Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

A Bright Horizon of Intelligent Targeted-cancer Therapy: Nanoparticles Against Breast Cancer Stem Cells

Author(s): Ahmad Vaez, Milad Abbasi, Leili Shabani, Esmat Azizipour, Mostafa Shafiee, Mohammad Ali Zare, Omid Rahbar, Arezo Azari, Ali Mohammad Amani* and Ali Golchin*

Volume 18, Issue 6, 2023

Published on: 07 November, 2022

Page: [787 - 799] Pages: 13

DOI: 10.2174/1574888X17666221004105330

Price: $65

Abstract

Breast cancer stem cells (BCSCs) are heterogeneous tumor-initiating cell subgroups of breast cancers that possess some stem cell markers and are sustained after chemotherapy. Due to BCSCs being sufficient for tumor relapse, and given that the biological behaviors of BCSCs are so complex, it is critical to figure out exactly how they work, learn more about their cell biology, and discover biomarkers and strategies for explicitly targeting and destructing cancer stem cells. In order to accomplish innovative treatment for breast cancer, it is also essential to target BCSCs. Despite the vast quantities of BCSC target chemicals, their therapeutic implementation is limited due to off-target behavior and bioavailability issues. Targeted drug delivery systems based on nanoparticles have advantages for transporting anti-BCSC materials, especially to targeted locations. Hence, breast cancer therapy using a nanoparticle-based BCSCs targeting system is a promising strategy. Such targeted drug delivery systems can resolve the biodistribution obstacles of nanosystems. Throughout this paper, we highlight various strategies for targeting BCSCs utilizing nano-based systems. In conclusion, issues about the inadequate stability of nanoparticles and the possibility of loaded drug leakage during delivery systems have yet to be answered. More fundamental and applied research, and proper methods such as coating or surface modification are required.

Keywords: Breast cancer stem cells, Nanoparticles, Targeted Therapy, Cancer treatment

Graphical Abstract

[1]
Kangari P, Zarnoosheh FT, Golchin A, et al. Enzymatic antioxidant and lipid peroxidation evaluation in the newly diagnosed breast cancer patients in Iran. Asian Pac J Cancer Prev 2018; 19(12): 3511-5.
[http://dx.doi.org/10.31557/APJCP.2018.19.12.3511] [PMID: 30583677]
[2]
Velasco VMA, Homsi N, De La Fuente M, Pestell RG. Breast cancer stem cells. Int J Biochem Cell Biol 2012; 44(4): 573-7.
[http://dx.doi.org/10.1016/j.biocel.2011.12.020] [PMID: 22249027]
[3]
Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell 2007; 11(3): 259-73.
[http://dx.doi.org/10.1016/j.ccr.2007.01.013] [PMID: 17349583]
[4]
Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol 2015; 12(8): 445-64.
[http://dx.doi.org/10.1038/nrclinonc.2015.61] [PMID: 25850553]
[5]
Economopoulou P, Kaklamani VG, Siziopikou K. The role of cancer stem cells in breast cancer initiation and progression: Potential cancer stem cell-directed therapies. Oncologist 2012; 17(11): 1394-401.
[http://dx.doi.org/10.1634/theoncologist.2012-0163] [PMID: 22941971]
[6]
Ping YF, Bian XW. Consice review: Contribution of cancer stem cells to neovascularization. Stem Cells 2011; 29(6): 888-94.
[http://dx.doi.org/10.1002/stem.650] [PMID: 21557392]
[7]
Brannon PL, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004; 56(11): 1649-59.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[8]
Kouhbanani MAJ, Beheshtkhoo N, Fotoohiardakani G, et al. Green synthesis and characterization of spherical structure silver nanoparticles using wheatgrass extract. J Environ Treat Tech 2019; 7: 142-9.
[9]
Mousavi SM, Hashemi SA, Arjmand O, et al. Erythrosine adsorption from aqueous solution via decorated graphene oxide with magnetic iron oxide nano particles: Kinetic and equilibrium studies. Acta Chim Slov 2018; 65(4): 882-94.
[http://dx.doi.org/10.17344/acsi.2018.4537] [PMID: 33562944]
[10]
Rostamizadeh S, Amani AM, Mahdavinia GH, Shadjou N. Silica supported ammonium dihydrogen phosphate (NH4H2PO4/SiO2): A mild, reusable and highly efficient heterogeneous catalyst for the synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes. Chin Chem Lett 2009; 20(7): 779-83.
[http://dx.doi.org/10.1016/j.cclet.2009.03.016]
[11]
Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 2005; 1(2): 101-9.
[http://dx.doi.org/10.1016/j.nano.2005.03.002] [PMID: 17292064]
[12]
Golchin A, Nourani MR. Effects of bilayer nanofibrillar scaffolds containing epidermal growth factor on full‐thickness wound healing. Polym Adv Technol 2020; 31(11): 2443-52.
[http://dx.doi.org/10.1002/pat.4960]
[13]
Shams F, Golchin A, Azari A, et al. Nanotechnology-based products for cancer immunotherapy. Mol Biol Rep 2021; 49: 1389-412.
[14]
Farokhzad O, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006; 58(14): 1456-9.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[15]
Liu Y, Miyoshi H, Nakamura M. Nanomedicine for drug delivery and imaging: A promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. Int J Cancer 2007; 120(12): 2527-37.
[http://dx.doi.org/10.1002/ijc.22709] [PMID: 17390371]
[16]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[17]
Ren Y, Wang R, Gao L, et al. Sequential co-delivery of miR-21 inhibitor followed by burst release doxorubicin using NIR-responsive hollow gold nanoparticle to enhance anticancer efficacy. J Control Release 2016; 228: 74-86.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.008] [PMID: 26956593]
[18]
Wang D, Huang J, Wang X, et al. The eradication of breast cancer cells and stem cells by 8-hydroxyquinoline-loaded hyaluronan modified mesoporous silica nanoparticle-supported lipid bilayers containing docetaxel. Biomaterials 2013; 34(31): 7662-73.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.042] [PMID: 23859657]
[19]
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277: 3664957.
[http://dx.doi.org/10.1016/j.jconrel.2018.02.040] [PMID: 29501721]
[20]
Seynhaeve ALB, Amin M, Haemmerich D, Van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev 2020; 163-164: 125-44.
[http://dx.doi.org/10.1016/j.addr.2020.02.004] [PMID: 32092379]
[21]
Ma Z, Fan Y, Wu Y, et al. Traditional Chinese medicine-combination therapies utilizing nanotechnology-based targeted delivery systems: A new strategy for antitumor treatment. Int J Nanomedicine 2019; 14: 2029-53.
[http://dx.doi.org/10.2147/IJN.S197889] [PMID: 30962686]
[22]
Moradi KF, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327: 316-49.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.012] [PMID: 32800878]
[23]
Byrd TT, Fousek K, Pignata A, et al. TEM8/ANTXR1-Specific CAR T cells as a targeted therapy for triple-negative breast cancer. Cancer Res 2018; 78(2): 489-500.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1911] [PMID: 29183891]
[24]
Sun R, Liu Y, Li SY, et al. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 2015; 37: 405-14.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.018] [PMID: 25453968]
[25]
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy – Strategies and perspectives. J Control Release 2016; 240: 489-503.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.012] [PMID: 27287891]
[26]
Gao Y, Tang M, Leung E, Svirskis D, Shelling A, Wu Z. Dual or multiple drug loaded nanoparticles to target breast cancer stem cells. RSC Advances 2020; 10(32): 19089-105.
[http://dx.doi.org/10.1039/D0RA02801K] [PMID: 35518295]
[27]
Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother 2018; 103: 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[28]
Gheisari F, Shafiee M, Abbasi M, et al. Janus nanoparticles: An efficient intelligent modern nanostructure for eradicating cancer. Drug Metab Rev 2021; 53(4): 592-603.
[http://dx.doi.org/10.1080/03602532.2021.1878530] [PMID: 33561356]
[29]
Wang L, Huang J, Chen H, et al. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1 – T2 switchable magnetic resonance imaging contrast. ACS Nano 2017; 11(5): 4582-92.
[http://dx.doi.org/10.1021/acsnano.7b00038] [PMID: 28426929]
[30]
Fenaroli F, Repnik U, Xu Y, et al. Enhanced permeability and retention-like extravasation of nanoparticles from the vasculature into tuberculosis granulomas in zebrafish and mouse models. ACS Nano 2018; 12(8): 8646-61.
[http://dx.doi.org/10.1021/acsnano.8b04433] [PMID: 30081622]
[31]
Chen WH, Luo GF, Zhang XZ. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv Mater 2019; 31(3): 1802725.
[http://dx.doi.org/10.1002/adma.201802725] [PMID: 30260521]
[32]
Mousavi SM, Hashemi SA, Ghasemi Y, Amani AM, Babapoor A, Arjmand O. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: Review study. Drug Metab Rev 2019; 51(1): 12-41.
[http://dx.doi.org/10.1080/03602532.2018.1522328] [PMID: 30741033]
[33]
Das SS, Alkahtani S, Bharadwaj P, et al. Molecular insights and novel approaches for targeting tumor metastasis. Int J Pharm 2020; 585: 119556.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119556] [PMID: 32574684]
[34]
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: A review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391(5): 463-79.
[http://dx.doi.org/10.1007/s00210-018-1479-3] [PMID: 29476201]
[35]
Han J, Won M, Kim JH, et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem Soc Rev 2020; 49(22): 7856-78.
[http://dx.doi.org/10.1039/D0CS00379D] [PMID: 32633291]
[36]
Pétursdóttir KB. Expression of Aldehyde Dehydrogenase (ALDH) in the breast stem cell line D492 and relations to stem cell properties. Doctoral dissertation.
[37]
Wei QY, Xu YM, Lau ATY. Recent progress of nanocarrier-based therapy for solid malignancies. Cancers 2020; 12(10): 2783.
[http://dx.doi.org/10.3390/cancers12102783] [PMID: 32998391]
[38]
Bourseau GE, Béjaud J, Griveau A, et al. Development and characterization of immuno-nanocarriers targeting the cancer stem cell marker AC133. Int J Pharm 2012; 423(1): 93-101.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.001] [PMID: 21683129]
[39]
Tawari EP. Investigation of chemoresistant mechanisms in triple negative breast cancer cell lines and development of a nanoenabled Disulfiram for breast cancer treatment. PhD Thesis. Wolverhampton United Kingdom: University of Wolverhampton 2016.
[40]
Zhao CY, Cheng R, Yang Z, Tian ZM. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018; 23(4): 826.
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[41]
Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: Current state of the art. Int J Nanomedicine 2017; 12: 5879-92.
[http://dx.doi.org/10.2147/IJN.S123437] [PMID: 28860754]
[42]
Heidarzade S, Kormi SMA, Malekpour N, Ardehkhani S. Stem cell surface markers and their role in cancer progression. J Genes Cells 2017; 3: 1.
[http://dx.doi.org/10.15562/gnc.48]
[43]
Senbanjo LT, Chellaiah MA. CD44: A multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front Cell Dev Biol 2017; 5: 18.
[http://dx.doi.org/10.3389/fcell.2017.00018] [PMID: 28326306]
[44]
Bourguignon LYW. Matrix hyaluronan-CD44 interaction activates MicroRNA and LncRNA signaling associated with chemoresistance, invasion, and tumor progression. Front Oncol 2019; 9: 492.
[http://dx.doi.org/10.3389/fonc.2019.00492] [PMID: 31293964]
[45]
Yang X. lyer AK, Singh A, et al. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer. Sci Rep 2015; 5(1): 8509.
[http://dx.doi.org/10.1038/srep08509] [PMID: 25687880]
[46]
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017; 14(3): 228-41.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0052] [PMID: 28884040]
[47]
Lee SY, Kang MS, Jeong WY, Han DW, Kim KS. Hyaluronic acid-based theranostic nanomedicines for targeted cancer therapy. Cancers 2020; 12(4): 940.
[http://dx.doi.org/10.3390/cancers12040940] [PMID: 32290285]
[48]
Gaio E, Conte C, Esposito D, Reddi E, Quaglia F, Moret F. CD44 targeting mediated by polymeric nanoparticles and combination of chlorine TPCS2a-PDT and docetaxel-chemotherapy for efficient killing of breast differentiated and stem cancer cells in vitro. Cancers 2020; 12(2): 278.
[http://dx.doi.org/10.3390/cancers12020278] [PMID: 31979218]
[49]
Mitchison TJ. The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell 2012; 23(1): 1-6.
[http://dx.doi.org/10.1091/mbc.e10-04-0335] [PMID: 22210845]
[50]
Phi LTH, Sari IN, Yang YG, et al. Cancer Stem Cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int 2018; 2018: 5416923.
[http://dx.doi.org/10.1155/2018/5416923] [PMID: 29681949]
[51]
Prieto VM, Takahashi R, Usuba W, Kohama I, Ochiya T. Drug resistance driven by cancer stem cells and their niche. Int J Mol Sci 2017; 18(12): 2574.
[http://dx.doi.org/10.3390/ijms18122574] [PMID: 29194401]
[52]
Yang Z, Sun N, Cheng R, Zhao C, Liu J, Tian Z. Hybrid nanoparticles coated with hyaluronic acid lipoid for targeted co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells. J Mater Chem B Mater Biol Med 2017; 5(33): 6762-75.
[http://dx.doi.org/10.1039/C7TB01510K] [PMID: 32264326]
[53]
Mohammadi M, Salmasi Z, Hashemi M, Mosaffa F, Abnous K, Ramezani M. Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. Int J Pharm 2015; 485(1-2): 50-60.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.031] [PMID: 25712164]
[54]
Tran TA, Krishnamoorthy K, Cho SK, Kim SJ. Inhibitory effect of zinc sulfide nanoparticles towards breast cancer stem cell migration and invasion. J Biomed Nanotechnol 2016; 12(2): 329-36.
[http://dx.doi.org/10.1166/jbn.2016.2187] [PMID: 27305766]
[55]
Aires A, Ocampo SM, Simões BM, et al. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology 2016; 27(6): 065103.
[http://dx.doi.org/10.1088/0957-4484/27/6/065103] [PMID: 26754042]
[56]
Patskovsky S, Bergeron E, Meunier M. Hyperspectral darkfield microscopy of PEGylated gold nanoparticles targeting CD44-expressing cancer cells. J Biophotonics 2015; 8(1-2): 162-7.
[http://dx.doi.org/10.1002/jbio.201300165] [PMID: 24343875]
[57]
Glumac PM, LeBeau AM. The role of CD133 in cancer: A concise review. Clin Transl Med 2018; 7(1): 18.
[http://dx.doi.org/10.1186/s40169-018-0198-1] [PMID: 29984391]
[58]
Koike N. The role of stem cells in the hepatobiliary system and in cancer development: A surgeon’s perspective. Stem Cells and Cancer in Hepatology. Netherlands: Elsevier 2018; pp. 211-53.
[http://dx.doi.org/10.1016/B978-0-12-812301-0.00011-6]
[59]
Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. Breast Cancer 2019; 11: 115-35.
[http://dx.doi.org/10.2147/BCTT.S189224] [PMID: 30881110]
[60]
Yang L, Shi P, Zhao G, et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5(1): 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[61]
Pelullo M, Zema S, Nardozza F, Checquolo S, Screpanti I, Bellavia D. Wnt, Notch, and TGF-β pathways impinge on hedgehog signaling complexity: An open window on cancer. Front Genet 2019; 10: 711.
[http://dx.doi.org/10.3389/fgene.2019.00711] [PMID: 31552081]
[62]
Matsui WH. Cancer stem cell signaling pathways. Medicine 2016; 95 (Suppl. 1): S8-S19.
[http://dx.doi.org/10.1097/MD.0000000000004765]
[63]
Mamaeva V, Niemi R, Beck M, et al. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Mol Ther 2016; 24(5): 926-36.
[http://dx.doi.org/10.1038/mt.2016.42] [PMID: 26916284]
[64]
Huang J, Tao C, Yu Y, et al. Simultaneous targeting of differentiated breast cancer cells and breast cancer stem cells by combination of docetaxel-and sulforaphane-loaded self-assembled poly (D, L-lactide-co-glycolide)/hyaluronic acid block copolymer-based nanoparticles. J Biomed Nanotechnol 2016; 12(7): 1463-77.
[http://dx.doi.org/10.1166/jbn.2016.2234] [PMID: 29337484]
[65]
Shamsian A, Sepand MR, Javaheri KM, et al. Targeting tumorigenicity of breast cancer stem cells using SAHA/Wnt-b catenin antagonist loaded onto protein corona of gold nanoparticles. Int J Nanomedicine 2020; 15: 4063-78.
[http://dx.doi.org/10.2147/IJN.S234636] [PMID: 32606664]
[66]
Martin OE, Sanchez FA, Ortiz PI, San Nicolas AM. WNT signaling in tumors: The way to evade drugs and immunity. Front Immunol 2019; 10: 2854.
[http://dx.doi.org/10.3389/fimmu.2019.02854] [PMID: 31921125]
[67]
Hu Y, Fu L. Targeting cancer stem cells: A new therapy to cure cancer patients. Am J Cancer Res 2012; 2(3): 340-56.
[PMID: 22679565]
[68]
Miller KJ, Guo X, Qian W, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials 2018; 152: 47-62.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.035] [PMID: 29107218]
[69]
Liu Y, Chen C, Qian P, et al. Gd-metallofullerenol nanomaterial as non-toxic breast cancer stem cell-specific inhibitor. Nat Commun 2015; 6(1): 5988.
[http://dx.doi.org/10.1038/ncomms6988] [PMID: 25612916]
[70]
Li J, Zhang J, Wang Y, et al. Synergistic inhibition of migration and invasion of breast cancer cells by dual docetaxel/quercetin-loaded nanoparticles via Akt/MMP-9 pathway. Int J Pharm 2017; 523(1): 300-9.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.040] [PMID: 28336457]
[71]
Mardani M, Vaez A, Razavi S. Effect of saffron on rat sperm chromatin integrity. Iran J Reprod Med 2014; 12(5): 343-50.
[PMID: 25031579]
[72]
Mukherjee S, Mazumdar M, Chakraborty S, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther 2014; 5(5): 116.
[http://dx.doi.org/10.1186/scrt506] [PMID: 25315241]
[73]
Banik U, Parasuraman S, Adhikary AK, Othman NH. Curcumin: The spicy modulator of breast carcinogenesis. J Exp Clin Cancer Res 2017; 36(1): 98.
[http://dx.doi.org/10.1186/s13046-017-0566-5] [PMID: 28724427]
[74]
Li Y, Wicha MS, Schwartz SJ, Sun D. Implications of cancer stem cell theory for cancer chemoprevention by natural dietary compounds. J Nutr Biochem 2011; 22(9): 799-806.
[http://dx.doi.org/10.1016/j.jnutbio.2010.11.001] [PMID: 21295962]
[75]
Giordano A, Tommonaro G. Curcumin and Cancer. Nutrients 2019; 11(10): 2376.
[http://dx.doi.org/10.3390/nu11102376] [PMID: 31590362]
[76]
Park W, Amin ARMR, Chen ZG, Shin DM. New perspectives of curcumin in cancer prevention. Cancer Prev Res 2013; 6(5): 387-400.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0410] [PMID: 23466484]
[77]
Wu L, Guo L, Liang Y, Liu X, Jiang L, Wang L. Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol Rep 2015; 34(6): 3311-7.
[http://dx.doi.org/10.3892/or.2015.4279] [PMID: 26397387]
[78]
Sordillo PP, Helson L. Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res 2015; 35(2): 599-614.
[PMID: 25667437]
[79]
Zang S, Liu T, Shi J, Qiao L. Curcumin: A promising agent targeting cancer stem cells. Anticancer Agents Med Chem 2014; 14(6): 787-92.
[http://dx.doi.org/10.2174/1871520614666140521114735] [PMID: 24851881]
[80]
Zhou QM, Sun Y, Lu YY, Zhang H, Chen QL, Su SB. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int 2017; 17(1): 84.
[http://dx.doi.org/10.1186/s12935-017-0453-3] [PMID: 28959140]
[81]
Kakarala M, Brenner DE, Korkaya H, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 2010; 122(3): 777-85.
[http://dx.doi.org/10.1007/s10549-009-0612-x] [PMID: 19898931]
[82]
Wang M, Jiang S, Zhou L, et al. Potential mechanisms of action of curcumin for cancer prevention: Focus on cellular signaling pathways and miRNAs. Int J Biol Sci 2019; 15(6): 1200-14.
[http://dx.doi.org/10.7150/ijbs.33710] [PMID: 31223280]
[83]
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016; 8(4): 603-19.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[84]
He YC, Zhou FL, Shen Y, Liao DF, Cao D. Apoptotic death of cancer stem cells for cancer therapy. Int J Mol Sci 2014; 15(5): 8335-51.
[http://dx.doi.org/10.3390/ijms15058335] [PMID: 24823879]
[85]
Xu Y, So C, Lam HM, Fung MC, Tsang SY. Apoptosis reversal promotes cancer stem cell-like cell formation. Neoplasia 2018; 20(3): 295-303.
[http://dx.doi.org/10.1016/j.neo.2018.01.005] [PMID: 29476980]
[86]
Fani S, Dehghan F, Karimian H, et al. Monobenzyltin complex C1 induces apoptosis in MCF-7 breast cancer cells through the intrinsic signaling pathway and through the targeting of MCF-7-derived breast cancer stem cells via the Wnt/β-catenin signaling pathway. PLoS One 2016; 11(8): e0160836.
[http://dx.doi.org/10.1371/journal.pone.0160836] [PMID: 27529753]
[87]
Han Y, Fan S, Qin T, et al. Role of autophagy in breast cancer and breast cancer stem cells (Review). Int J Oncol 2018; 52(4): 1057-70.
[http://dx.doi.org/10.3892/ijo.2018.4270] [PMID: 29436618]
[88]
Azijli K, Weyhenmeyer B, Peters GJ, De Jong S, Kruyt FAE. Non-canonical kinase signaling by the death ligand TRAIL in cancer cells: Discord in the death receptor family. Cell Death Differ 2013; 20(7): 858-68.
[http://dx.doi.org/10.1038/cdd.2013.28] [PMID: 23579241]
[89]
Safa AR, Pollok KE. Targeting the anti-apoptotic protein c-FLIP for cancer therapy. Cancers 2011; 3(2): 1639-71.
[http://dx.doi.org/10.3390/cancers3021639] [PMID: 22348197]
[90]
Verzella D, Pescatore A, Capece D, et al. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis 2020; 11(3): 210.
[http://dx.doi.org/10.1038/s41419-020-2399-y] [PMID: 32231206]
[91]
Saad M, Garbuzenko OB, Minko T. Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer. Nanomedicine 2008; 3(6): 761-76.
[http://dx.doi.org/10.2217/17435889.3.6.761]
[92]
Darvishi B, Farahmand L, Majidzadeh AK. Stimuli-responsive mesoporous silica NPs as non-viral dual siRNA/chemotherapy carriers for triple negative breast cancer. Mol Ther Nucleic Acids 2017; 7: 164-80.
[http://dx.doi.org/10.1016/j.omtn.2017.03.007] [PMID: 28624192]
[93]
Zhou X, Chen L, Nie W, et al. Dual-responsive mesoporous silica nanoparticles mediated codelivery of doxorubicin and Bcl-2 SiRNA for targeted treatment of breast cancer. J Phys Chem C 2016; 120(39): 22375-87.
[http://dx.doi.org/10.1021/acs.jpcc.6b06759]
[94]
Zhao Y, Zhao W, Lim YC, Liu T. Salinomycin-loaded gold nanoparticles for treating cancer stem cells by ferroptosis-induced cell death. Mol Pharm 2019; 16(6): 2532-9.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00132] [PMID: 31009228]
[95]
Ding S, Li C, Cheng N, Cui X, Xu X, Zhou G. Redox regulation in cancer stem cells. Oxid Med Cell Longev 2015; 2015: 750798.
[http://dx.doi.org/10.1155/2015/750798] [PMID: 26273424]
[96]
Lee BWL, Ghode P, Ong DST. Redox regulation of cell state and fate. Redox Biol 2019; 25: 101056.
[http://dx.doi.org/10.1016/j.redox.2018.11.014] [PMID: 30509603]
[97]
Eskandari A, Suntharalingam K. A reactive oxygen species-generating, cancer stem cell-potent manganese(II) complex and its encapsulation into polymeric nanoparticles. Chem Sci 2019; 10(33): 7792-800.
[http://dx.doi.org/10.1039/C9SC01275C] [PMID: 31588328]
[98]
Zhang L, Yao HJ, Yu Y, et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials 2012; 33(2): 565-82.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.055] [PMID: 21983136]
[99]
Golchin A, Shams F, Basiri A, et al. Combination therapy of stem cell-derived exosomes and biomaterials in the wound healing. Stem Cell Rev Rep 2022; 18(6): 1892-911.
[PMID: 35080745]
[100]
Al Faraj A, Shaik AS, Ratemi E, Halwani R. Combination of drug-conjugated SWCNT nanocarriers for efficient therapy of cancer stem cells in a breast cancer animal model. J Control Release 2016; 225: 240-51.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.053] [PMID: 26827662]
[101]
Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: Carbon nanotubes as drug delivery tools. Int J Nanomedicine 2011; 6: 2963-79.
[PMID: 22162655]
[102]
Singh R, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 2013; 65(15): 2045-60.
[http://dx.doi.org/10.1016/j.addr.2013.08.001] [PMID: 23933617]
[103]
Wang CH, Chiou SH, Chou CP, et al. Photoablation of glioblastoma stem cells by single-walled carbon nanotubes functionalized with CD133 antibody. Medicine 2011; 7: 69-79.
[PMID: 20620237]
[104]
Sheikhpour M, Golbabaie A, Kasaeian A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. Mater Sci Eng C 2017; 76: 1289-304.
[http://dx.doi.org/10.1016/j.msec.2017.02.132] [PMID: 28482496]
[105]
Burke AR, Singh RN, Carroll DL, et al. The resistance of breast cancer stem cells to conventional hyperthermia and their sensitivity to nanoparticle-mediated photothermal therapy. Biomaterials 2012; 33(10): 2961-70.
[http://dx.doi.org/10.1016/j.biomaterials.2011.12.052] [PMID: 22245557]
[106]
Mei C, Wang N, Zhu X, Wong KH, Chen T. Photothermal‐controlled nanotubes with surface charge flipping ability for precise synergistic therapy of triple‐negative breast cancer. Adv Funct Mater 2018; 28(45): 1805225.
[http://dx.doi.org/10.1002/adfm.201805225]
[107]
Hu S. Co-targeting cancer stem-like cells and bulk cancer cells with a bispecific antibody. Mol Cell Oncol 2017; 4(3): e1308851.
[http://dx.doi.org/10.1080/23723556.2017.1308851] [PMID: 28616585]
[108]
Liu D, Hong Y, Li Y, et al. Targeted destruction of cancer stem cells using multifunctional magnetic nanoparticles that enable combined hyperthermia and chemotherapy. Theranostics 2020; 10(3): 1181-96.
[http://dx.doi.org/10.7150/thno.38989] [PMID: 31938059]
[109]
Liu Y, Suo X, Peng H, et al. Multifunctional magnetic nanoplatform eliminates cancer stem cells via inhibiting the secretion of extracellular heat shock protein 90. Adv Healthc Mater 2019; 8(13): 1900160.
[http://dx.doi.org/10.1002/adhm.201900160] [PMID: 30969015]
[110]
Golchin A, Rekabgardan M, Taheri RA, et al. Promotion of cell-based therapy: Special focus on the cooperation of mesenchymal stem cell therapy and gene therapy for clinical trial studies. In: Turksen K, Ed. Advances in experimental medicine and biology. New York, NY: Springer 2018; pp. 103-18.
[111]
Ardeshirylajimi A, Golchin A, Khojasteh A, et al. Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. 2018; 46: S943-9.
[112]
Basiri A, Mansouri F, Azari A, et al. Stem cell therapy potency in personalizing severe covid-19 treatment. Stem Cell Rev Rep 2021; 17: 193-213.
[http://dx.doi.org/10.1007/s12015-020-10110-w]
[113]
Wu J, Liu Y, Tang Y, et al. Synergistic chemo–photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk–shell GNR@ HPMO-PTX nanospheres. ACS Appl Mater Interfaces 2016; 8(28): 17927-35.
[http://dx.doi.org/10.1021/acsami.6b05677] [PMID: 27356586]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy