Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Systematic Review Article

Recent Advances in Therapeutic Strategies against Hydatid Cysts using Nanomaterials: A Systematic Review

Author(s): Kourosh Cheraghipour, Arian Karimi Rouzbahani, Shirzad Fallahi, Farshad Taherpour, Farzaneh Moradifard, Pegah Shakib, Hamed Esmaeil Lashgarian and Abdolrazagh Marzban*

Volume 20, Issue 9, 2023

Published on: 25 October, 2022

Page: [1185 - 1193] Pages: 9

DOI: 10.2174/1570180819666220922104034

Price: $65

Abstract

Background: Hydatidosis is one of the most common zoonotic diseases affecting general health due to the lack of effective treatment strategies. Hydatid cysts are commonly treated with benzimidazole (BZ) derivatives. However, their management is fraught with complications.

Objective: This systematic review discusses recent efforts toward developing benzimidazole-based antihydatid nanodrugs.

Methods: Data were retrieved using PRISMA guidelines from several databases, such as Scopus, Science Direct, PubMed, Web of Science, Ovid, Google Scholar, and Cochrane. Relevant articles published in English and Persian were retrieved in December 2021. Keywords related to the search process (combined or singular) included echinococcosis, hydatidosis, hydatid cysts, cystic echinococcosis, protoscolicidal effect, albendazole (ALB), mebendazole (MBZ), solid lipid nanoparticles (SLNs), in vitro and in vivo.

Results: Twenty-three research articles were eligible for further analysis after considering the inclusion/ exclusion criteria. This study indicates that ALB is the most prevalent synthetic drug incorporated into nanoparticles (n = 68.4%). Additionally, the study examined nanoparticles containing ALB sulfoxide (n = 31.5%). A total of three studies (n = 25%) were conducted with SLNs and two (n = 16.6%) with lipid nanocarriers (NLCs). BALB/c mice (58.3%) were used most frequently in vivo studies. Moreover, 50% of the laboratory animals were treated orally, and 33% were treated intraperitoneally.

Conclusion: As the main treatment option for hydatid, ALB has been studied more thoroughly than other drugs when developing nano-based formulations. Nanomaterials like metal nanoparticles, nanopolymers, SLNs, and nanocrystals are being investigated for antiparasitic drug development to enhance therapeutic effectiveness and reduce side effects. The findings of this study lead to the hypothesis that nanoformulation of antiparasitic drugs may open up new opportunities for developing and formulating effective antihypertensive drugs.

Keywords: Hydatid cysts, Drug delivery, Benzimidazoles, Nano-formulations, Echinococcus granulosus, Antiparasitic Nanodrugs

Graphical Abstract

[1]
Pal, M.; Zenebe, N.; Woldemariam, T.; Berhanu, G. Prevalence of cystic echinococcosis in various food animals slaughtered at selected abattoirs in Ethiopia. Vet. Res., 2020, 8(03), 118-123.
[2]
Christodoulidis, G.; Samara, A.A.; Diamantis, A.; Floros, T.; Sgantzou, I.K.; Karakantas, K.S.; Zotos, P.A.; Koutras, A.; Janho, M.B.; Tepetes, K. Reaching the challenging diagnosis of complicated liver hydatid disease: A Single institution’s experience from an endemic area. Medicina, 2021, 57(11), 1210.
[http://dx.doi.org/10.3390/medicina57111210] [PMID: 34833428]
[3]
Jenkins, D.J.; Williams, T.; Raidal, S.; Gauci, C.; Lightowlers, M.W. The first report of hydatid disease (Echinococcus granulosus) in an Australian water buffalo (Bubalus bubalis). Int. J. Parasitol. Parasites Wildl., 2019, 8, 256-259.
[http://dx.doi.org/10.1016/j.ijppaw.2019.03.011] [PMID: 30976509]
[4]
Mishra, A.; Patel, K. Hydatid disease in children: a single centre study with analysis of treatment protocol. Int. Surg. J., 2020, 7(7), 2141-2146.
[http://dx.doi.org/10.18203/2349-2902.isj20202601]
[5]
Parray, F. Hydatid Disease. J. Surg. Emerg. Med., 2017, 1e107.
[6]
Ismail, E.I.F.; Saad, M.B.E.A.; Elsadig, A.A. Effect of albendazole and mebendazole on hydatid cyst of mice. Open J. Epidemiol., 2017, 7(4), 307-316.
[http://dx.doi.org/10.4236/ojepi.2017.74025]
[7]
Dehkordi, A.B.; Sanei, B.; Yousefi, M.; Sharafi, S.M.; Safarnezhad, F.; Jafari, R.; Darani, H.Y. Albendazole and treatment of hydatid cyst: review of the literature. Infect. Disord. Drug Targets, 2019, 19(2), 101-104.
[PMID: 29956639]
[8]
Siles, L.M.; Casulli, A.; Cirilli, R.; Carmena, D. Progress in the pharmacological treatment of human cystic and alveolar echinococcosis: Compounds and therapeutic targets. PLoS Negl. Trop. Dis., 2018, 12(4), e0006422.
[http://dx.doi.org/10.1371/journal.pntd.0006422] [PMID: 29677189]
[9]
Ocak, S.; Poyanlı, A.; Güllüoğu, M.; İbiş, C.; Tekant, Y.; Özden, İ. Dramatic response to albendazole in transplantation candidates with unresectable hepatic alveolar hydatid disease. Clin. Case Rep., 2021, 9(8), e04666.
[http://dx.doi.org/10.1002/ccr3.4666] [PMID: 34457290]
[10]
Asenov, Y.; Akin, M.; Ibiş, C.; Tekant, Y.; Özden, I. Observed or predicted albendazole hepatotoxicity as an indication for a resection procedure in hepatic hydatid disease-a short series of cases. Chirurgia (Bucur.), 2019, 114(4), 524.
[http://dx.doi.org/10.21614/chirurgia.114.4.524] [PMID: 31511139]
[11]
Gomez-Puerta, L.A.; Carrasco, J.; Vargas-Calla, A.M.; Lopez-Urbina, M.T.; Gonzalez, A.E. Alopecia a potential adverse side effect of albendazole use in alpacas. Vet. Parasitol. Reg. Stud. Rep., 2019, 17, 100297.
[http://dx.doi.org/10.1016/j.vprsr.2019.100297] [PMID: 31303236]
[12]
Lötsch, F.; Naderer, J.; Skuhala, T.; Groger, M.; Auer, H.; Kaczirek, K.; Waneck, F.; Ramharter, M. Intra-cystic concentrations of albendazole-sulphoxide in human cystic echinococcosis: a systematic review and analysis of individual patient data. Parasitol. Res., 2016, 115(8), 2995-3001.
[http://dx.doi.org/10.1007/s00436-016-5054-x] [PMID: 27085708]
[13]
Sawatdee, S.; Atipairin, A.; Sae Yoon, A.; Srichana, T.; Changsan, N.; Suwandecha, T. Formulation development of albendazoleloaded self-microemulsifying chewable tablets to enhance dissolution and bioavailability. Pharmaceutics, 2019, 11(3), 134.
[http://dx.doi.org/10.3390/pharmaceutics11030134] [PMID: 30897738]
[14]
de Andrade Picanço, G.; Ferreira de Lima, N.; Cristina Gomes, T.; De Sousa, M.M.A.D.; De Costa, L.T.; Vinaud, M.C. Intraperitoneal and intracranial experimental cysticercosis present different metabolic preferences after treatment with isolated or combined albendazole and nitazoxanide. Acta Trop., 2022, 226, 106264.
[http://dx.doi.org/10.1016/j.actatropica.2021.106264] [PMID: 34919953]
[15]
Shnawa, B.H. Advances in the use of nanoparticles as anti-cystic echinococcosis agents: a review article. J. Pharm. Res. Int., 2018, 24(1), 1-14.
[http://dx.doi.org/10.9734/JPRI/2018/44642]
[16]
Kang, B.S.; Choi, J.S.; Lee, S.E.; Lee, J.K.; Kim, T.H.; Jang, W.S.; Tunsirikongkon, A.; Kim, J.K.; Park, J.S. Enhancing the in vitro anticancer activity of albendazole incorporated into chitosan-coated PLGA nanoparticles. Carbohydr. Polym., 2017, 159, 39-47.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.009] [PMID: 28038752]
[17]
Ahmadpour, E.; Godrati-Azar, Z.; Spotin, A.; Norouzi, R.; Hamishehkar, H.; Nami, S.; Heydarian, P.; Rajabi, S.; Mohammadi, M.; Perez, C.G. Nanostructured lipid carriers of ivermectin as a novel drug delivery system in hydatidosis. Parasit. Vectors, 2019, 12(1), 469.
[http://dx.doi.org/10.1186/s13071-019-3719-x] [PMID: 31601244]
[18]
Torabi, N.; Dobakhti, F.; Faghihzadeh, S.; Haniloo, A. In vitro and in vivo effects of chitosan-praziquantel and chitosan-albendazole nanoparticles on Echinococcus granulosus Metacestodes. Parasitol. Res., 2018, 117(7), 2015-2023.
[http://dx.doi.org/10.1007/s00436-018-5849-z] [PMID: 29616349]
[19]
Farhadi, M.; Haniloo, A.; Rostamizadeh, K.; Ahmadi, N. In vitro evaluation of albendazole-loaded nanostructured lipid carriers on Echinococcus granulosus microcysts and their prophylactic efficacy on experimental secondary hydatidosis. Parasitol. Res., 2021, 120(12), 4049-4060.
[http://dx.doi.org/10.1007/s00436-021-07343-0] [PMID: 34669034]
[20]
Aminpour, S.; Rafiei, A.; Jelowdar, A.; Kouchak, M. Evaluation of the protoscolicidal effects of albendazole and albendazole loaded solid lipid nanoparticles. Iran. J. Parasitol., 2019, 14(1), 127-135.
[http://dx.doi.org/10.18502/ijpa.v14i1.726] [PMID: 31123477]
[21]
Rafiei, A.; Soltani, S.; Ramezani, Z.; Abbaspour, M.R.; Jelowdar, A.; Kahvaz, M.S. Ultrastructural changes on fertile and infertile hydatid cysts induced by conventional and solid lipid nanoparticles of albendazole and albendazole sulfoxide. Comp. Clin. Pathol., 2019, 28(4), 1045-1053.
[http://dx.doi.org/10.1007/s00580-019-02925-y]
[22]
Soltani, S.; Rafiei, A.; Ramezani, Z.; Abbaspour, M.R.; Jelowdar, A.; Sagha Kahvaz, M. Evaluation of the hydatid cyst membrane permeability of albendazole and albendazole sulfoxide-loaded solid lipid nanoparticles. Jundishapur J. Nat. Pharm. Prod., 2016, 12(2), e34723.
[http://dx.doi.org/10.5812/jjnpp.34723]
[23]
Pensel, P.E.; Ullio Gamboa, G.; Fabbri, J.; Ceballos, L.; Sanchez Bruni, S.; Alvarez, L.I.; Allemandi, D.; Benoit, J.P.; Palma, S.D.; Elissondo, M.C. Cystic echinococcosis therapy: Albendazoleloaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice. Acta Trop., 2015, 152, 185-194.
[http://dx.doi.org/10.1016/j.actatropica.2015.09.016] [PMID: 26409727]
[24]
Lv, H.; Jiang, Y.; Liao, M.; Sun, H.; Zhang, S.; Peng, X. In vitro and in vivo treatments of Echinococcus granulosus with Huaier aqueous extract and albendazole liposome. Parasitol. Res., 2013, 112(1), 193-198.
[http://dx.doi.org/10.1007/s00436-012-3125-1] [PMID: 23001550]
[25]
Fateh, R.; Norouzi, R.; Mirzaei, E.; Nissapatron, V.; Nawaz, M.; Khalifeh-Gholi, M.; Hamta, A.; Adnani Sadati, S.J.; Siyadatpanah, A.; Fattahi Bafghi, A. In vitro evaluation of albendazole nanocrystals against Echinococcus granulosus protoscolices. Ann. Parasitol., 2021, 67(2), 203-212.
[PMID: 34592087]
[26]
De, S.; Pan, D.; Bera, A.K.; Sreevatsava, V.; Bandyopadhyay, S.; Chaudhuri, D.; Kumar, S.; Rana, T.; Das, S.; Das, S.K.; Suryanaryana, V.V.; Norjit Singh, M.; Bhattacharya, D. In vitro assessment of praziquantel and a novel nanomaterial against protoscoleces of Echinococcus granulosus. J. Helminthol., 2012, 86(1), 26-29.
[http://dx.doi.org/10.1017/S0022149X10000908] [PMID: 21281527]
[27]
Naseri, M.; Akbarzadeh, A.; Spotin, A.; Akbari, N.A.R.; Mahami-Oskouei, M.; Ahmadpour, E. Scolicidal and apoptotic activities of albendazole sulfoxide and albendazole sulfoxide-loaded PLGAPEG as a novel nanopolymeric particle against Echinococcus granulosus protoscoleces. Parasitol. Res., 2016, 115(12), 4595-4603.
[http://dx.doi.org/10.1007/s00436-016-5250-8] [PMID: 27623699]
[28]
Farhadi, M.; Haniloo, A.; Rostamizadeh, K.; Faghihzadeh, S. Efficiency of flubendazole-loaded mPEG-PCL nanoparticles: A promising formulation against the protoscoleces and cysts of Echinococcus granulosus. Acta Trop., 2018, 187, 190-200.
[http://dx.doi.org/10.1016/j.actatropica.2018.08.010] [PMID: 30098942]
[29]
Truongcong, T.; Faivre, V.; Nguyen, T.; Heras, H.; Pirot, F.; Walchshofer, N.; Sarciron, M.; Falson, F. Study on the hydatid cyst membrane: Permeation of model molecules and interactions with drug-loaded nanoparticles. Int. J. Pharm., 2008, 353(1-2), 223-232.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.040] [PMID: 18201847]
[30]
Ezzatkhah, F.; Khalaf, A.K.; Mahmoudvand, H. Copper nanoparticles: Biosynthesis, characterization, and protoscolicidal effects alone and combined with albendazole against hydatid cyst protoscoleces. Biomed. Pharmacother., 2021, 136, 111257.
[http://dx.doi.org/10.1016/j.biopha.2021.111257] [PMID: 33450495]
[31]
Darvishi, M.M.; Moazeni, M.; Alizadeh, M.; Abedi, M.; Tamaddon, A.M. Evaluation of the efficacy of Albendazole Sulfoxide (ABZ-SO)–loaded chitosan-PLGA nanoparticles in the treatment of cystic echinococcosis in laboratory mice. Parasitol. Res., 2020, 119(12), 4233-4241.
[http://dx.doi.org/10.1007/s00436-020-06901-2] [PMID: 32996050]
[32]
Abulaihaiti, M.; Wu, X.W.; Qiao, L.; Lv, H.L.; Zhang, H.W.; Aduwayi, N.; Wang, Y.J.; Wang, X.C.; Peng, X.Y. Efficacy of albendazole-chitosan microsphere-based treatment for alveolar echinococcosis in mice. PLoS Negl. Trop. Dis., 2015, 9(9), e0003950.
[http://dx.doi.org/10.1371/journal.pntd.0003950] [PMID: 26352932]
[33]
Jari, S.D.; Yousif, J.J. Therapeutic effects of silver nanoparticles loaded with albendazole, mebendazole drugs in male albino mice infected with hydatid cysts. Int. Res. J. Adv. Sci., 2020, 1(1), 13-18.
[34]
Nassef, N.E.; Saad, A.G.E.; Harba, N.M.; Beshay, E.V.N.; Gouda, M.A.; Shendi, S.S.; Mohamed, A.S.E.D. Evaluation of the therapeutic efficacy of albendazole-loaded silver nanoparticles against Echinococcus granulosus infection in experimental mice. J. Parasit. Dis., 2019, 43(4), 658-671.
[http://dx.doi.org/10.1007/s12639-019-01145-z] [PMID: 31749538]
[35]
Dvorožňáková, E.; Hrčková, G.; Borošková, Z.; Velebný, S.; Dubinský, P. Effect of treatment with free and liposomized albendazole on selected immunological parameters and cyst growth in mice infected with Echinococcus multilocularis. Parasitol. Int., 2004, 53(4), 315-325.
[http://dx.doi.org/10.1016/j.parint.2004.05.001] [PMID: 15464441]
[36]
Ullio, G.G.V.; Pensel, P.E.; Elissondo, M.C.; Sanchez, B.S.F.; Benoit, J.P.; Palma, S.D.; Allemandi, D.A. Albendazole-lipid nanocapsules: Optimization, characterization and chemoprophylactic efficacy in mice infected with Echinococcus granulosus. Exp. Parasitol., 2019, 198, 79-86.
[http://dx.doi.org/10.1016/j.exppara.2019.02.002] [PMID: 30769018]
[37]
Jelowdar, A.; Rafiei, A.; Abbaspour, M.R.; Rashidi, I.; Rahdar, M. Efficacy of combined albendazol and praziquntel and their loaded solid lipid nanoparticles components in chemoprophylaxis of experimental hydatidosis. Asian Pac. J. Trop. Biomed., 2017, 7(6), 549-554.
[http://dx.doi.org/10.1016/j.apjtb.2017.05.011]
[38]
Ahmadnia, S.; Moazeni, M.; Mohammadi, S.S.; Oryan, A. In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst. Exp. Parasitol., 2013, 135(2), 314-319.
[http://dx.doi.org/10.1016/j.exppara.2013.07.017] [PMID: 23912040]
[39]
Pensel, P.; Paredes, A.; Albani, C.M.; Allemandi, D.; Sanchez Bruni, S.; Palma, S.D.; Elissondo, M.C. Albendazole nanocrystals in experimental alveolar echinococcosis: Enhanced chemoprophylactic and clinical efficacy in infected mice. Vet. Parasitol., 2018, 251, 78-84.
[http://dx.doi.org/10.1016/j.vetpar.2017.12.022] [PMID: 29426481]
[40]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[41]
Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[42]
Adeyemi, O.S.; Molefe, N.I.; Awakan, O.J.; Nwonuma, C.O.; Alejolowo, O.O.; Olaolu, T.; Maimako, R.F.; Suganuma, K.; Han, Y.; Kato, K. Metal nanoparticles restrict the growth of protozoan parasites. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup3), S86-S94.
[http://dx.doi.org/10.1080/21691401.2018.1489267] [PMID: 30033773]
[43]
Volpedo, G.; Costa, L.; Ryan, N.; Halsey, G.; Satoskar, A.; Oghumu, S. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J. Venom. Anim. Toxins Incl. Trop. Dis., 2019, 25, e144118.
[http://dx.doi.org/10.1590/1678-9199-jvatitd-1441-18] [PMID: 31130996]
[44]
Sánchez, A.; Mejía, S.P.; Orozco, J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules, 2020, 25(16), 3760.
[http://dx.doi.org/10.3390/molecules25163760] [PMID: 32824757]
[45]
Abidi, H.; Ghaedi, M.; Rafiei, A.; Jelowdar, A.; Salimi, A.; Asfaram, A.; Ostovan, A. Magnetic solid lipid nanoparticles coloaded with albendazole as an anti-parasitic drug: Sonochemical preparation, characterization, and in vitro drug release. J. Mol. Liq., 2018, 268, 11-18.
[http://dx.doi.org/10.1016/j.molliq.2018.06.116]
[46]
Andrade, L.N.; Marques, C.; Barbosa, T.; Santos, R.; Chaud, M.V.; Da Silva, C.F.; Corrêa, C.B.; Amaral, R.G.; de Souza Nunes, R.; Gonsalves, J.K.M.C.; Allegretti, S.; Souto, E.B.; Severino, P. Praziquantel-loaded solid lipid nanoparticles: Production, physicochemical characterization, release profile, cytotoxicity and in vitro activity against Schistosoma mansoni. J. Drug Deliv. Sci. Technol., 2020, 58, 101784.
[http://dx.doi.org/10.1016/j.jddst.2020.101784]
[47]
Daneshmand, S.; Golmohammadzadeh, S.; Jaafari, M.R.; Movaffagh, J.; Rezaee, M.; Sahebkar, A.; Malaekeh, N.B. Encapsulation challenges, the substantial issue in solid lipid nanoparticles characterization. J. Cell. Biochem., 2018, 119(6), 4251-4264.
[http://dx.doi.org/10.1002/jcb.26617] [PMID: 29243841]
[48]
Patel, D.; Patel, B.; Thakkar, H. Lipid based nanocarriers: Promising drug delivery system for topical application. Eur. J. Lipid Sci. Technol., 2021, 123(5), 2000264.
[http://dx.doi.org/10.1002/ejlt.202000264]
[49]
Jain, V.; Kumar, H.; Chand, P.; Jain, S. Lipid‐based nanocarriers as drug delivery system and its applications. Pharmaceutics, 2021, 13(12), 2041.
[http://dx.doi.org/10.1002/9781119711698.ch1]
[50]
Sharun, K.; Shyamkumar, T.S.; Aneesha, V.A.; Dhama, K.; Pawde, A.M.; Pal, A. Current therapeutic applications and pharmacokinetic modulations of ivermectin. Vet. World, 2019, 12(8), 1204-1211.
[http://dx.doi.org/10.14202/vetworld.2019.1204-1211] [PMID: 31641298]
[51]
Gamboa, G.V.U.; Palma, S.D.; Lifschitz, A.; Ballent, M.; Lanusse, C.; Passirani, C.; Benoit, J.P.; Allemandi, D.A. Ivermectin-loaded lipid nanocapsules: toward the development of a new antiparasitic delivery system for veterinary applications. Parasitol. Res., 2016, 115(5), 1945-1953.
[http://dx.doi.org/10.1007/s00436-016-4937-1] [PMID: 26852126]
[52]
Sen, P.; Demirdal, T.; Nemli, S.A. Evaluation of clinical, diagnostic and treatment aspects in hydatid disease: analysis of an 8-year experience. Afr. Health Sci., 2019, 19(3), 2431-2438.
[http://dx.doi.org/10.4314/ahs.v19i3.17] [PMID: 32127814]
[53]
Ullio-Gamboa, G.; Palma, S.; Benoit, J.P.; Allemandi, D.; Picollo, M.I.; Toloza, A.C. Ivermectin lipid-based nanocarriers as novel formulations against head lice. Parasitol. Res., 2017, 116(8), 2111-2117.
[http://dx.doi.org/10.1007/s00436-017-5510-2] [PMID: 28523490]
[54]
Dorati, R.; Conti, B.; Colzani, B.; Dondi, D.; Lazzaroni, S.; Modena, T.; Genta, I. Ivermectin controlled release implants based on poly-D, l -lactide and poly-ε-caprolactone. J. Drug Deliv. Sci. Technol., 2018, 46, 101-110.
[http://dx.doi.org/10.1016/j.jddst.2018.04.014]
[55]
Bassissi, F.; Lespine, A.; Alvinerie, M. Assessment of a liposomal formulation of ivermectin in rabbit after a single subcutaneous administration. Parasitol. Res., 2006, 98(3), 244-249.
[http://dx.doi.org/10.1007/s00436-005-0073-z] [PMID: 16341879]
[56]
Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem., 2020, 8, 341.
[http://dx.doi.org/10.3389/fchem.2020.00341] [PMID: 32509720]
[57]
Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers, 2021, 13(5), 724.
[http://dx.doi.org/10.3390/polym13050724] [PMID: 33673451]
[58]
Durak, S.; Arasoglu, T.; Ates, S.C.; Derman, S. Enhanced antibacterial and antiparasitic activity of multifunctional polymeric nanoparticles. Nanotechnology, 2020, 31(17), 175705.
[http://dx.doi.org/10.1088/1361-6528/ab6ab9] [PMID: 31931488]

© 2025 Bentham Science Publishers | Privacy Policy