Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Mini-Review Article

Nanotechnology for Targeted Drug Delivery to Treat Osteoporosis

Author(s): Malkiet Kaur, Manju Nagpal* and Geeta Aggarwal

Volume 24, Issue 1, 2023

Published on: 20 October, 2022

Page: [2 - 12] Pages: 11

DOI: 10.2174/1389450123666221004124040

Price: $65

Abstract

Bone diseases such as rheumatoid arthritis, Paget's disease, and osteoporosis cause mortality and mobility limits. Nanomedicine and nano delivery systems have been utilised to deliver active drug moiety to the precisely targeted site in a controlled manner, and it serves as a means of diagnostic tools. The utilisation of nanomedicine is expanding vigorously for assured targeting and efficient drug delivery. Nanotechnology offers various advantages, such as site-specific targeting, precise drug release kinetics, and improved bone mineral density. Recent medications available for osteoporosis are not viable due to the adverse effects associated with them and low patient compliance. There is an urgent need to develop biocompatible and appropriate drug delivery nanocarriers such as nanoparticles, liposomes, hydrogels, dendrimers, micelles, mesoporous particles, etc. These carriers enhance drug delivery and therapeutic effectiveness in bone tissues. The use of nanotechnology is also associated with toxicity. This article presents the review of various reports on nanocarrier systems and biologics for the treatment of osteoporosis. It aims to provide researchers with a clue for inventing a new drug delivery system with site-specific targeting for the treatment of osteoporosis.

Keywords: Nanotechnology, Nanostructured carriers, Nanomaterials, Bone diseases, Osteoporosis, Biologics, Nanotoxicity

Graphical Abstract

[1]
Gu W, Wu C, Chen J, Xiao Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 2013; 8: 2305-17.
[http://dx.doi.org/10.2147/IJN.S44393] [PMID: 23836972]
[2]
Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev 2012; 41(7): 2656-72.
[http://dx.doi.org/10.1039/C2CS15261D] [PMID: 22189429]
[3]
Teli MK, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: Going small means aiming big. Curr Pharm Des 2010; 16(16): 1882-92.
[http://dx.doi.org/10.2174/138161210791208992] [PMID: 20222866]
[4]
Chandrasekhar S, Iyer LK, Panchal JP, Topp EM, Cannon JB, Ranade VV. Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opin Drug Deliv 2013; 10(8): 1155-70.
[http://dx.doi.org/10.1517/17425247.2013.797405] [PMID: 23662940]
[5]
Shabnashmi PS, Naga KS, Vithya V, Vijaya LB, Jasmine R. Therapeutic applications of nanorobots-respirocytes and microbivores. J Chem Pharm Res 2016; 8: 605-9.
[6]
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020; 25(9): 2193.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[7]
Cheng H, Chawla A, Yang Y, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today 2017; 22(9): 1336-50.
[http://dx.doi.org/10.1016/j.drudis.2017.04.021] [PMID: 28487069]
[8]
Sezer AD, Ed. Application of nanotechnology in drug delivery. BoD–Books on Demand 2014; p. 554.
[http://dx.doi.org/10.5772/57028]
[9]
Moghimi SM, Hunter AC, Murray JC. Nanomedicine: Current status and future prospects. FASEB J 2005; 19(3): 311-30.
[http://dx.doi.org/10.1096/fj.04-2747rev] [PMID: 15746175]
[10]
Giljohann DA, Mirkin CA. Drivers of biodiagnostic development. Nature 2009; 462(7272): 461-4.
[http://dx.doi.org/10.1038/nature08605] [PMID: 19940916]
[11]
Nobile S, Nobile L. Nanotechnology for biomedical applications: Recent advances in neurosciences and bone tissue engineering. Polym Eng Sci 2017; 57(7): 644-50.
[http://dx.doi.org/10.1002/pen.24595]
[12]
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2(1): 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[13]
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4(1): 33.
[http://dx.doi.org/10.1038/s41392-019-0068-3] [PMID: 31637012]
[14]
Kaur M, Nagpal M, Singh M. Osteoblast-n-osteoclast: Making headway to osteoporosis treatment. Curr Drug Targets 2020; 21(16): 1640-51.
[http://dx.doi.org/10.2174/1389450121666200731173522] [PMID: 32735518]
[15]
Figueiredo A, Silva O, Cabrita S. Inflammatory reaction post implantation of bone graft materials. Exp Pathol Health Sci 2012; 6(1): 15-8.
[16]
Narasimhan B, Goodman JT, Vela RJE. Rational design of targeted next-generation carriers for drug and vaccine delivery. Annu Rev Biomed Eng 2016; 18(1): 25-49.
[http://dx.doi.org/10.1146/annurev-bioeng-082615-030519] [PMID: 26789697]
[17]
Alencastre IS, Sousa DM, Alves CJ, et al. Delivery of pharmaceutics to bone: Nanotechnologies, high-throughput processing and in silico mathematical models. Eur Cell Mater 2016; 31: 355-81.
[http://dx.doi.org/10.22203/eCM.v031a23] [PMID: 27232664]
[18]
Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater 2016; 2016: 1-15.
[19]
Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone diseases: Current approach and future perspectives in drug delivery systems for bone targeted therapeutics. Nanomaterials 2020; 10(5): 875.
[http://dx.doi.org/10.3390/nano10050875] [PMID: 32370009]
[20]
Li A, Xie J, Li J. Recent advances in functional nanostructured materials for bone-related diseases. J Mater Chem B Mater Biol Med 2019; 7(4): 509-27.
[http://dx.doi.org/10.1039/C8TB02812E] [PMID: 32254786]
[21]
Liang R, Wei M, Evans DG, Duan X. Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chem Commun 2014; 50(91): 14071-81.
[http://dx.doi.org/10.1039/C4CC03118K] [PMID: 24955443]
[22]
Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 2007; 18(3): 241-68.
[http://dx.doi.org/10.1163/156856207779996931] [PMID: 17471764]
[23]
Lin JH. Bisphosphonates: A review of their pharmacokinetic properties. Bone 1996; 18(2): 75-85.
[http://dx.doi.org/10.1016/8756-3282(95)00445-9] [PMID: 8833200]
[24]
Aoki K, Alles N, Soysa N, Ohya K. Peptide-based delivery to bone. Adv Drug Deliv Rev 2012; 64(12): 1220-38.
[http://dx.doi.org/10.1016/j.addr.2012.05.017] [PMID: 22709649]
[25]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnol 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[26]
Bhatia S. Nanotechnology and its drug delivery applications InNatural polymer drug delivery systems. Cham: Springer 2016; pp. 1-32.
[27]
Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009; 17(8): 2950-62.
[http://dx.doi.org/10.1016/j.bmc.2009.02.043] [PMID: 19299149]
[28]
Yang L, Webster TJ. Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 2009; 6(8): 851-64.
[http://dx.doi.org/10.1517/17425240903044935] [PMID: 19637973]
[29]
Grigore ME. Drug delivery systems in hard tissue engineering SF J Biotechnol. Biomed Eng 2018; 1(1): 1001.
[30]
Yin JJ, Liu J, Ehrenshaft M, et al. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes-generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 2012; 263(1): 81-8.
[http://dx.doi.org/10.1016/j.taap.2012.06.001] [PMID: 22705594]
[31]
Akçan R, Aydogan HC, Yildirim MŞ, Taştekin B, Sağlam N. Nanotoxicity: A challenge for future medicine. Turk J Med Sci 2020; 50(4): 1180-96.
[http://dx.doi.org/10.3906/sag-1912-209] [PMID: 32283898]
[32]
Stapleton M, Sawamoto K, Alméciga-Díaz CJ, et al. Development of bone targeting drugs. Int J Mol Sci 2017; 18(7): 1345.
[http://dx.doi.org/10.3390/ijms18071345] [PMID: 28644392]
[33]
Cabral HW, Andolphi BF, Ferreira BV, et al. The use of biomarkers in clinical osteoporosis. Rev Assoc Med Bras 2016; 62(4): 368-76.
[http://dx.doi.org/10.1590/1806-9282.62.04.368] [PMID: 27437684]
[34]
Rani S, Bandyopadhyay-Ghosh S, Ghosh SB, Liu G. Advances in sensing technologies for monitoring of bone health. Biosensors 2020; 10(4): 42.
[http://dx.doi.org/10.3390/bios10040042] [PMID: 32326229]
[35]
Nagy EE, Nagy-Finna C, Popoviciu H, Kovács B. Soluble biomarkers of osteoporosis and osteoarthritis, from pathway mapping to clinical trials: An update. Clin Interv Aging 2020; 15: 501-18.
[http://dx.doi.org/10.2147/CIA.S242288] [PMID: 32308378]
[36]
Kuo TR, Chen CH. Bone biomarker for the clinical assessment of osteoporosis: Recent developments and future perspectives. Biomark Res 2017; 5(1): 18.
[http://dx.doi.org/10.1186/s40364-017-0097-4] [PMID: 28529755]
[37]
Romero Barco CM, Manrique AS, Rodríguez Pérez M. Biochemical markers in osteoporosis: Usefulness in clinical practice. Reumatol Clin 2012; 8(3): 149-52.
[http://dx.doi.org/10.1016/j.reumae.2011.05.004] [PMID: 22089065]
[38]
Liu L, Webster TJ. In situ sensor advancements for osteoporosis prevention, diagnosis, and treatment. Curr Osteoporos Rep 2016; 14(6): 386-95.
[http://dx.doi.org/10.1007/s11914-016-0339-7] [PMID: 27815807]
[39]
Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater 2019; 94: 482-94.
[http://dx.doi.org/10.1016/j.actbio.2019.05.054] [PMID: 31129363]
[40]
Bellavia D, Raimondi L, Costa V, et al. Engineered exosomes: A new promise for the management of musculoskeletal diseases. Biochim Biophys Acta 2018; 1862(9): 1893-901.
[http://dx.doi.org/10.1016/j.bbagen.2018.06.003]
[41]
Wang Y, Yao J, Cai L, et al. Bone-targeted extracellular vesicles from mesenchymal stem cells for osteoporosis therapy. Int J Nanomed 2020; 15: 7967-77.
[http://dx.doi.org/10.2147/IJN.S263756] [PMID: 33116512]
[42]
Chen CY, Rao SS, Tan YJ, et al. Extracellular vesicles from human urine-derived stem cells prevent osteoporosis by transferring CTHRC1 and OPG. Bone Res 2019; 7(1): 18.
[http://dx.doi.org/10.1038/s41413-019-0056-9] [PMID: 31263627]
[43]
Sonoda S, Murata S, Nishida K, et al. Extracellular vesicles from deciduous pulp stem cells recover bone loss by regulating telomerase activity in an osteoporosis mouse model. Stem Cell Res Ther 2020; 11(1): 296.
[http://dx.doi.org/10.1186/s13287-020-01818-0] [PMID: 32680564]
[44]
Huang B, Su Y, Shen E, Song M, Liu D, Qi H. Extracellular vesicles from GPNMB-modified bone marrow mesenchymal stem cells attenuate bone loss in an ovariectomized rat model. Life Sci 2021; 272: 119208.
[http://dx.doi.org/10.1016/j.lfs.2021.119208] [PMID: 33582177]
[45]
Hu Y, Xu R, Chen CY, et al. Extracellular vesicles from human umbilical cord blood ameliorate bone loss in senile osteoporotic mice. Metabolism 2019; 95: 93-101.
[http://dx.doi.org/10.1016/j.metabol.2019.01.009] [PMID: 30668962]
[46]
Hu Y, Zhang Y, Ni CY, et al. Human umbilical cord mesenchymal stromal cells-derived extracellular vesicles exert potent bone protective effects by CLEC11A-mediated regulation of bone metabolism. Theranostics 2020; 10(5): 2293-308.
[http://dx.doi.org/10.7150/thno.39238] [PMID: 32089743]
[47]
Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[48]
Nirwan N. Nikita, Sultana Y, Vohora D. Liposomes as multifaceted delivery system in the treatment of osteoporosis. Expert Opin Drug Deliv 2021; 18: 1-5.
[49]
Sun X, Wei J, Lyu J, et al. Bone-targeting drug delivery system of biomineral-binding liposomes loaded with icariin enhances the treatment for osteoporosis. J Nanobiotechnol 2019; 17(1): 1-6.
[50]
Liu L, Xiang Y, Wang Z, et al. Adhesive liposomes loaded onto an injectable, self-healing and antibacterial hydrogel for promoting bone reconstruction. NPG Asia Mater 2019; 11(1): 1-8.
[http://dx.doi.org/10.1038/s41427-019-0185-z]
[51]
Hengst V, Oussoren C, Kissel T, Storm G. Bone targeting potential of bisphosphonate-targeted liposomes. Preparation, characterization and hydroxyapatite binding in vitro. Int J Pharm 2007; 331(2): 224-7.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.024] [PMID: 17150316]
[52]
Sachaniya J, Savaliya R, Goyal R, Singh S. Liposomal formulation of vitamin A for the potential treatment of osteoporosis. Int J Nanomed 2018; 13(T-NANO 2014 Abstracts): 51.
[http://dx.doi.org/10.2147/IJN.S124707]
[53]
Lu T, Ma Y, Hu H, Chen Y, Zhao W, Chen T. Ethinylestradiol liposome preparation and its effects on ovariectomized rats’ osteoporosis. Drug Deliv 2011; 18(7): 468-77.
[54]
Salem HF, Kharshoum RM, Mahmoud M, Azim SA, Ebeid EZ. Development and characterization of a novel nano-liposomal formulation of alendronate sodium loaded with biodegradable polymer. Ars Pharm 2018; 59(1): 9-20.
[55]
Eskandarynasab M, Doustimotlagh AH, Takzaree N, et al. Phosphatidylserine nanoliposomes inhibit glucocorticoid-induced osteoporosis: A potential combination therapy with alendronate. Life Sci 2020; 257: 118033.
[http://dx.doi.org/10.1016/j.lfs.2020.118033] [PMID: 32621924]
[56]
Liu Y, Jia Z, Akhter MP, et al. Bone-targeting liposome formulation of salvianic acid a accelerates the healing of delayed fracture union in mice. Nanomedicine 2018; 14(7): 2271-82.
[http://dx.doi.org/10.1016/j.nano.2018.07.011] [PMID: 30076934]
[57]
Gallez A, Palazzo C, Blacher S, et al. Liposomes and drug-in-cyclodextrin-in-liposomes formulations encapsulating 17β-estradiol: An innovative drug delivery system that prevents the activation of the Membrane-Initiated Steroid Signaling (MISS) of estrogen receptor α. Int J Pharm 2020; 573: 118861.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118861] [PMID: 31765774]
[58]
Huang L, Wang X, Cao H, et al. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice. Biomaterials 2018; 182: 58-71.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.046] [PMID: 30107270]
[59]
Maravajhala V, Dasari N, Sepuri A, Joginapalli S. Design and evaluation of niacin microspheres. Indian J Pharm Sci 2009; 71(6): 663-9.
[http://dx.doi.org/10.4103/0250-474X.59549] [PMID: 20376220]
[60]
Méndez NA, Barreda CT, Vega AF, et al. Design and development of pharmaceutical microprocesses in the production of nanomedicine. Nanostructures for Oral Medicine. Elsevier 2017; pp. 669-97.
[61]
Baskaran R, Lee CJ, Kang SM, et al. Poly (lactic-co-glycolic acid) microspheres containing a recombinant parathyroid hormone (1-34) for sustained release in a rat model. Indian J Pharm Sci 2018; 80(5): 837-43.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000429]
[62]
Koulouktsi C, Nanaki S, Barmpalexis P, Kostoglou M, Bikiaris D. Preparation and characterization of alendronate depot microspheres based on novel poly(-ε-caprolactone)/Vitamin E TPGS copolymers. Int J Pharm X 2019; 1: 100014.
[http://dx.doi.org/10.1016/j.ijpx.2019.100014] [PMID: 31517279]
[63]
Matamoros-Veloza A, Hossain KMZ, Scammell BE, Ahmed I, Hall R, Kapur N. Formulating injectable pastes of porous calcium phosphate glass microspheres for bone regeneration applications. J Mech Behav Biomed Mater 2020; 102: 103489.
[http://dx.doi.org/10.1016/j.jmbbm.2019.103489] [PMID: 31622859]
[64]
Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J 2018; 26(1): 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[65]
Sree NV, Udayasri P, Suresh V, Rao KS. Osteoporosis: Use of nanoparticles for the treatment of osteoporosis. Biomed Pharmacol J 2015; 2(2): 477-88.
[66]
Adjei IM, Temples MN, Brown SB, Sharma B. Targeted nanomedicine to treat bone metastasis. Pharmaceutics 2018; 10(4): 205.
[http://dx.doi.org/10.3390/pharmaceutics10040205] [PMID: 30366428]
[67]
Murthy A, Ravi PR, Kathuria H, Vats R. Self-assembled lecithin-chitosan nanoparticles improve the oral bioavailability and alter the pharmacokinetics of raloxifene. Int J Pharm 2020; 588: 119731.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119731] [PMID: 32763388]
[68]
Santhosh S, Mukherjee D, Anbu J, Murahari M, Teja BV. Improved treatment efficacy of risedronate functionalized chitosan nanoparticles in osteoporosis: Formulation development, in vivo, and molecular modelling studies. J Microencapsul 2019; 36(4): 338-55.
[http://dx.doi.org/10.1080/02652048.2019.1631401] [PMID: 31190594]
[69]
Cai Y, Gao T, Fu S, Sun P. Development of zoledronic acid functionalized hydroxyapatite loaded polymeric nanoparticles for the treatment of osteoporosis. Exp Ther Med 2018; 16(2): 704-10.
[http://dx.doi.org/10.3892/etm.2018.6263] [PMID: 30116324]
[70]
Nagai N, Ogata F, Otake H, Nakazawa Y, Kawasaki N. Design of a transdermal formulation containing raloxifene nanoparticles for osteoporosis treatment. Int J Nanomedicine 2018; 13: 5215-29.
[http://dx.doi.org/10.2147/IJN.S173216] [PMID: 30233182]
[71]
Tao S, Chen SQ, Zhou WT, et al. A novel biocompatible, simvastatin-loaded, bone-targeting lipid nanocarrier for treating osteoporosis more effectively. RSC Advances 2020; 10(35): 20445-59.
[http://dx.doi.org/10.1039/D0RA00685H] [PMID: 35517758]
[72]
Hosny KM. Alendronate sodium as enteric coated solid lipid nanoparticles; preparation, optimization, and in vivo evaluation to enhance its oral bioavailability. PLoS One 2016; 11(5): e0154926.
[http://dx.doi.org/10.1371/journal.pone.0154926] [PMID: 27148747]
[73]
Bhaskaran S. Formulation of natural polymeric nanoparticles to overcome barriers for the treatment of osteoporosis. J Adv Med Pharm Sci 2017; 12(3): 1-7.
[74]
Khajuria DK, Razdan R, Mahapatra DR. Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteoporosis in animal model. Eur J Pharm Sci 2015; 66: 173-83.
[http://dx.doi.org/10.1016/j.ejps.2014.10.015] [PMID: 25444840]
[75]
Yu P, Chen Y, Wang Y, et al. Pentapeptide-decorated silica nanoparticles loading salmon calcitonin for in vivo osteoporosis treatment with sustained hypocalcemic effect. Mater Today Chem 2019; 14: 100189.
[http://dx.doi.org/10.1016/j.mtchem.2019.08.008]
[76]
Kotak DJ, Devarajan PV. Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for Sublingual Osteoporosis Therapy (SLOT). Nanomedicine 2020; 24: 102153.
[http://dx.doi.org/10.1016/j.nano.2020.102153] [PMID: 31988038]
[77]
Abdel-Salam FS, Elkheshen SA, Mahmoud AA, et al. In-situ forming chitosan implant-loaded with raloxifene hydrochloride and bioactive glass nanoparticles for treatment of bone injuries: Formulation and biological evaluation in animal model. Int J Pharm 2020; 580: 119213.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119213] [PMID: 32165229]
[78]
Delan WK, Zakaria M, Elsaadany B, ElMeshad AN, Mamdouh W, Fares AR. Formulation of simvastatin chitosan nanoparticles for controlled delivery in bone regeneration: Optimization using Box-Behnken design, stability and in vivo study. Int J Pharm 2020; 577: 119038.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119038] [PMID: 31953085]
[79]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[80]
Palmerston Mendes L, Pan J, Torchilin VP. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 2017; 22(9): 1401.
[http://dx.doi.org/10.3390/molecules22091401] [PMID: 28832535]
[81]
Yamashita S, Katsumi H, Hibino N, et al. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases. J Control Release 2017; 262: 10-7.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.018] [PMID: 28710004]
[82]
Zhu X, Anquillare EL, Farokhzad OC, Shi J. Polymer-and protein-based nanotechnologies for cancer theranostics. Cancer theranostics 2014; 419-36.
[http://dx.doi.org/10.1016/B978-0-12-407722-5.00022-0]
[83]
Irby D, Du C, Li F. Lipid–drug conjugate for enhancing drug delivery. Mol Pharm 2017; 14(5): 1325-38.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01027] [PMID: 28080053]
[84]
Rawat P, Thomas SC, Ahmad FJ, Talegaonkar S. Withdrawn: Appraisal of bone targeting potential of nanohydroxyapatite based drug carriers conjugated with pamidronate in osteoporosis treatment. Pharm Nanotechnol 2019; 7.
[http://dx.doi.org/10.2174/2211738507666191205141718] [PMID: 31804171]
[85]
Sa Y, Gao Y, Wang M, et al. Bioactive calcium phosphate cement with excellent injectability, mineralization capacity and drug-delivery properties for dental biomimetic reconstruction and minimum intervention therapy. RSC Adv 2016; 6(33): 27349-59.
[http://dx.doi.org/10.1039/C6RA02488B]
[86]
Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB. Calcium phosphate cements as drug delivery materials. Adv Drug Deliv Rev 2012; 64(12): 1090-110.
[http://dx.doi.org/10.1016/j.addr.2012.01.008] [PMID: 22310160]
[87]
van Houdt CIA, Gabbai-Armelin PR, Lopez-Perez PM, et al. Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions. Sci Rep 2018; 8(1): 15398.
[http://dx.doi.org/10.1038/s41598-018-33692-5] [PMID: 30337567]
[88]
Li K, Zuo Y, Zou Q, et al. Synthesis and characterization of injectable nano-hydroxyapatite/polyurethane composite cement effective formulations for management of osteoporosis. J Nanosci Nanotechnol 2016; 16(12): 12407-17.
[http://dx.doi.org/10.1166/jnn.2016.13763]
[89]
Sony S, Suresh Babu S, Nishad KV, Varma H, Komath M. Development of an injectable bioactive bone filler cement with hydrogen orthophosphate incorporated calcium sulfate. J Mater Sci Mater Med 2015; 26(1): 5355.
[http://dx.doi.org/10.1007/s10856-014-5355-5] [PMID: 25578708]
[90]
Rathod HJ, Mehta DP. A review on pharmaceutical gel. Int J Pharm Sci Res 2015; 1(1): 33-47.
[91]
Hosny KM, Rizg WY. Quality by design approach to optimize the formulation variables influencing the characteristics of biodegradable intramuscular in-situ gel loaded with alendronate sodium for osteoporosis. PLoS One 2018; 13(6): e0197540.
[http://dx.doi.org/10.1371/journal.pone.0197540] [PMID: 29856752]
[92]
Shekhawat MN, Surti Z, Surti N. Biodegradable in situ gel for subcutaneous administration of simvastatin for osteoporosis. Indian J Pharm Sci 2018; 80(2): 395-9.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000371]
[93]
Reddy GT, Kumar TM, Veena KM. Formulation and evaluation of alendronate sodium gel for the treatment of bone resorptive lesions in Periodontitis. Drug Deliv 2005; 12(4): 217-22.
[http://dx.doi.org/10.1080/10717540590952663] [PMID: 16044536]
[94]
Amani N, Javar HA, Dorkoosh FA, et al. Preparation and pulsatile release evaluation of teriparatide-loaded multilayer implant composed of polyanhydride-hydrogel layers using spin coating for the treatment of osteoporosis. J Pharm Innov 2020; 16: 1-22.
[95]
Kaur R, Ajitha M. Formulation of transdermal nanoemulsion gel drug delivery system of lovastatin and its in vivo characterization in glucocorticoid induced osteoporosis rat model. J Drug Deliv Sci Technol 2019; 52: 968-78.
[http://dx.doi.org/10.1016/j.jddst.2019.06.008]
[96]
Kaur R, Ajitha M. Transdermal delivery of fluvastatin loaded nanoemulsion gel: Preparation, characterization and in vivo anti-osteoporosis activity. Eur J Pharm Sci 2019; 136: 104956.
[http://dx.doi.org/10.1016/j.ejps.2019.104956] [PMID: 31202895]
[97]
García MC, Uberman PM. Nanohybrid Filler-Based Drug-Delivery System. Nanocarriers for Drug Delivery. Elsevier 2019; pp. 43-79.
[98]
Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev 2011; 63(14-15): 1340-51.
[http://dx.doi.org/10.1016/j.addr.2011.06.013] [PMID: 21756952]
[99]
Jagur‐Grodzinski J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 2010; 21(1): 27-47.
[http://dx.doi.org/10.1002/pat.1504]
[100]
Pundir S, Badola A, Sharma D. Sustained release matrix technology and recent advance in matrix drug delivery system: A review. Int J Drug Res Tech 2013; 3(1): 12-20.
[101]
Kothamasu P, Kanumur H, Ravur N, Maddu C, Parasuramrajam R, Thangavel S. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts 2012; 2(2): 71-81.
[PMID: 23678444]
[102]
Wang M. Composite coatings for implants and tissue engineering scaffolds. Biomedical Composites. Woodhead Publishing 2010; pp. 127-77.
[http://dx.doi.org/10.1533/9781845697372.2.127]
[103]
Bergmann C, Lindner M, Zhang W, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 2010; 30(12): 2563-7.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2010.04.037]
[104]
Mukerabigwi JF, Ge Z, Kataoka K. Therapeutic nanoreactors as in vivo nanoplatforms for cancer therapy. Chemistry 2018; 24(59): 15706-24.
[http://dx.doi.org/10.1002/chem.201801159] [PMID: 29572992]
[105]
Barsoum MW. Fundamentals of Ceramics 2003. Available from: https://iopscience.iop.org/journalList
[http://dx.doi.org/10.1887/0750309024]
[106]
Zang S, Chang S, Shahzad MB, Sun X, Jiang X, Yang H. Ceramics-based drug delivery system: A review and outlook. Rev Adv Mater Sci 2019; 58(1): 82-97.
[http://dx.doi.org/10.1515/rams-2019-0010]
[107]
Ansari SA, Satar R, Jafri MA, Rasool M, Ahmad W, Zaidi KS. Role of nanodiamonds in drug delivery and stem cell therapy. Iran J Biotechnol 2016; 14(3): 130-41.
[http://dx.doi.org/10.15171/ijb.1320] [PMID: 28959329]
[108]
Nussinovitch A. Polymer macro-and micro-gel beads: Fundamentals and applications. Springer Science & Business Media 2010; p. 303.
[http://dx.doi.org/10.1007/978-1-4419-6618-6]
[109]
Bhattarai RS, Dhandapani NV, Shrestha A. Drug delivery using alginate and chitosan beads: An overview Chron Young Sci 2011; 2(4): 192.
[110]
Codrea CI, Croitoru AM, Baciu CC, et al. Advances in osteoporotic bone tissue engineering. J Clin Med 2021; 10(2): 253.
[http://dx.doi.org/10.3390/jcm10020253] [PMID: 33445513]
[111]
Lu Y, Li Y, Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 2016; 6(2): 106-13.
[http://dx.doi.org/10.1016/j.apsb.2015.11.005] [PMID: 27006893]
[112]
Moss AC. Mechanism of Action and Pharmacokinetics of Biologics. Treatment of Inflammatory Bowel Disease with Biologics. Cham: Springer 2018; pp. 1-11.
[113]
Gheita TA, Fathi HM. Biologics for osteoporosis: Where do we stand? J Musculoskelet Disord Treat 2018; 4(059): 1-4.
[114]
Brezinski EA, Armstrong AW. An evidence-based review of the mechanism of action, efficacy, and safety of biologic therapies in the treatment of psoriasis and psoriatic arthritis. Curr Med Chem 2015; 22(16): 1930-42.
[http://dx.doi.org/10.2174/0929867322666150429111804] [PMID: 25921645]
[115]
Quinteros DA, Bermúdez JM, Ravetti S, Cid A, Allemandi DA, Palma SD. Therapeutic use of monoclonal antibodies: General aspects and challenges for drug delivery. Nanostructures for Drug Delivery. Elsevier 2017; pp. 807-33.
[116]
Wensel TM, Iranikhah MM, Wilborn TW. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. Pharmacotherapy 2011; 31(5): 510-23.
[http://dx.doi.org/10.1592/phco.31.5.510] [PMID: 21923432]
[117]
Tella SH, Gallagher JC. Biological agents in management of osteoporosis. Eur J Clin Pharmacol 2014; 70(11): 1291-301.
[http://dx.doi.org/10.1007/s00228-014-1735-5] [PMID: 25204309]
[118]
Tsai JN, Uihlein AV, Lee H, et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: The DATA study randomised trial. Lancet 2013; 382(9886): 50-6.
[http://dx.doi.org/10.1016/S0140-6736(13)60856-9] [PMID: 23683600]
[119]
Li X, Ominsky MS, Warmington KS, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 2009; 24(4): 578-88.
[http://dx.doi.org/10.1359/jbmr.081206] [PMID: 19049336]
[120]
Faienza MF, Chiarito M, D’amato G, et al. Monoclonal antibodies for treating osteoporosis. Expert Opin Biol Ther 2018; 18(2): 149-57.
[http://dx.doi.org/10.1080/14712598.2018.1401607] [PMID: 29113523]
[121]
Arruebo M, Valladares M, González-Fernández Á. Antibody-conjugated nanoparticles for biomedical applications. J Nanomat 2009; 2009: 1-24.
[http://dx.doi.org/10.1155/2009/439389]
[122]
Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci 2008; 101(1): 4-21.
[http://dx.doi.org/10.1093/toxsci/kfm169] [PMID: 17602205]
[123]
Hazard Nanotechnology- a new hazard Available from: https://www.ohsrep.org.au/nanotechnology_-_a_new_hazard
[124]
Gao C, Wei D, Yang H, Chen T, Yang L. Nanotechnology for treating osteoporotic vertebral fractures. Int J Nanomedicine 2015; 10: 5139-57.
[PMID: 26316746]
[125]
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety evaluation of nanotechnology products. Pharmaceutics 2021; 13(10): 1615.
[http://dx.doi.org/10.3390/pharmaceutics13101615] [PMID: 34683908]
[126]
Barry M, Pearce H, Cross L, Tatullo M, Gaharwar AK. Advances in nanotechnology for the treatment of osteoporosis. Curr Osteoporos Rep 2016; 14(3): 87-94.
[http://dx.doi.org/10.1007/s11914-016-0306-3] [PMID: 27048473]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy