Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

In Situ Hydrogels for Effective Treatment of Cancer: Strategies and Polymers Used

Author(s): Anshula Mehra, Abhay Tharmatt, Navdeep Saini, Gurdeep Singh, Kirandeep Kaur, Gurpreet Singh and Neena Bedi*

Volume 16, Issue 4, 2022

Published on: 21 October, 2022

Page: [287 - 308] Pages: 22

DOI: 10.2174/2667387816666221005102931

Price: $65

Abstract

Cancer is a worldwide health ailment with no known boundaries in terms of mortality and occurrence rates, thus is one of the biggest threats to humankind. Hence, there is an absolute need to develop novel therapeutics to bridge the infirmities associated with chemotherapy and conventional surgical methodologies, including impairment of normal tissue, compromised drug efficiency and an escalation in side effects. In lieu of this, there has been a surge in curiosity towards the development of injectable hydrogels for cancer therapy because local administration of the active pharmaceutical agent offers encouraging advantages such as providing a higher effective dose at the target site, a prolonged retention time of drug, ease of administration, mitigation of dose in vivo, and improved patient compliance. Furthermore, due to their biocompatible nature, such systems can significantly reduce the side effects that occur on long-term exposure to chemotherapy. The present review details the most recent advancements in the in-situ gel forming polymers (natural and synthetic), polymeric cross-linking methodologies and in-situ gelling mechanisms, focusing on their clinical benefits in cancer therapy.

Keywords: Injectable, Hydrogels, Natural polymers, Synthetic polymers, Cross-linking, Cancer

Graphical Abstract

[1]
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18: 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40]
[2]
Guan X. Cancer metastases: Challenges and opportunities. Acta Pharm Sin B 2015; 5: 402-18.
[3]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[4]
Shah SC, Kayamba V, Peek RM Jr, Heimburger D. Cancer control in low- And middle-income countries: Is it time to consider screening? J Glob Oncol 2019; 5(5): 1-8.
[http://dx.doi.org/10.1200/JGO.18.00200] [PMID: 30908147]
[5]
Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: Current advances and future directions. Int J Med Sci 2012; 9(3): 193-9.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[6]
Hossein SA, Bahrami M, Mohamadirizi S, Paknaad Z. Erratum: Investigation of eating disorders in cancer patients and its relevance with body image. Iran J Nurs Midwifery Res 2019; 24(3): 242.
[http://dx.doi.org/10.4103/1735-9066.256650] [PMID: 31057645]
[7]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[8]
Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv Pharm Bull 2017; 7(3): 339-48.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[9]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[10]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 29321058]
[11]
Sharma K, Sapra B, Kant S, Bedi N. Formulation and evaluation of desonide loaded microemulsion based gel for management of atopic dermatitis. J Nanomed 2021; 4(1): 1035-47.
[12]
Peng Y, Chen L, Ye S, et al. Research and development of drug delivery systems based on drug transporter and nano-formulation. As. J Pharm Sci 2020; 15(2): 220-36.
[http://dx.doi.org/10.1016/j.ajps.2020.02.004] [PMID: 32373201]
[13]
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics 2020; 12(9): 859.
[http://dx.doi.org/10.3390/pharmaceutics12090859] [PMID: 32927595]
[14]
Chang SH, Custer PL, Mohadjer Y, Scott E. Use of Lorenz titanium implants in orbital fracture repair. Ophthal Plast Reconstr Surg 2009; 25(2): 119-22.
[http://dx.doi.org/10.1097/IOP.0b013e31819ac7c5] [PMID: 19300154]
[15]
Wei W, Li H, Yin C, Tang F. Research progress in the application of in situ hydrogel system in tumor treatment. Drug Deliv 2020; 27(1): 460-8.
[http://dx.doi.org/10.1080/10717544.2020.1739171] [PMID: 32166987]
[16]
Majeed A, Khan NA. Ocular in situ gel: An overview. J Drug Deliv Ther 2019; 9(1): 337-47.
[http://dx.doi.org/10.22270/jddt.v9i1.2231]
[17]
Ajazuddin , Alexander A, Khan J, et al. Advancement in stimuli triggered in situ gelling delivery for local and systemic route. Expert Opin Drug Deliv 2012; 9(12): 1573-92.
[http://dx.doi.org/10.1517/17425247.2013.734806]
[18]
Fan D, Tian Y, Liu Z. Injectable hydrogels for localized cancer therapy. Front Chem 2019; 7: 675.
[http://dx.doi.org/10.3389/fchem.2019.00675] [PMID: 31681729]
[19]
Sharma P, Negi P, Mahindroo N. Recent advances in polymeric drug delivery carrier systems. Adv Polym Biomed Appl 2018; 10: 369-88.
[20]
Priya James H, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharm Sin B 2014; 4(2): 120-7.
[http://dx.doi.org/10.1016/j.apsb.2014.02.005] [PMID: 26579373]
[21]
Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol 2008; 20(2): 86-100.
[http://dx.doi.org/10.1016/j.smim.2007.11.004] [PMID: 18162407]
[22]
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018; 12: 3117-45.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[23]
Din F, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315]
[24]
Su SM, Kang P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics 2020; 12(9): 1-27.
[http://dx.doi.org/10.3390/pharmaceutics12090837] [PMID: 32882875]
[25]
Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: Gels, nanoparticles, polymeric films, rods, and wafers. J Control Release 2012; 159(1): 14-26.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.031] [PMID: 22154931]
[26]
Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural polysaccharide nanomaterials: An overview of their immunological properties. Int J Mol Sci 2019; 20(20): 5092.
[http://dx.doi.org/10.3390/ijms20205092] [PMID: 31615111]
[27]
Chopra R, Kaur KP, Bedi N. Colon specific delivery of eudragit E-100 and eudragit-FS30D coated tablets of leflunomide using chitosan-chondroitin sulphate interpolymer complex. Int J Pharm Pharm Sci 2015; (9): 286-91.
[28]
Prasher P, Sharma M, Mehta M, et al. Current-status and applications of polysaccharides in drug delivery systems. Colloid Interface Sci Commun 2021; 42100418.
[http://dx.doi.org/10.1016/j.colcom.2021.100418]
[29]
Simionescu BC, Ivanov D. Natural and synthetic polymers for designing composite materials in handbook of bioceramics and biocomposites Cham. Springer International Publishing, Switzerland 2014; pp. 1-54.
[30]
Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017; 3(7): e1700782.
[http://dx.doi.org/10.1126/sciadv.1700782] [PMID: 28776036]
[31]
Dhillon R, Ojha R, Bedi N. Preparation, characterization and optimization of poloxamer solid dispersions of a poorly water soluble drug aprepitant. Br J Pharm Res 2014; 4(20): 2436-54.
[http://dx.doi.org/10.9734/BJPR/2014/10561]
[32]
Guo BL, Ma PX. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci China Chem 2014; 57(4): 490-500.
[http://dx.doi.org/10.1007/s11426-014-5086-y] [PMID: 25729390]
[33]
Bhatia S. Natural polymers vs synthetic polymer. In: Bhatia S, Ed. Natural Polymer Drug Delivery Systems: Nanoparticles, Plants, and Algae. Cham: Springer International Publishing 2016; pp. 95-118.
[http://dx.doi.org/10.1007/978-3-319-41129-3_3]
[34]
Namazi H. Polymers in our daily life. Bioimpacts 2017; 7(2): 73-4.
[http://dx.doi.org/10.15171/bi.2017.09] [PMID: 28752070]
[35]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[36]
parhi R. Cross-linked hydrogel for pharmaceutical applications: A review. Adv Pharm Bull 2017; 7(4): 515-30.
[http://dx.doi.org/10.15171/apb.2017.064] [PMID: 29399542]
[37]
Sikdar P, Uddin MM, Dip TM, et al. Recent advances in the synthesis of smart hydrogels. Materials Advances 2021; 2(14): 4532-73.
[http://dx.doi.org/10.1039/D1MA00193K]
[38]
Shoukat H, Buksh K, Noreen S, Pervaiz F, Maqbool I. Hydrogels as potential drug-delivery systems: Network design and applications. Ther Deliv 2021; 12(5): 375-96.
[http://dx.doi.org/10.4155/tde-2020-0114] [PMID: 33792360]
[39]
Geetanjali BSP, Singh D, Bedi N. Microemulsion based hydrogel of tacrolimus for the treatment of atopic dermatitis. Pharm Nanotechnol 2016; 4(2): 136-54.
[http://dx.doi.org/10.2174/2211738504666160301233053]
[40]
Aswathy SH, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon 2020; 6(4): e03719.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03719] [PMID: 32280802]
[41]
Sharma K, Sapra B, Bedi N. Treatment of atopic dermatitis: Current status and future prospects. Curr Drug Ther 2018; 13(2): 108-29.
[http://dx.doi.org/10.2174/1574885512666171123165636]
[42]
Shin GR, Kim HE, Kim JH, Choi S, Kim MS. Advances in injectable in situ-forming hydrogels for intratumoral treatment. Pharmaceutics 2021; 13(11): 1953.
[http://dx.doi.org/10.3390/pharmaceutics13111953] [PMID: 34834369]
[43]
Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels- A review. Saudi Pharm J 2016; 24(5): 554-9.
[http://dx.doi.org/10.1016/j.jsps.2015.03.022] [PMID: 27752227]
[44]
Vasile C, Pamfil D, Stoleru E, Baican M. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules 2020; 25(7): 1539.
[http://dx.doi.org/10.3390/molecules25071539] [PMID: 32230990]
[45]
Ghasemiyeh P, Mohammadi-Samani S. Hydrogels as drug delivery systems; pros and cons. Trends Pharmacol Sci 2019; 5: 7-24.
[http://dx.doi.org/10.30476/TIPS.2019.81604.1002]
[46]
Wang F, Chen J, Liu J, Zeng H. Cancer theranostic platforms based on injectable polymer hydrogels. Biomater Sci 2021; 9(10): 3543-75.
[http://dx.doi.org/10.1039/D0BM02149K] [PMID: 33634800]
[47]
Li Z, Lin Z. Recent advances in polysaccharide‐based hydrogels for synthesis and applications. Aggregate 2021; 2(2): 1-26.
[http://dx.doi.org/10.1002/agt2.21]
[48]
Caballero D, Abreu CM, Lima AC, Neves NN, Reis RL, Kundu SC. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2022; 280: 121299.
[http://dx.doi.org/10.1016/j.biomaterials.2021.121299] [PMID: 34871880]
[49]
Tomal W, Ortyl J. Water-soluble photoinitiators in biomedical applications. Polymers 2020; 12(5): 1073.
[http://dx.doi.org/10.3390/polym12051073] [PMID: 32392892]
[50]
Fakhari A, Anand Subramony J. Engineered in-situ depot-forming hydrogels for intratumoral drug delivery. J Control Release 2015; 220(Pt A): 465-75.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.014] [PMID: 26585504]
[51]
Balakrishnan B, Jayakrishnan A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials 2005; 26(18): 3941-51.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.005] [PMID: 15626441]
[52]
Baldwin AD, Kiick KL. Polysaccharide-modified synthetic polymeric biomaterials. Biopolymers 2010; 94(1): 128-40.
[http://dx.doi.org/10.1002/bip.21334] [PMID: 20091875]
[53]
Shariatinia Z, Jalali AM. Chitosan-based hydrogels: Preparation, properties and applications. Int J Biol Macromol 2018; 115: 194-220.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.034] [PMID: 29660456]
[54]
Obara K, Ishihara M, Ozeki Y, et al. Controlled release of paclitaxel from photocross-linked chitosan hydrogels and its subsequent effect on subcutaneous tumor growth in mice. J Control Release 2005; 110: 79-89.
[55]
Sharifi S, Mirzadeh H, Imani M, et al. Injectable in situ forming drug delivery system based on poly(ε-caprolactone fumarate) for tamoxifen citrate delivery: Gelation characteristics, in vitro drug release and anti-cancer evaluation. Acta Biomater 2009; 5(6): 1966-78.
[http://dx.doi.org/10.1016/j.actbio.2009.02.004] [PMID: 19328054]
[56]
Pan P, Svirskis D, Rees SWP, Barker D, Waterhouse GIN, Wu Z. Photosensitive drug delivery systems for cancer therapy: Mechanisms and applications. J Control Release 2021; 338: 446-61.
[http://dx.doi.org/10.1016/j.jconrel.2021.08.053] [PMID: 34481021]
[57]
Ahn S, Kasi RM, Kim SC, Sharma N, Zhou Y. Stimuli-responsive polymer gels. Soft Matter 2008; 4(6): 1151-7.
[http://dx.doi.org/10.1039/b714376a] [PMID: 32907254]
[58]
Park KM, Park KD. In situ cross-linkable hydrogels as a dynamic matrix for tissue regenerative medicine. Tissue Eng Regen Med 2018; 15(5): 547-57.
[http://dx.doi.org/10.1007/s13770-018-0155-5] [PMID: 30603578]
[59]
Li L, He Y, Zheng X, Yi L, Nian W. Progress on preparation of pH/temperature-sensitive intelligent hydrogels and applications in target transport and controlled release of drugs. Int J Polym Sci 2021; 2021: 1-14.
[http://dx.doi.org/10.1155/2021/1340538]
[60]
Lanzalaco S, Armelin E. Poly(N-isopropylacrylamide) and copolymers: A review on recent progresses in biomedical applications. Gels 2017; 3(4): 36.
[http://dx.doi.org/10.3390/gels3040036] [PMID: 30920531]
[61]
Kost B. Brzeziński M, Socka M, Baśko M, Biela T. Biocompatible polymers combined with cyclodextrins: Fascinating materials for drug delivery applications. Molecules 2020; 25(15): 3404.
[http://dx.doi.org/10.3390/molecules25153404] [PMID: 32731371]
[62]
de Jong SJ, De Smedt SC, Demeester J, van Nostrum CF, Kettenes-van den Bosch JJ, Hennink WE. Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. J Control Release 2001; 72(1-3): 47-56.
[http://dx.doi.org/10.1016/S0168-3659(01)00261-9] [PMID: 11389984]
[63]
Lotfipour F, Alami-Milani M, Salatin S, Hadavi A, Jelvehgari M. Freeze-thaw-induced cross-linked PVA/chitosan for oxytetracyclineloaded wound dressing: The experimental design and optimization. Res Pharm Sci 2019; 14(2): 175-89.
[http://dx.doi.org/10.4103/1735-5362.253365] [PMID: 31620194]
[64]
Derakhshankhah H, Jahanban-Esfahlan R, Vandghanooni S, et al. A bio‐inspired gelatin‐based pH ‐ and thermal‐sensitive magnetic hydrogel for in vitro chemo/hyperthermia treatment of breast cancer cells. J Appl Polym Sci 2021; 138(24): 50578.
[http://dx.doi.org/10.1002/app.50578]
[65]
Jalababu R, Rao KSVK, Rao BS, Reddy KVNS. Dual responsive GG-g-PNPA/PIPAM based novel hydrogels for the controlled release of anti- cancer agent and their swelling and release kinetics. J Polym Res 2020; 27(4): 83.
[http://dx.doi.org/10.1007/s10965-020-02061-0]
[66]
Abdullah O, Usman Minhas M, Ahmad M, Ahmad S, Ahmad A. Synthesis of hydrogels for combinatorial delivery of 5-fluorouracil and leucovorin calcium in colon cancer: Optimization, in vitro characterization and its toxicological evaluation. Polym Bull 2019; 76(6): 3017-37.
[http://dx.doi.org/10.1007/s00289-018-2509-5]
[67]
Taşdelen B, Erdoğan S, Bekar B. Radiation synthesis and characterization of chitosan/hyraluronic acid/hydroxyapatite hydrogels: Drug uptake and drug delivery systems. Mater Today Proc 2018; 5(8): 15990-7.
[http://dx.doi.org/10.1016/j.matpr.2018.05.043]
[68]
Ghobashy MM, Elbarbary AM, Hegazy DE. Gamma radiation synthesis of a novel amphiphilic terpolymer hydrogel pH-responsive based chitosan for colon cancer drug delivery. Carbohydr Polym 2021; 263: 117975.
[http://dx.doi.org/10.1016/j.carbpol.2021.117975] [PMID: 33858572]
[69]
Dalwadi C, Patel G. Thermosensitive nanohydrogel of 5-fluorouracil for head and neck cancer: Preparation, characterization and cytotoxicity assay. Int J Nanomedicine 2018; 13: 31-3.
[http://dx.doi.org/10.2147/IJN.S124702] [PMID: 30880955]
[70]
Gholamali I, Yadollahi M. Doxorubicin-loaded carboxymethyl cellulose/Starch/ZnO nanocomposite hydrogel beads as an anticancer drug carrier agent. Int J Biol Macromol 2020; 160: 724-35.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.232] [PMID: 32479942]
[71]
Li R, Lin Z, Zhang Q, et al. Injectable and in situ-formable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for prevention of in vivo breast cancer recurrence. ACS Appl Mater Interfaces 2020; 12(15): 17936-48.
[http://dx.doi.org/10.1021/acsami.9b21528] [PMID: 32208630]
[72]
Li R, Zhang Y, Lin Z, et al. Injectable halloysite-g-chitosan hydrogels as drug carriers to inhibit breast cancer recurrence. Compos, Part B Eng 2021; 221: 109031.
[http://dx.doi.org/10.1016/j.compositesb.2021.109031]
[73]
Kaur N, Sharma K, Bedi N. Topical nanostructured lipid carrier based hydrogel of mometasone furoate for the treatment of psoriasis. Pharm Nanotechnol 2018; 6(2): 133-43.
[http://dx.doi.org/10.2174/2211738506666180523112513] [PMID: 29788899]
[74]
Kadler KE, Holmes DF, Trotter JA, Chapman JA. Collagen fibril formation. Biochem J 1996; 316(1): 1-11.
[http://dx.doi.org/10.1042/bj3160001] [PMID: 8645190]
[75]
León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G. Hydrolyzed collagen—sources and applications. Molecules 2019; 24(22): 4031.
[http://dx.doi.org/10.3390/molecules24224031] [PMID: 31703345]
[76]
Shoulders MD, Raines RT. Collagen structure and stability. Annu Rev Biochem 2009; 78: 929-58.
[http://dx.doi.org/10.1146/annurev.biochem.77.032207.120833]
[77]
Khan R, Khan M. Use of collagen as a biomaterial: An update. J Indian Soc Periodontol 2013; 17(4): 539-42.
[http://dx.doi.org/10.4103/0972-124X.118333] [PMID: 24174741]
[78]
Dinescu S, Albu Kaya M, Chitoiu L, Ignat S, Kaya DA, Costache M. Collagen-based hydrogels and their applications for tissue engineering and regenerative medicine. In: Cellulose-Based Superabsorbent Hydrogels Polymers and Polymeric Composites. Springer, Cham 2019; pp. 1643-64.
[http://dx.doi.org/10.1007/978-3-319-77830-3_54]
[79]
Schneider-Barthold C, Baganz S, Wilhelmi M, Scheper T, Pepelanova I. Hydrogels based on collagen and fibrin – frontiers and applications. Bio Nano Mater 2016; 17(1-2): 3-12.
[http://dx.doi.org/10.1515/bnm-2015-0025]
[80]
Mei E, Li S, Song J, Xing R, Li Z, Yan X. Self-assembling Collagen/Alginate hybrid hydrogels for combinatorial photothermal and immuno tumor therapy. A Physicochem Eng 2019; 577: 570-.
[http://dx.doi.org/10.1016/j.colsurfa.2019.06.023]
[81]
Hu JG, Pi JK, Jiang YL, Liu XF, Li-Ling J, Xie HQ. Collagen hydrogel functionalized with collagen-targeting IFNA2B shows apoptotic activity in nude mice with xenografted tumors. ACS Biomater Sci Eng 2019; 5(1): 272-82.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00490] [PMID: 33405860]
[82]
Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int J Mol Sci 2019; 20(23): 5889.
[http://dx.doi.org/10.3390/ijms20235889] [PMID: 31771245]
[83]
McCarthy PC, Zhang Y, Abebe F. Review recent applications of dual-stimuli responsive chitosan hydrogel nanocomposites as drug delivery tools. Molecules 2021; 26(16): 4735.
[http://dx.doi.org/10.3390/molecules26164735] [PMID: 34443323]
[84]
Jamal A, Shahzadi L, Ahtzaz S, et al. Identification of anti-cancer potential of doxazocin: Loading into chitosan based biodegradable hydrogels for on-site delivery to treat cervical cancer. Mater Sci Eng C 2018; 82(82): 102-9.
[http://dx.doi.org/10.1016/j.msec.2017.08.054] [PMID: 29025638]
[85]
Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004; 57(1): 19-34.
[http://dx.doi.org/10.1016/S0939-6411(03)00161-9] [PMID: 14729078]
[86]
Xiao C, You R, Fan Y, Zhang Y. Tunable functional hydrogels formed from a versatile water-soluble chitosan. Int J Biol Macromol 2016; 85: 386-90.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.006] [PMID: 26772916]
[87]
Sabino IJ, Lima-Sousa R, Alves CG, et al. Injectable in situ forming hydrogels incorporating dual-nanoparticles for chemo-photothermal therapy of breast cancer cells. Int J Pharm 2021; 600: 120510.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120510] [PMID: 33766636]
[88]
Zhang L, Guan X, Xiao X, et al. Near-infrared triggered injectable ferrimagnetic chitosan thermosensitive hydrogel for photo hyperthermia and precisely controlled drug release in tumor ablation. Eur Polym J 2022; 162: 110879.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110879]
[89]
Rezakhani L, Alizadeh M, Alizadeh A. A three dimensional in vivo model of breast cancer using a thermosensitive chitosan‐based hydrogel and 4 T1 cell line in Balb/c. J Biomed Mater Res A 2021; 109(7): 1275-85.
[http://dx.doi.org/10.1002/jbm.a.37121] [PMID: 33058428]
[90]
Ahsan A, Farooq MA, Parveen A. Thermosensitive chitosan-based injectable hydrogel as an efficient anticancer drug carrier. ACS Omega 2020; 5(32): 20450-60.
[http://dx.doi.org/10.1021/acsomega.0c02548] [PMID: 32832798]
[91]
Sartaj A, Qamar Z, Qizilbash FF, et al. Polymeric nanoparticles: Exploring the current drug development and therapeutic insight of breast cancer treatment and recommendations. Polymers 2021; 13(24): 4400.
[http://dx.doi.org/10.3390/polym13244400] [PMID: 34960948]
[92]
Pandit AH, Nisar S, Imtiyaz K, et al. Injectable, self-healing, and biocompatible N, O -carboxymethyl chitosan/multialdehyde guar gum hydrogels for sustained anticancer drug delivery. Biomacromolecules 2021; 22(9): 3731-45.
[http://dx.doi.org/10.1021/acs.biomac.1c00537] [PMID: 34436877]
[93]
Schneible JD, Young AT, Daniele MA, Menegatti S. Chitosan hydrogels for synergistic delivery of chemotherapeutics to triple negative breast cancer cells and spheroids. Pharm Res 2020; 37(7): 142.
[http://dx.doi.org/10.1007/s11095-020-02864-2] [PMID: 32661774]
[94]
Kim S, Nishimoto SK, Bumgardner JD, Haggard WO, Gaber MW, Yang Y. A chitosan/β-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials 2010; 31(14): 4157-66.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.139] [PMID: 20185170]
[95]
Shan J, Tang B, Liu L, et al. Development of chitosan/glycero- phosphate/collagen thermo-sensitive hydrogel for endoscopic treatment of mucosectomy-induced ulcer. Mater Sci Eng C 2019; 103: 109870.
[http://dx.doi.org/10.1016/j.msec.2019.109870] [PMID: 31349408]
[96]
Qu J, Zhao X, Ma PX, Guo B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater 2017; 58: 168-80.
[http://dx.doi.org/10.1016/j.actbio.2017.06.001] [PMID: 28583902]
[97]
Ruel-Gariépy E, Shive M, Bichara A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. Eur J Pharm Biopharm 2004; 57(1): 53-63.
[http://dx.doi.org/10.1016/S0939-6411(03)00095-X] [PMID: 14729080]
[98]
Liang Y, Zhao X, Ma PX, Guo B, Du Y, Han X. pH-responsive injectable hydrogels with mucosal adhesiveness based on chitosan-grafted-dihydrocaffeic acid and oxidized pullulan for localized drug delivery. J Colloid Interface Sci 2019; 536: 224-34.
[http://dx.doi.org/10.1016/j.jcis.2018.10.056] [PMID: 30368094]
[99]
Fong Y, Chen CH, Chen JP. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nanomaterials 2017; 7(11): 388.
[http://dx.doi.org/10.3390/nano7110388] [PMID: 29135959]
[100]
Zhu X, Zhang H, Huang H, Zhang Y, Hou L, Zhang Z. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors. Nanotechnology 2015; 26(36): 365103.
[http://dx.doi.org/10.1088/0957-4484/26/36/365103] [PMID: 26291977]
[101]
Pishavar E, Khosravi F, Naserifar M, et al. Multifunctional and self-healable intelligent hydrogels for cancer drug delivery and promoting tissue regeneration in vivo. Polymers 2021; 13(16): 2680.
[http://dx.doi.org/10.3390/polym13162680] [PMID: 34451220]
[102]
Ghosh D, Pramanik A, Sikdar N, Pramanik P. Synthesis of low molecular weight alginic acid nanoparticles through persulfate treatment as effective drug delivery system to manage drug resistant bacteria. Biotechnol Bioprocess Eng; BBE 2011; 16(2): 383-92.
[http://dx.doi.org/10.1007/s12257-010-0099-7]
[103]
Abasalizadeh F, Moghaddam SV, Alizadeh E, et al. Correction to: Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 2020; 14(1): 17.
[http://dx.doi.org/10.1186/s13036-020-00239-0] [PMID: 32547633]
[104]
Lakkakula JR, Gujarathi P, Pansare P, Tripathi S. A comprehensive review on alginate-based delivery systems for the delivery of chemotherapeutic agent: Doxorubicin. Carbohydr Polym 2021; 259: 117696.
[http://dx.doi.org/10.1016/j.carbpol.2021.117696] [PMID: 33673985]
[105]
Reig-Vano B, Tylkowski B, Montané X, Giamberini M. Alginate-based hydrogels for cancer therapy and research. Int J Biol Macromol 2021; 170: 424-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.161] [PMID: 33383080]
[106]
Jahanban-Esfahlan R, Derakhshankhah H, Haghshenas B, Massoumi B, Abbasian M, Jaymand M. A bio-inspired magnetic natural hydrogel containing gelatin and alginate as a drug delivery system for cancer chemotherapy. Int J Biol Macromol 2020; 156: 438-45.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.074] [PMID: 32298719]
[107]
Sheng Y, Gao J, Yin ZZ, Kang J, Kong Y. Dual-drug delivery system based on the hydrogels of alginate and sodium carboxymethyl cellulose for colorectal cancer treatment. Carbohydr Polym 2021; 269: 118325.
[http://dx.doi.org/10.1016/j.carbpol.2021.118325] [PMID: 34294337]
[108]
Liu M, Song X, Wen Y, Zhu JL, Li J. Injectable thermoresponsive hydrogel Formed by Alginate- g -Poly(N -isopropylacrylamide) that releases doxorubicin-encapsulated micelles as a smart drug delivery system. ACS Appl Mater Interfaces 2017; 9(41): 35673-82.
[http://dx.doi.org/10.1021/acsami.7b12849] [PMID: 28937214]
[109]
Tang F, Xie W, Li S, et al. Alginate-zinc (II) phthalocyanine conjugates: Synthesis, characterization and tumor-associated macrophages-targeted photodynamic therapy. Carbohydr Polym 2020; 240: 116239.
[http://dx.doi.org/10.1016/j.carbpol.2020.116239] [PMID: 32475548]
[110]
Hosseinifar T, Sheybani S, Abdouss M, Hassani Najafabadi SA, Shafiee Ardestani M. Pressure responsive nanogel base on Alginate-Cyclodextrin with enhanced apoptosis mechanism for colon cancer delivery. J Biomed Mater Res A 2018; 106(2): 349-59.
[http://dx.doi.org/10.1002/jbm.a.36242] [PMID: 28940736]
[111]
Sun Z, Yi Z, Zhang H, et al. Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydr Polym 2017; 175: 159-69.
[http://dx.doi.org/10.1016/j.carbpol.2017.07.078] [PMID: 28917852]
[112]
Keshavarz M, Moloudi K, Paydar R, et al. Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy. J Biomater Appl 2018; 33(2): 161-9.
[http://dx.doi.org/10.1177/0885328218782355] [PMID: 29933708]
[113]
Shad PM, Karizi SZ, Javan RS, et al. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol In Vitro 2020; 65: 104756.
[http://dx.doi.org/10.1016/j.tiv.2019.104756] [PMID: 31884114]
[114]
Ferreira NN, M B Ferreira L, Miranda-Gonçalves V, et al. Alginate hydrogel improves anti-angiogenic bevacizumab activity in cancer therapy. Eur J Pharm Biopharm 2017; 119: 271-82.
[http://dx.doi.org/10.1016/j.ejpb.2017.06.028] [PMID: 28669796]
[115]
You Y, Xie Y, Jiang Z. Injectable and biocompatible chitosan-alginic acid hydrogels. Biomed Mater 2019; 14(2): 025010.
[http://dx.doi.org/10.1088/1748-605X/aaff3d] [PMID: 30650388]
[116]
Zhou X, Qiu S, Mu X, et al. Polyphosphazenes-based flame retardants: A review. Compos, Part B Eng 2020; 202: 108397.
[http://dx.doi.org/10.1016/j.compositesb.2020.108397]
[117]
Baillargeon AL, Mequanint K. Biodegradable polyphosphazene biomaterials for tissue engineering and delivery of therapeutics. BioMed Res Int 2014; 2014: 1-16.
[http://dx.doi.org/10.1155/2014/761373] [PMID: 24883323]
[118]
Teasdale I, Brüggemann O. Polyphosphazenes: Multifunctional, biodegradable vehicles for drug and gene delivery. Polymers 2013; 5(1): 161-87.
[http://dx.doi.org/10.3390/polym5010161] [PMID: 24729871]
[119]
Ullah RS, Wang L, Yu H, et al. Synthesis of polyphosphazenes with different side groups and various tactics for drug delivery. RSC Advances 2017; 7(38): 23363-91.
[http://dx.doi.org/10.1039/C6RA27103K]
[120]
Cirillo G. Curcio, Nicoletta, Iemma, Iemma F. Injectable hydrogels for cancer therapy over the last decade. Pharmaceutics 2019; 11(9): 486.
[http://dx.doi.org/10.3390/pharmaceutics11090486] [PMID: 31546921]
[121]
Kim YM, Park MR, Song SC. An injectable cell penetrable nano-polyplex hydrogel for localized siRNA delivery. Biomaterials 2013; 34(18): 4493-500.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.050] [PMID: 23498897]
[122]
Kim JI, Kim B, Chun C, Lee SH, Song SC. MRI-monitored long-term therapeutic hydrogel system for brain tumors without surgical resection. Biomaterials 2012; 33(19): 4836-42.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.048] [PMID: 22483245]
[123]
Zhang ZQ, Song SC. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Biomaterials 2016; 106: 13-23.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.015] [PMID: 27543919]
[124]
Kaur SD, Singh G, Singh G, Singhal K, Kant S, Bedi N. Cubosomes as potential nanocarrier for drug delivery: A comprehensive review. J Pharm Res Int 2021; 33(31B): 118-35.
[http://dx.doi.org/10.9734/jpri/2021/v33i31B31698]
[125]
Shirwaiker RA, Purser M, Wysk RA. Scaffolding hydrogels for rapid prototyping based tissue engineering. In: Narayan R, Ed. Rapid Prototyping of Biomaterials: Principles and Applications. Woodhead Publishing 2014; pp. 176-200.
[http://dx.doi.org/10.1533/9780857097217.176]
[126]
Fakhari A, Corcoran M, Schwarz A. Thermogelling properties of purified poloxamer 407. Heliyon 2017; 3(8): e00390.
[http://dx.doi.org/10.1016/j.heliyon.2017.e00390] [PMID: 28920092]
[127]
Singh G, Singh D, Choudhari M, et al. Exemestane encapsulated copolymers L121/F127/GL44 based mixed micelles: Solubility enhancement and in vitro cytotoxicity evaluation using MCF-7 breast cancer cells. J Pharm Investig 2021; 51(6): 701-14.
[http://dx.doi.org/10.1007/s40005-021-00540-0]
[128]
Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics 2019; 11(12): 671.
[http://dx.doi.org/10.3390/pharmaceutics11120671] [PMID: 31835628]
[129]
Escobar-Chávez JJ, López-Cervantes M, Naïk A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. J Pharm Pharm Sci 2006; 9(3): 339-58.
[PMID: 17207417]
[130]
Kim DY, Kwon DY, Kwon JS, et al. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot. Biomaterials 2016; 85: 232-45.
[http://dx.doi.org/10.1016/j.biomaterials.2016.02.001] [PMID: 26874285]
[131]
Bruschi ML, Borghi-Pangoni FB, Junqueira MV, de Souza Ferreira SB. Nanostructured therapeutic systems with bioadhesive and thermoresponsive properties.In: Nanostructures for Novel Therapy. Elsevier Inc. 2017; pp. 313-42.
[http://dx.doi.org/10.1016/B978-0-323-46142-9.00012-8]
[132]
Hu X, Li D, Tan H, Pan C, Chen X. Injectable graphene oxide/graphene composite supramolecular hydrogel for delivery of anti-cancer drugs. J Macromol Sci Part A Pure Appl Chem 2014; 51(4): 378-84.
[http://dx.doi.org/10.1080/10601325.2014.882704]
[133]
Steinman NY, Bentolila NY, Domb AJ. Effect of molecular weight on gelling and viscoelastic properties of poly (caprolactone)–b-Poly(ethylene glycol)–b-Poly(caprolactone) (PCL–PEG–PCL) Hydrogels. Polymers 2020; 12(10): 2372.
[http://dx.doi.org/10.3390/polym12102372] [PMID: 33076459]
[134]
Singh NK, Lee DS. In situ gelling pH- and temperature-sensitive biodegradable block copolymer hydrogels for drug delivery. J Control Release 2014; 193: 214-27.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.056] [PMID: 24815421]
[135]
Shi K, Xue B, Jia Y, et al. Sustained co-delivery of gemcitabine and cis-platinum in vitro biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Res 2019; 12(6): 1389-99.
[http://dx.doi.org/10.1007/s12274-019-2342-7]
[136]
Liang Y, Dong C, Zhang J, Deng L, Dong A. A reconstituted thermosensitive hydrogel system based on paclitaxel-loaded amphiphilic copolymer nanoparticles and antitumor efficacy. Drug Dev Ind Pharm 2017; 43(6): 972-9.
[http://dx.doi.org/10.1080/03639045.2017.1287718] [PMID: 28121206]
[137]
Park MH, Joo MK, Choi BG, Jeong B. Biodegradable thermogels. Acc Chem Res 2012; 45(3): 424-33.
[http://dx.doi.org/10.1021/ar200162j] [PMID: 21992012]
[138]
El-Zaafarany G, Soliman M, Mansour S, et al. A tailored thermosensitive PLGA-PEG-PLGA/emulsomes composite for enhanced oxcarbazepine brain delivery in vitro the nasal route. Pharmaceutics 2018; 10(4): 217.
[http://dx.doi.org/10.3390/pharmaceutics10040217] [PMID: 30400577]
[139]
Yang Z, Yu S, Li D, et al. The effect of PLGA-based hydrogel scaffold for improving the drug maximum-tolerated dose for in situ osteosarcoma treatment. Colloids Surf B Biointerfaces 2018; 172: 387-94.
[http://dx.doi.org/10.1016/j.colsurfb.2018.08.048] [PMID: 30193198]
[140]
Guo X, Xing Y, Zhang X, et al. In vivo controlled release and prolonged antitumor effects of 2-methoxyestradiol solid lipid nanoparticles incorporated into a thermosensitive hydrogel. Drug Deliv 2012; 19(4): 188-93.
[http://dx.doi.org/10.3109/10717544.2012.690002] [PMID: 22643052]
[141]
Ma H, He C, Cheng Y, et al. PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials 2014; 35(30): 8723-34.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.045] [PMID: 25017095]
[142]
Liu Y, Xiao L, Joo KI, Hu B, Fang J, Wang P. In situ modulation of dendritic cells by injectable thermosensitive hydrogels for cancer vaccines in mice. Biomacromolecules 2014; 15(10): 3836-45.
[http://dx.doi.org/10.1021/bm501166j] [PMID: 25207465]
[143]
Washington KE, Kularatne RN, Karmegam V, Biewer MC, Stefan MC. Recent advances in aliphatic polyesters for drug delivery applications. WIREs Nanomed Nanobiotechnol 2017; 9: e1446.9.
[http://dx.doi.org/10.1002/wnan.1446]
[144]
Jada A, Ait Akbour R, Jacquemet C, Suau JM, Guerret O. Effect of sodium polyacrylate molecular weight on the crystallogenesis of calcium carbonate. J Cryst Growth 2007; 306(2): 373-82.
[http://dx.doi.org/10.1016/j.jcrysgro.2007.05.046]
[145]
Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C, Huynh C. Self-assemblable polymer smart-blocks for temperature-induced injectable hydrogel in biomedical applications. Front Chem 2020; 8: 19.
[http://dx.doi.org/10.3389/fchem.2020.00019] [PMID: 32083052]
[146]
Fourniols T, Randolph LD, Staub A, et al. Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma. J Control Release 2015; 210: 95-104.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.272] [PMID: 25982679]
[147]
Krishnatreyya H, Hazarika H, Saha A, et al. Amelioration from the ocular irritant Capsaicin: Development and assessment of a Capsazepine in situ gel system for ocular delivery. Expert Opin Drug Deliv 2020; 17(6): 863-80.
[http://dx.doi.org/10.1080/17425247.2020.1754396] [PMID: 32274951]
[148]
Zhao M, Bozzato E, Joudiou N, et al. Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. J Control Release 2019; 309: 72-81.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.015] [PMID: 31306678]
[149]
Xu X, Huang Z, Huang Z, et al. Injectable, NIR/pH-Responsive Nanocomposite Hydrogel as Long-Acting Implant for Chemophotothermal Synergistic Cancer Therapy. ACS Appl Mater Interfaces 2017; 9(24): 20361-75.
[http://dx.doi.org/10.1021/acsami.7b02307] [PMID: 28532154]
[150]
Ishii S, Kaneko J, Nagasaki Y. Biomaterials gel formed by a polyion complex for local protein therapeutics. Biomaterials 2016; 84: 210-8.
[http://dx.doi.org/10.1016/j.biomaterials.2016.01.029] [PMID: 26828685]
[151]
Wu Y, Wang H, Gao F, Xu Z, Dai F, Liu W. An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions. Adv Funct Mater 2018; 28(21): 1801000.
[http://dx.doi.org/10.1002/adfm.201801000]
[152]
Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 2008; 68(1): 34-45.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.025] [PMID: 17881200]
[153]
Sánchez-Moreno P, de Vicente J, Nardecchia S, Marchal J, Boulaiz H. Thermo-sensitive nanomaterials: Recent advance in synthesis and biomedical applications. Nanomaterials 2018; 8(11): 935.
[http://dx.doi.org/10.3390/nano8110935] [PMID: 30428608]
[154]
Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 2010; 1(1): 149-73.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[155]
Kushwaha S, Rai AK, Saxena P. Stimuli sensitive hydrogels for ophthalmic drug delivery: A review. Int J Pharm Investig 2012; 2(2): 54-60.
[http://dx.doi.org/10.4103/2230-973X.100036] [PMID: 23119233]
[156]
Andrade F, Roca-Melendres MM, Durán-Lara EF, Rafael D, Schwartz S Jr. Review stimuli-responsive hydrogels for cancer treatment: The role of ph, light, ionic strength and magnetic field. Cancers 2021; 13(5): 1164.
[http://dx.doi.org/10.3390/cancers13051164] [PMID: 33803133]
[157]
Ji W, Wu Q, Han X, et al. Photosensitive hydrogels: From structure, mechanisms, design to bioapplications. Sci China Life Sci 2020; 63(12): 1813-28.
[http://dx.doi.org/10.1007/s11427-019-1710-8] [PMID: 33216277]
[158]
Gadad AP, Wadklar PD, Dandghi P, Patil A. Thermosensitive in situ gel for ocular delivery of lomefloxacin. Indian J Pharm Educ Res 2016; 50: S96-S105.
[159]
Luo PF, Xiang SL, Li C, Zhu MQ. Photomechanical polymer hydrogels based on molecular photoswitches. J Polym Sci 2021; 59(20): 2246-64.
[http://dx.doi.org/10.1002/pol.20210567]
[160]
Moreira Teixeira LS, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 2012; 33(5): 1281-90.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.067] [PMID: 22118821]
[161]
Song W, Ko J, Choi YH, Hwang NS. Recent advancements in enzyme-mediated crosslinkable hydrogels: In vivo-mimicking strategies. APL Bioeng 2021; 5(2): 021502.
[http://dx.doi.org/10.1063/5.0037793] [PMID: 33834154]
[162]
Wu Z, Xing J, Qi X, Zhu X, Zhang Z. Topotecan (TPT) hydrochloride intratumor injection composition prepared by loading TPT liposome in chitosan/sodium β-glycerophosphate (GP) in-situ gel, and its preparation method. CN103479568, 2014.
[163]
Han B, Fang J. Three-dimensional transglutaminase-cross-linked gelatin hydrogels for tumor engineering, antitumor drug screening, and stressed tumor modeling to assess drug resistance. Patent no: US20160178611, 2016.
[164]
Yi T, Zhu W, Chen L, Zhou F. Temperature sensitive type interpenetration network hydrogel material, its preparation method and application. CN105462142, 2016.
[165]
Tabata Y. Sustained-release preparations containing NK4. WO2004/030691, 2004.
[166]
Zhang Z, Hu M, Zhang J. Sustained and controlled release preparation and preparation method of in situ tumor immune combined therapeutic drug application. CN111888475, 2020.
[167]
Yang N, Wang Y, Jia X, Chen L, Zhao Y. Preparation method of biodegradable drug-loaded in-situ gel applied in treatment of tumor and controlled-release of drug. CN107625726, 2018.
[168]
Zhang L, Sun Y, Luo W. pH/temperature dual sensitivity amphipathic copolymer and preparation method and application thereof. CN105440229, 2016.
[169]
Zuo G, Guo Z, Liu S. Nanosheet hydroxyapatite/methotrexate composite and in-situ composition method thereof. CN109078194, 2018.
[170]
Lee JH, Choi SR, Cho BR, Kim TH. Method for producing sustained-release hydrogel complex. KR 1901649 2018.
[171]
Fu Y, Deng L, Zhang Z. In-situ hydrogel composition using nanomicelle as cross-linking agent, and its preparation method and application in preparing anti-fibrosis, antitumor or tumor postoperative adjuvant treatment drugs. CN111686075, 2020.
[172]
Wei K, Zhou J, Zhang C, Shangguan G, Kong Q. In-situ gel for hypodermic injection for treating breast cancer, and its application. CN108567736, 2018.
[173]
Batey S, Sun H, Leung K, Rowlands R, Lee FY, Maurer MA. HER2-binding Fc fragment for cancer therapy. WO2016/162505, 2016.
[174]
Yu L, Ding J. Heat-induced gel slow-release injection for combined administration of platinum and taxane antitumor drugs and preparation method thereof. CN107952079, 2018.
[175]
Wu J, Fu S, Zou X. Gel preparation for in-situ treatment of tumor and preparation method thereof. CN104721131, 2015.
[176]
Jin Y, Zhuang B, Du L. Development of drug-loaded injectable implantation in-situ hydrogel. CN111228212, 2020.
[177]
Cui H, Quinones-Hinojosa A. Design of monodisperse, amphiphilic prodrug with nanofiber hydrogels for local treatment of glioblastoma and other brain-related diseases. WO2016/2054592016,
[178]
Cai Z, Xue H, Guo K, Yang Z. Artemether oral microemulsion insitu gel and preparation method thereof. CN108578356, 2018.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy