction, composition, quality and analysis. Amsterdam, Holland: Academic Press, Elsevier 2018; 693-737.
[http://dx.doi.org/10.1016/B978-0-12-802230-6.00034-5]
[44]
Singla RK, Dubey AK, Garg A, et al. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J AOAC Int 2019; 102(5): 1397-400.
[http://dx.doi.org/10.5740/jaoacint.19-0133] [PMID: 31200785]
[45]
Pavlović AV, Dabić DČ, Momirović NM, et al. Chemical composition of two different extracts of berries harvested in Serbia. J Agric Food Chem 2013; 61(17): 4188-94.
[http://dx.doi.org/10.1021/jf400607f] [PMID: 23600608]
[46]
Durazzo A, Azzini E, Foddai MS, et al. Influence of different crop management practices on the nutritional properties and benefits of tomato -Lycopersicon esculentum cv perfectpeel. Int J Food Sci Technol 2010; 45(12): 2637-44.
[http://dx.doi.org/10.1111/j.1365-2621.2010.02439.x]
[47]
Bhagwat S, Haytowitz DB, Holden JM. USDA database for the flavonoid content of selected foods Release 31. Beltsville, MD, USA: U.S. Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory 2014. Available from: https://data.nal.usda.gov/dataset/usda-database-flavonoid-content-selected-foods-release-31-may-2014_109
[48]
Siriamornpun S, Kaewseejan N. Quality, bioactive compounds and antioxidant capacity of selected climacteric fruits with relation to their maturity. Sci Hortic 2017; 221(1): 33-42.
[http://dx.doi.org/10.1016/j.scienta.2017.04.020]
[49]
Liu W, Feng Y, Yu S, et al. The flavonoid biosynthesis network in plants. Int J Mol Sci 2021; 22(23): 12824.
[http://dx.doi.org/10.3390/ijms222312824] [PMID: 34884627]
[50]
Moriguchi TM, Kita Y, Tomono T, Endo-Inagaki L, Omura N. Gene expression in flavonoid biosynthesis: Correlation with flavonoid accumulation in developing citrus fruit. Physiol Plant 2001; 111(1): 66-74.
[http://dx.doi.org/10.1034/j.1399-3054.2001.1110109.x]
[51]
Zhang S, Yang J, Li H, Chiang VL, Fu Y. Cooperative regulation of flavonoid and lignin biosynthesis in plants. Crit Rev Plant Sci 2021; 40(2): 109-26.
[http://dx.doi.org/10.1080/07352689.2021.1898083]
[52]
Pandey RP, Parajuli P, Koffas MAG, Sohng JK. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol Adv 2016; 34(5): 634-62.
[http://dx.doi.org/10.1016/j.biotechadv.2016.02.012] [PMID: 26946281]
[53]
Pfeiffer P. Hegedűs A. Review of the molecular genetics of flavonoid biosynthesis in fruits. Acta Aliment 2011; 40(S1): 150-63.
[http://dx.doi.org/10.1556/AAlim.40.2011.Suppl.15]
[54]
Querfurth HW, LaFerla FM. Alzheimer’s Disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[55]
Stephan BCM, Brayne C. Risk factors and screening methods for detecting dementia: A narrative review. J Alzheimers Dis 2014; 42(S4): S329-38.
[http://dx.doi.org/10.3233/JAD-141413] [PMID: 25261451]
[56]
Abbatecola AM, Russo M, Barbieri M. Dietary patterns and cognition in older persons. Curr Opin Clin Nutr Metab Care 2018; 21(1): 10-3.
[http://dx.doi.org/10.1097/MCO.0000000000000434] [PMID: 29035971]
[57]
Masana MF, Koyanagi A, Haro JM, Tyrovolas S. n-3 Fatty acids, mediterranean diet and cognitive function in normal aging: A systematic review. Exp Gerontol 2017; 91(1): 39-50.
[58]
Tan SJ, Ismai IS. Potency of selected berries, grapes, and citrus fruit as neuroprotective agents. Evid-based Complement Altern 2020; 2020: 3582947.
[http://dx.doi.org/10.1155/2020/3582947]
[59]
Currò M, Risitano R, Ferlazzo N, et al. Citrus bergamia juice extract attenuates β-amyloid-induced pro-inflammatory activation of THP-1 cells through MAPK and AP-1 pathways. Sci Rep 2016; 6(1): 20809.
[http://dx.doi.org/10.1038/srep20809] [PMID: 26853104]
[60]
Mannucci C, Navarra M, Calapai F, Squeri R, Gangemi S, Calapai G. Clinical pharmacology of Citrus bergamia: A systematic review. Phytother Res 2017; 31(1): 27-39.
[http://dx.doi.org/10.1002/ptr.5734] [PMID: 27747942]
[61]
Cha JM, Yoon D, Kim SY, Kim CS, Lee KR. Neurotrophic and anti-neuroinflammatory constituents from the aerial parts of Coriandrum sativum. Bioorg Chem 2020; 105: 104443.
[http://dx.doi.org/10.1016/j.bioorg.2020.104443] [PMID: 33197853]
[62]
Wei JN, Liu ZH, Zhao YP, Zhao LL, Xue TK, Lan QK. Phytochemical and bioactive profile of Coriandrum sativum L. Food Chem 2019; 286: 260-7.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.171] [PMID: 30827604]
[63]
Silva S, Costa EM, Veiga M, Morais RM, Calhau C, Pintado M. Health promoting properties of blueberries: A review. Crit Rev Food Sci Nutr 2020; 60(2): 181-200.
[http://dx.doi.org/10.1080/10408398.2018.1518895] [PMID: 30373383]
[64]
Rajaram S, Jones J, Lee GJ. Plant-based dietary patterns, plant foods, and age-related cognitive decline. Adv Nutr 2019; 10(S4): S422-36.
[http://dx.doi.org/10.1093/advances/nmz081] [PMID: 31728502]
[65]
Hasnieza MN, Mastura YH, Shahar S, Wahida IF, Fadilah RN. Alzheimer’s disease and functional foods: An insight on neuroprotective effect of its combination. Pak J Biol Sci 2020; 23(5): 575-89.
[http://dx.doi.org/10.3923/pjbs.2020.575.589] [PMID: 32363814]
[66]
Zhao X, Yuan Z. Anthocyanins from Pomegranate (Punica granatum L.) and their role in antioxidant capacities in vitro. Chem Biodivers 2021; 18(10): e2100399.
[http://dx.doi.org/10.1002/cbdv.202100399] [PMID: 34388293]
[67]
Pannangrong W, Wattanathorn J, Muchimapura S, Tiamkao S, Tong-un T. Purple rice berry is neuroprotective and enhances cognition in a rat model of Alzheimer’s disease. J Med Food 2011; 14(7-8): 688-94.
[http://dx.doi.org/10.1089/jmf.2010.1312] [PMID: 21510741]
[68]
Sumczynski D, Kotásková E, Družbíková H. Mlček J. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties. Food Chem 2016; 211: 339-46.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.081] [PMID: 27283641]
[69]
Sokolov AN, Pavlova MA, Klosterhalfen S, Enck P. Chocolate and the brain: Neurobiological impact of cocoa flavanols on cognition and behavior. Neurosci Biobehav Rev 2013; 37(10): 2445-53.
[http://dx.doi.org/10.1016/j.neubiorev.2013.06.013] [PMID: 23810791]
[70]
Latif R. Health benefits of cocoa. Curr Opin Clin Nutr Metab Care 2013; 16(6): 669-74.
[http://dx.doi.org/10.1097/MCO.0b013e328365a235] [PMID: 24100674]
[71]
Ramiro E, Franch À, Castellote C, et al. Flavonoids from Theobroma cacao down-regulate inflammatory mediators. J Agric Food Chem 2005; 53(22): 8506-11.
[http://dx.doi.org/10.1021/jf0511042] [PMID: 16248545]
[72]
Krikorian R, Nash TA, Shidler MD, Shukitt-Hale B, Joseph JA. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br J Nutr 2010; 103(5): 730-4.
[http://dx.doi.org/10.1017/S0007114509992364] [PMID: 20028599]
[73]
Ananga A, Tsolova V, Georgiev V. Review recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 2014; 6(1): 391-415.
[http://dx.doi.org/10.3390/nu6010391]
[74]
Yamagata K, Kitazawa T, Shinoda M, Tagawa C, Chino M, Matsufuji H. Stroke status evoked adhesion molecule genetic alterations in astrocytes isolated from stroke-prone spontaneously hypertensive rats and the apigenin inhibition of their expression. Stroke Res Treat 2010; 2010: 1-11.
[http://dx.doi.org/10.4061/2010/386389] [PMID: 20700422]
[75]
Zhao L, Wang JL, Liu R, Li XX, Li JF, Zhang L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013; 18(8): 9949-65.
[http://dx.doi.org/10.3390/molecules18089949] [PMID: 23966081]
[76]
Tu F, Pang Q, Huang T, Zhao Y, Liu M, Chen X. apigenin ameliorates post-stroke cognitive deficits in rats through histone acetylation-mediated neurochemical alterations. Med Sci Monit 2017; 23: 4004-13.
[http://dx.doi.org/10.12659/MSM.902770] [PMID: 28821706]
[77]
Liu R, Zhang T, Yang H, Lan X, Ying J, Du G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β₂₅₋₃₅-induced toxicity in mice. J Alzheimers Dis 2011; 24(1): 85-100.
[http://dx.doi.org/10.3233/JAD-2010-101593] [PMID: 21297270]
[78]
Nikbakht F, Khadem Y, Haghani S, et al. Protective role of apigenin against aβ 25-35 toxicity via inhibition of mitochondrial cytochrome c release. Basic Clin Neurosci 2019; 10(6): 557-66.
[http://dx.doi.org/10.32598/bcn.9.10.385] [PMID: 32477473]
[79]
Balez R, Steiner N, Engel M, et al. Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s disease. Sci Rep 2016; 6(1): 31450.
[http://dx.doi.org/10.1038/srep31450] [PMID: 27514990]
[80]
Zhao L, Wang J, Wang Y, Fa X. Apigenin attenuates copper-mediated β-amyloid neurotoxicity through antioxidation, mitochondrion protection and MAPK signal inactivation in an AD cell model. Brain Res 2013; 1492: 33-45.
[http://dx.doi.org/10.1016/j.brainres.2012.11.019] [PMID: 23178511]
[81]
Liu C, Wu J, Xu K, et al. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem 2010; 112(6): 1500-12.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06561.x] [PMID: 20050973]
[82]
Gu XH, Xu LJ, Liu ZQ, et al. The flavonoid baicalein rescues synaptic plasticity and memory deficits in a mouse model of Alzheimer’s disease. Behav Brain Res 2016; 311(2): 309-21.
[http://dx.doi.org/10.1016/j.bbr.2016.05.052] [PMID: 27233830]
[83]
Jin X, Liu M. Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-κB signaling pathway. CNS Neurosci Therap 2018; 1-16.
[http://dx.doi.org/10.1111/cns.13086]
[84]
Zhang S, Obregon D, Ehrhart J, et al. Baicalein reduces b-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an alzheimer’s disease transgenic mouse model. J Neurosci Res 2013; 91(9): 1239-46.
[http://dx.doi.org/10.1002/jnr.23244] [PMID: 23686791]
[85]
Kuang L, Cao X, Lu Z. Kuang baicalein protects against rotenone-induced neurotoxicity through induction of autophagy. Biol Pharm Bull 2017; 40(9): 1537-43.
[http://dx.doi.org/10.1248/bpb.b17-00392] [PMID: 28659545]
[86]
Anandhi R, Annadurai T, Anitha TS, et al. Antihypercholesterolemic and antioxidative effects of an extract of the oyster mushroom, Pleurotus ostreatus, and its major constituent, chrysin, in Triton WR-1339-induced hypercholesterolemic rats. J Physiol Biochem 2013; 69(2): 313-23.
[http://dx.doi.org/10.1007/s13105-012-0215-6] [PMID: 23104078]
[87]
Ha SK, Moon E, Kim SY. Chrysin suppresses LPS-stimulated proinflammatory responses by blocking NF-κB and JNK activations in microglia cells. Neurosci Lett 2010; 485(3): 143-7.
[http://dx.doi.org/10.1016/j.neulet.2010.08.064] [PMID: 20813161]
[88]
Sarkaki A, Farbood Y, Mansouri SMT, et al. Chrysin prevents cognitive and hippocampal long-term potentiation deficits and inflammation in rat with cerebral hypoperfusion and reperfusion injury. Life Sci 2019; 226(1): 202-9.
[http://dx.doi.org/10.1016/j.lfs.2019.04.027] [PMID: 30991061]
[89]
Gresa-Arribas N, Serratosa J, Saura J, Solà C. Inhibition of CCAAT/enhancer binding protein δ expression by chrysin in microglial cells results in anti-inflammatory and neuroprotective effects. J Neurochem 2010; 115(2): 526-36.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06952.x] [PMID: 20722966]
[90]
Benavente-García O, Castillo J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 2008; 56(15): 6185-205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[91]
Mirshekar MA, Fanaei H, Keikhaei F, Javan FS. Diosmin improved cognitive deficit and amplified brain electrical activity in the rat model of traumatic brain injury. Biomed Pharmacother 2017; 93: 1220-9.
[http://dx.doi.org/10.1016/j.biopha.2017.07.014] [PMID: 28738538]
[92]
Oh JH, Choi BJ, Chang MS, Park SK. Nelumbo nucifera semen extract improves memory in rats with scopolamine-induced amnesia through the induction of choline acetyltransferase expression. Neurosci Lett 2009; 461(1): 41-4.
[http://dx.doi.org/10.1016/j.neulet.2009.05.045] [PMID: 19463889]
[93]
Shabani S, Mirshekar MA. Diosmin is neuroprotective in a rat model of scopolamine-induced cognitive impairment. Biomed Pharmacother 2018; 108: 1376-83.
[http://dx.doi.org/10.1016/j.biopha.2018.09.127] [PMID: 30372840]
[94]
Sawmiller D, Habib A, Li S, et al. Diosmin reduces cerebral Aβ levels, tau hyperphosphorylation, neuroinflammation, and cognitive impairment in the 3xTg-AD mice. J Neuroimmunol 2016; 299(1-2): 98-106.
[http://dx.doi.org/10.1016/j.jneuroim.2016.08.018] [PMID: 27725131]
[95]
Bergan JJ, Schmid-Schönbein GW, Takase S. Therapeutic approach to chronic venous insufficiency and its complications: Place of Daflon 500 mg. Angiology 2001; 52(S1): S43-7.
[http://dx.doi.org/10.1177/0003319701052001S06] [PMID: 11510596]
[96]
van Praag H, Lucero MJ, Yeo GW, et al. Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 2007; 27(22): 5869-78.
[http://dx.doi.org/10.1523/JNEUROSCI.0914-07.2007] [PMID: 17537957]
[97]
Li Q, Zhao HF, Zhang ZF, et al. Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade. Neuroscience 2009; 159(4): 1208-15.
[http://dx.doi.org/10.1016/j.neuroscience.2009.02.008] [PMID: 19409206]
[98]
Shay J, Elbaz HA, Lee I, Zielske SP, Malek MH, Hüttemann M. Review article molecular mechanisms and therapeutic effects of (−)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid Med Cell Longev 2015; 2015: 181260.
[99]
Wang J, Ferruzzi MG, Ho L, et al. Brain-targeted proanthocyanidin metabolites for Alzheimer’s disease treatment. J Neurosci 2012; 32(15): 5144-50.
[http://dx.doi.org/10.1523/JNEUROSCI.6437-11.2012] [PMID: 22496560]
[100]
Ehrnhoefer DE, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008; 15(6): 558-66.
[http://dx.doi.org/10.1038/nsmb.1437] [PMID: 18511942]
[101]
Ortiz-Romero P, Borralleras C, Bosch-Morató M, et al. Epigallocatechin-3-gallate improves cardiac hypertrophy and short-term memory deficits in a Williams-Beuren syndrome mouse model. PLoS One 2018; 13(3): e0194476.
[http://dx.doi.org/10.1371/journal.pone.0194476] [PMID: 29554110]
[102]
Uttara B, Singh A, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[103]
Mao X, Gu C, Chen D, Yu B, He J. Oxidative stress-induced diseases and tea polyphenols. Oncotarget 2017; 8(46): 81649-61.
[http://dx.doi.org/10.18632/oncotarget.20887] [PMID: 29113421]
[104]
Cheng-Chung Wei J, Huang HC, Chen WJ, Huang CN, Peng CH, Lin CL. Epigallocatechin gallate attenuates amyloid β-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur J Pharmacol 2016; 770: 16-24.
[http://dx.doi.org/10.1016/j.ejphar.2015.11.048] [PMID: 26643169]
[105]
Schimidt HL, Garcia A, Martins A, Mello-Carpes PB, Carpes FP. Green tea supplementation produces better neuroprotective effects than red and black tea in Alzheimer-like rat model. Food Res Int 2017; 100(Pt 1): 442-8.
[http://dx.doi.org/10.1016/j.foodres.2017.07.026] [PMID: 28873707]
[106]
Li YH, Wu Y, Wei HC, et al. Protective effects of green tea extracts on photoaging and photommunosuppression. Skin Res Technol 2009; 15(3): 338-45.
[http://dx.doi.org/10.1111/j.1600-0846.2009.00370.x] [PMID: 19624431]
[107]
Rezai-Zadeh K, Arendash GW, Hou H, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 2008; 1214: 177-87.
[http://dx.doi.org/10.1016/j.brainres.2008.02.107] [PMID: 18457818]
[108]
Chesser AS, Ganeshan V, Yang J, Johnson GVW. Epigallocatechin-3-gallate enhances clearance of phosphorylated tau in primary neurons. Nutr Neurosci 2016; 19(1): 21-31.
[http://dx.doi.org/10.1179/1476830515Y.0000000038] [PMID: 26207957]
[109]
He M, Liu MY, Wang S, et al. Research on EGCG improving the degenerative changes of the brain in AD model mice induced with chemical drugs. Zhong Yao Cai 2012; 35(10): 1641-4.
[PMID: 23627134]
[110]
Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. J Nutr Biochem 2013; 24(1): 298-310.
[http://dx.doi.org/10.1016/j.jnutbio.2012.06.011] [PMID: 22959056]
[111]
Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 2000; 130(9): 2243-50.
[http://dx.doi.org/10.1093/jn/130.9.2243] [PMID: 10958819]
[112]
Morley JE, Armbrecht HJ, Farr SA, Kumar VB. The senescence accelerated mouse (SAMP8) as a model for oxidative stress and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822(5): 650-6.
[http://dx.doi.org/10.1016/j.bbadis.2011.11.015] [PMID: 22142563]
[113]
Proctor DT, Coulson EJ, Dodd PR. Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the Alzheimer inferior temporal cortex is correlated with disease pathology. J Alzheimers Dis 2010; 21(3): 795-811.
[http://dx.doi.org/10.3233/JAD-2010-100090] [PMID: 20634587]
[114]
Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO. Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 2017; 54(3): 2269-85.
[http://dx.doi.org/10.1007/s12035-016-9795-4] [PMID: 26944285]
[115]
Spencer JPE, Vauzour D, Rendeiro C. Flavonoids and cognition: The molecular mechanisms underlying their behavioural effects. Arch Biochem Biophys 2009; 492(1-2): 1-9.
[http://dx.doi.org/10.1016/j.abb.2009.10.003] [PMID: 19822127]
[116]
Currais A, Farrokhi C, Dargusch R, et al. Fisetin SAMP8 mouse. reduces the impact of aging on behavior and physiology in the rapidly aging. J Gerontol Biol Sci 2018; 73(2): 299-307.
[http://dx.doi.org/10.1093/gerona/glx104] [PMID: 28575152]
[117]
Mirahmadi SMS, Shahmohammadi A, Rousta AM, et al. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 2018; 104: 151-9.
[http://dx.doi.org/10.1016/j.cyto.2017.10.008] [PMID: 29102164]
[118]
Youn K, Park JH, Lee S, et al. BACE1 inhibition by genistein: Biological evaluation, kinetic analysis, and molecular docking simulation. J Med Food 2018; 21(4): 416-20.
[http://dx.doi.org/10.1089/jmf.2017.4068] [PMID: 29444415]
[119]
Hirohata M, Ono K, Takasaki J, et al. Anti-amyloidogenic effects of soybean isoflavones in vitro: Fluorescence spectroscopy demonstrating direct binding to Aβ monomers, oligomers and fibrils. Biochim Biophys Acta Mol Basis Dis 2012; 1822(8): 1316-24.
[http://dx.doi.org/10.1016/j.bbadis.2012.05.006] [PMID: 22587837]
[120]
Yu C, Nwabuisi-Heath E, Laxton K, LaDu MJ. Endocytic pathways mediating oligomeric Aβ42 neurotoxicity. Mol Neurodegener 2010; 5(1): 19.
[http://dx.doi.org/10.1186/1750-1326-5-19] [PMID: 20478062]
[121]
Cai B, Ye S, Wang T, et al. Genistein protects hippocampal neurons against injury by regulating calcium/calmodulin dependent protein kinase IV protein levels in Alzheimer’s disease model rats. Neural Regen Res 2017; 12(9): 1479-84.
[http://dx.doi.org/10.4103/1673-5374.215260] [PMID: 29089994]
[122]
Hwang SL, Lin JA, Shih PH, Yeh CT, Yen GC. Pro-cellular survival and neuroprotection of citrus flavonoid: The actions of hesperetin in PC12 cells. Food Funct 2012; 3(10): 1082-90.
[http://dx.doi.org/10.1039/c2fo30100h] [PMID: 22767158]
[123]
Hirata A, Murakami Y, Shoji M, Kadoma Y, Fujisawa S. Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression. Anticancer Res 2005; 25(5): 3367-74.
[PMID: 16101151]
[124]
Nagahara AH, Tuszynski MH. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 2011; 10(3): 209-19.
[http://dx.doi.org/10.1038/nrd3366] [PMID: 21358740]
[125]
Ishola IO, Jacinta AA, Adeyemi OO. Cortico-hippocampal memory enhancing activity of hesperetin on scopolamine-induced amnesia in mice: Role of antioxidant defense system, cholinergic neurotransmission and expression of BDNF. Metab Brain Dis 2019; 34(4): 979-89.
[http://dx.doi.org/10.1007/s11011-019-00409-0] [PMID: 30949953]
[126]
Muhammad T, Ikram M, Ullah R, Rehman S, Kim M. Hesperetin, a citrus flavonoid, attenuates LPS-Induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 2019; 11(3): 648-68.
[http://dx.doi.org/10.3390/nu11030648] [PMID: 30884890]
[127]
Hong Y, An Z. Hesperidin attenuates learning and memory deficits in APP/PS1 mice through activation of Akt/Nrf2 signaling and inhibition of RAGE/NF-κB signaling. Arch Pharm Res 2018; 41(6): 655-63.
[http://dx.doi.org/10.1007/s12272-015-0662-z] [PMID: 26391026]
[128]
Nunes C, Almeida L, Barbosa RM, Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct 2017; 8(1): 387-96.
[http://dx.doi.org/10.1039/C6FO01529H] [PMID: 28067377]
[129]
Yao ZH, Yao X, Zhang Y, Zhang S, Hu J. Luteolin could improve cognitive dysfunction by inhibiting neuroinflammation. Neurochem Res 2018; 43(4): 806-20.
[http://dx.doi.org/10.1007/s11064-018-2482-2] [PMID: 29392519]
[130]
Zhang JX, Xing JG, Wang LL, Jiang HL, Guo SL, Liu R. Luteolin inhibits fibrillary beta-amyloid1-40-induced inflammation in a human blood-brain barrier model by suppressing the p38 MAPK-mediated NF-kappaB signaling pathways. Molecules 2017; 22(3): 334.
[http://dx.doi.org/10.3390/molecules22030334]
[131]
Lin TY, Lu CW, Wang SJ. Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats. Neurotoxicology 2016; 55(1): 48-57.
[http://dx.doi.org/10.1016/j.neuro.2016.05.008] [PMID: 27185356]
[132]
Ahmad S, Jo MH, Ikram M, Khan A, Kim MO. Deciphering the potential neuroprotective effects of luteolin against Aβ1–42-induced Alzheimer’s disease. Int J Mol Sci 2021; 22(17): 9583.
[http://dx.doi.org/10.3390/ijms22179583] [PMID: 34502488]
[133]
Zhang K, Ma Z, Wang J, Xie A, Xie J. Myricetin attenuated MPP+-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells. Neuropharmacology 2011; 61(1-2): 329-35.
[http://dx.doi.org/10.1016/j.neuropharm.2011.04.021] [PMID: 21549720]
[134]
Wang QM, Wang GL, Ma ZG. Protective effects of myricetin on chronic stress-induced cognitive deficits. Neuroreport 2016; 27(9): 652-8.
[http://dx.doi.org/10.1097/WNR.0000000000000591] [PMID: 27171032]
[135]
Li J, Xiang H, Huang C, Lu J. Pharmacological actions of myricetin in the nervous system: A comprehensive review of preclinical studies in animals and cell models. Front Pharmacol 2021; 12: 797298.
[http://dx.doi.org/10.3389/fphar.2021.797298] [PMID: 34975495]
[136]
Manchope MF, Casagrande R, Verri WA Jr. Naringenin: An analgesic and anti-inflammatory citrus flavanone. Oncotarget 2017; 8(3): 3766-7.
[http://dx.doi.org/10.18632/oncotarget.14084] [PMID: 28030851]
[137]
Da Pozzo E, Costa B, Cavallini C, et al. The citrus flavanone naringenin protects myocardial against age-associated damage. Oxid Med Cell Longev 2017; 2017: 1-12.
[http://dx.doi.org/10.1155/2017/9536148] [PMID: 28386313]
[138]
Christensen KB, Petersen RK, Kristiansen K, Christensen LP. Identification of bioactive compounds from flowers of black elder] (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) γ. Phytother Res 2010; 24(S2): S129-32.
[http://dx.doi.org/10.1002/ptr.3005] [PMID: 20222152]
[139]
Kannappan S, Anuradha CV. Naringenin enhances insulin-stimulated tyrosine phosphorylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome. Eur J Nutr 2010; 49(2): 101-9.
[http://dx.doi.org/10.1007/s00394-009-0054-6] [PMID: 19727895]
[140]
Khajevand-Khazaei MR, Ziaee P, Motevalizadeh SA, et al. Naringenin ameliorates learning and memory impairment following systemic lipopolysaccharide challenge in the rat. Eur J Pharmacol 2018; 826: 114-22.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.001] [PMID: 29518393]
[141]
Yang W, Ma J, Liu Z, Lu Y, Hu B, Yu H. Effect of naringenin on brain insulin signaling and cognitive functions in ICV-STZ induced dementia model of rats. Neurol Sci 2014; 35(5): 741-51.
[http://dx.doi.org/10.1007/s10072-013-1594-3] [PMID: 24337945]
[142]
Zhang N, Hu Z, Zhang Z, et al. Protective role of naringenin against Aβ25-35-caused damage via ER and PI3K/Akt-mediated pathways. Cell Mol Neurobiol 2018; 38(2): 549-57.
[http://dx.doi.org/10.1007/s10571-017-0519-8] [PMID: 28699113]
[143]
Ghofrani S, Joghataei MT, Mohseni S, et al. Naringenin improves learning and memory in an Alzheimer’s disease rat model: Insights into the underlying mechanisms. Eur J Pharmacol 2015; 764: 195-201.
[http://dx.doi.org/10.1016/j.ejphar.2015.07.001] [PMID: 26148826]
[144]
Nogata Y, Sakamoto K, Shiratsuchi H, Ishii T, Yano M, Ohta H. Flavonoid composition of fruit tissues of citrus species. Biosci Biotechnol Biochem 2006; 70(1): 178-92.
[http://dx.doi.org/10.1271/bbb.70.178] [PMID: 16428836]
[145]
Chen SF, Hsu CW, Huang WH, Wang JY. Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. Br J Pharmacol 2008; 155(8): 1279-96.
[http://dx.doi.org/10.1038/bjp.2008.345] [PMID: 18776918]
[146]
Iwata N, Higuchi M, Saido TC. Metabolism of amyloid-β peptide and Alzheimer’s disease. Pharmacol Ther 2005; 108(2): 129-48.
[http://dx.doi.org/10.1016/j.pharmthera.2005.03.010] [PMID: 16112736]
[147]
Kimura J, Shimizu K, Kajima K, et al. Nobiletin reduces intracellular and extracellular β-amyloid in ips cell-derived alzheimer’s disease model neurons. Biol Pharm Bull 2018; 41(4): 451-7.
[http://dx.doi.org/10.1248/bpb.b17-00364] [PMID: 29607920]
[148]
Mishizen-Eberz AJ, Rissman RA, Carter TL, Ikonomovic MD, Wolfe BB, Armstrong DM. Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis 2004; 15(1): 80-92.
[http://dx.doi.org/10.1016/j.nbd.2003.09.016] [PMID: 14751773]
[149]
Nakajima A, Ohizumi Y. Potential benefits of nobiletin, a citrus flavonoid, against Alzheimer’s disease and Parkinson’s disease. Inter. Int J Mol Sci 2019; 20(14): 3380.
[http://dx.doi.org/10.3390/ijms20143380] [PMID: 31295812]
[150]
Seki T, Kamiya T, Furukawa K, et al. Nobiletin-rich Citrus reticulata peels, a kampo medicine for Alzheimer’s disease: A case series. Geriatr Gerontol Int 2013; 13(1) (Suppl. 2): 236-8.
[http://dx.doi.org/10.1111/j.1447-0594.2012.00892.x] [PMID: 23286569]
[151]
Ishisaka A, Ichikawa S, Sakakibara H, et al. Accumulation of orally administered quercetin in brain tissue and its antioxidative effects in rats. Free Radic Biol Med 2011; 51(7): 1329-36.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.017] [PMID: 21741473]
[152]
Zhang Y, Yi B, Ma J, et al. Quercetin promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Neurochem Res 2015; 40(1): 195-203.
[http://dx.doi.org/10.1007/s11064-014-1457-1] [PMID: 25543848]
[153]
Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015; 93: 134-45.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[154]
Ho L, Ferruzzi MG, Janle EM, et al. Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer’s disease. FASEB J 2013; 27(2): 769-81.
[http://dx.doi.org/10.1096/fj.12-212118] [PMID: 23097297]
[155]
Singh NK, Garabadu D. Quercetin exhibits α7nAChR/Nrf2/HO-1-mediated neuroprotection against stz-induced mitochondrial toxicity and cognitive impairments in experimental rodents. Neurotox Res 2021; 39(6): 1859-79.
[http://dx.doi.org/10.1007/s12640-021-00410-5] [PMID: 34554409]
[156]
Sriraksa N, Wattanathorn J, Muchimapura S, Tiamkao S, Brown K, Chaisiwamongkol K. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Alternat Med 2012; 2012: 823206.
[http://dx.doi.org/10.1155/2012/823206]
[157]
Khan TK, Nelson TJ, Verma VA, Wender PA, Alkon DL. A cellular model of Alzheimer’s disease therapeutic efficacy: PKC activation reverses Aβ-induced biomarker abnormality on cultured fibroblasts. Neurobiol Dis 2009; 34(2): 332-9.
[http://dx.doi.org/10.1016/j.nbd.2009.02.003] [PMID: 19233276]
[158]
Yang S, Zhou H, Wang G, et al. Quercetin is protective against short‐term dietary advanced glycation end products intake induced cognitive dysfunction in aged ICR mice. J Food Biochem 2020; 44(4): e13164.
[http://dx.doi.org/10.1111/jfbc.13164] [PMID: 32065675]
[159]
Dal Belo CA, Lucho APB, Vinadé L, et al. In vitro antiophidian mechanisms of Hypericum brasiliense choisy standardized extract: Quercetin-dependent neuroprotection. BioMed Res Int 2013; 2013: 1-6.
[http://dx.doi.org/10.1155/2013/943520] [PMID: 24490174]
[160]
West S, Bhugra P. Emerging drug targets for Aβ and tau in Alzheimer’s disease: A systematic review. Br J Clin Pharmacol 2015; 80(2): 221-34.
[http://dx.doi.org/10.1111/bcp.12621] [PMID: 25753046]
[161]
Drewnowski A, Gomez-Carneros C. Bitter taste, phytonutrients, and the consumer: A review. Am J Clin Nutr 2000; 72(6): 1424-35.
[http://dx.doi.org/10.1093/ajcn/72.6.1424] [PMID: 11101467]
[162]
Kawahata I, Yoshida M, Sun W, et al. Potent activity of nobiletin-rich Citrus reticulata peel extract to facilitate cAMP/PKA/ERK/CREB signaling associated with learning and memory in cultured hippocampal neurons: Identification of the substances responsible for the pharmacological action. J Neural Transm 2013; 120(10): 1397-409.
[http://dx.doi.org/10.1007/s00702-013-1025-x] [PMID: 23588349]
[163]
Yang T, Feng C, Wang D, et al. Neuroprotective and anti-inflammatory effect of tangeretin against cerebral ischemia-reperfusion injury in rats. Inflammation 2020; 43(6): 2332-43.
[http://dx.doi.org/10.1007/s10753-020-01303-z] [PMID: 32734386]
[164]
Wang Q, Wang L, Li G, Ye B. A simple and sensitive method for determination of taxifolin on palladium nanoparticles supported poly (diallyldimethylammonium chloride) functionalized graphene modified electrode. Talanta 2017; 164: 323-9.
[http://dx.doi.org/10.1016/j.talanta.2016.11.045] [PMID: 28107936]
[165]
Koffie RM, Hyman BT, Spires-Jones TL. Alzheimer’s disease: Synapses gone cold. Mol Neurodegener 2011; 6(1): 63-71.
[http://dx.doi.org/10.1186/1750-1326-6-63] [PMID: 21871088]
[166]
Park SY, Kim HY, Park HJ, Shin HK, Hong KW, Kim CD. Concurrent treatment with taxifolin and cilostazol on the lowering of beta-amyloid accumulation and neurotoxicity via the suppression of P-JAK2/P-STAT3/NF-kappaB/BACE1 signaling pathways. PLoS One 2016; 11(12): e0168286.
[http://dx.doi.org/10.1371/journal.pone.0168286] [PMID: 27977755]
[167]
Inoue T, Saito S, Tanaka M, et al. Pleiotropic neuroprotective effects of taxifolin in cerebral amyloid angiopathy. Proc Natl Acad Sci 2019; 116(20): 10031-8.
[http://dx.doi.org/10.1073/pnas.1901659116] [PMID: 31036637]
[168]
Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J 2017; 25(2): 149-64.
[http://dx.doi.org/10.1016/j.jsps.2016.04.025] [PMID: 28344465]
[169]
Echeverry C, Arredondo F, Abin-Carriquiry JA, et al. Pretreatment with natural flavones and neuronal cell survival after oxidative stress: A structure-activity relationship study. J Agric Food Chem 2010; 58(4): 2111-5.
[http://dx.doi.org/10.1021/jf902951v] [PMID: 20095615]
[170]
Wang H, Joseph JA. Structure–activity relationships of quercetin in antagonizing hydrogen peroxide-induced calcium dysregulation in PC12 cells11Mention of a trade name, proprietary product or specific equipment does not constitute a guarantee by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable. Free Radic Biol Med 1999; 27(5-6): 683-94.
[http://dx.doi.org/10.1016/S0891-5849(99)00119-7] [PMID: 10490289]
[171]
Zhu M, Han S, Fink AL. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim Biophys Acta 2013; 1830(4): 2872-81.
[http://dx.doi.org/10.1016/j.bbagen.2012.12.027]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy