Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Chia Seeds Oil Suppresses the Resistance of Hepatocellular Carcinoma Cells to Liposomal-doxorubicin and Upregulates the Tumor Suppressor miRNAs

Author(s): Shaimaa A. Tawfik, Els T. Awad*, Hoda O. Abu Bakr, Ismail M. Ahmed, Esmat Ashour and Amira M. Gamal-Eldeen

Volume 24, Issue 4, 2023

Published on: 15 December, 2022

Page: [570 - 578] Pages: 9

DOI: 10.2174/1389201023666220921125258

Price: $65

Abstract

Background: Chia seed is an oil seed with multiple biological activities. Doxorubicin is effective chemotherapy for liver cancer. Resistance and adverse effects are doxorubicin limitations.

Objective: This study aimed to investigate the effect of chia seeds oil (CSO) on the resistance of HepG2 cells to liposomal-doxorubicin (DOX).

Methods: The objective were investigated through measuring cytotoxicity, doxorubicin-metabolizing enzyme Cytochrome P450 3A4 (CYP-3A4), multidrug resistance-associated protein (MRP1), and the expression of multiple tumor suppressor microRNAs.

Results: The findings indicated that low concentration of CSO increased HepG2 cells' sensitivity to DOX, as concluded from its higher cytotoxicity. DOX-induced mRNAs of CYP-3A4 and MRP1 and their protein levels. CSO inhibited both in DOX-treated cells. CSO-induced tumor suppressor miRNAs. Doxorubicin inhibited miR-122 and let-7/b/e expression, while it led to overexpression of let- 7a. CSO/DOX upregulated let-7/b/e, miR-34a, and miR-122 (which inhibits MRP1) and downregulated let-7a, which may lead to increased apoptosis.

Conclusion: CSO effectively re-sensitized HepG2 cells to liposomal-doxorubicin via inhibiting MRP1 and CYP-3A4, which may increase in vivo doxorubicin bioavailability and decrease its therapeutic dose to diminish its adverse effects.

Keywords: Chia seed oil, resistance to liposomal-doxorubicin, HCC, tumor suppressing miRNAs, CYP-3A4, MRP1

Graphical Abstract

[1]
Marcinek, K.; Krejpcio, Z. Chia seeds (Salvia hispanica): Health promoting properties and therapeutic applications – a review. Rocz. Panstw. Zakl. Hig., 2017, 68(2), 123-129.
[PMID: 28646829]
[2]
Kibui, A.N.; Owaga, E.; Mburu, M. Proximate composition and nutritional characterization of chia enriched yoghurt. Afr. J. Food Agric. Nutr. Dev., 2018, 18(1), 13239-13253.
[http://dx.doi.org/10.18697/ajfand.81.17635]
[3]
Katunzi-Kilewela, A.; Kaale, L.D.; Kibazohi, O.; Rweyemamu, L.M.P. Nutritional, health benefits and usage of chia seeds (Salvia hispanica): A review. Afr. J. Food Sci., 2021, 5, 48-59.
[http://dx.doi.org/10.1007/s13197-015-1967-0]
[4]
Silveira Coelho, M.; de las Mercedes Salas-Mellado, M. Chemical characterization of chia (Salvia hispanica L.) for use in food products. J. Food Nutr. Res., 2014, 2(5), 263-269.
[http://dx.doi.org/10.12691/jfnr-2-5-9]
[5]
Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. J. Food Sci. Technol., 2016, 53(4), 1750-1758.
[http://dx.doi.org/10.1007/s13197-015-1967-0] [PMID: 27413203]
[6]
Oliveira-Alves, S.C.; Vendramini-Costa, D.B.; Betim Cazarin, C.B.; Maróstica Júnior, M.R.; Borges Ferreira, J.P.; Silva, A.B.; Prado, M.A.; Bronze, M.R. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem., 2017, 232(33), 295-305.
[http://dx.doi.org/10.1016/j.foodchem.2017.04.002] [PMID: 28490078]
[7]
Di Marco, A.E.; Ixtaina, V.Y.; Tomás, M.C. Inclusion complexes of high amylose corn starch with essential fatty acids from chia seed oil as potential delivery systems in food. Food Hydrocoll., 2020, 108106030.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106030]
[8]
Enes, B.N.; Moreira, L.P.D.; Toledo, R.C.L.; Moraes, É.A.; Moreira, M.E.C.; Hermsdorff, H.H.M.; Noratto, G.; Mertens-Talcott, S.U.; Talcott, S.; Martino, H.S.D. Effect of different fractions of chia (Salvia hispanica L.) on glucose metabolism, in vivo and in vitro. J. Funct. Foods, 2020, 71104026.
[http://dx.doi.org/10.1016/j.jff.2020.104026]
[9]
Ghafoor, K.; Ahmed, I.A.M.; Özcan, M.M.; Al-Juhaimi, F.Y.; Babiker, E.E.; Azmi, I.U. An evaluation of bioactive compounds, fatty acid composition and oil quality of chia (Salvia hispanica L.) seed roasted at different temperatures. Food Chem., 2020, 333, 127531.
[http://dx.doi.org/10.1016/j.foodchem.2020.127531] [PMID: 32679420]
[10]
Muñoz-González, I.; Merino-Álvarez, E.; Salvador, M.; Pintado, T.; Ruiz-Capillas, C.; Jiménez-Colmenero, F.; Herrero, A.M. Chia (Salvia hispanica L.) a promising alternative for conventional and gelled emulsions: technological and lipid structural characteristics. Gels, 2019, 5(2), 19.
[http://dx.doi.org/10.3390/gels5020019] [PMID: 30974809]
[11]
Attalla, N.R.; El-Hussieny, E.A. Characteristics of nutraceutical yoghurt mousse fortified with chia seeds. Int J Environ Agri Biotechnol, 2017, 2, 238873.
[http://dx.doi.org/10.22161/ijeab/2.4.61]
[12]
Tam, K. The roles of doxorubicin in hepatocellular carcinoma. ADMET DMPK, 2013, 1(3), 29-44.
[http://dx.doi.org/10.5599/admet.1.3.7]
[13]
Renu, K.; Valsala Gopalakrishnan, A. Deciphering the molecular mechanism during doxorubicin-mediated oxidative stress, apoptosis through Nrf2 and PGC-1α in a rat testicular milieu. Reprod. Biol., 2019, 19(1), 22-37.
[http://dx.doi.org/10.1016/j.repbio.2019.02.004] [PMID: 30827825]
[14]
Renu, K. K B, S.; Parthiban, S.; S, S.; George, A.; P B, T.P.; Suman, S.; v G, A.; Arunachalam, S. Elevated lipolysis in adipose tissue by doxorubicin via PPARα activation associated with hepatic steatosis and insulin resistance. Eur. J. Pharmacol., 2019, 843, 162-176.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.018] [PMID: 30452912]
[15]
Kaviyarasi, R.; Abilash, V.G.; Tirupathi, P.P.B.; Sankarganesh, A. Molecular mechanism of doxorubicin-induced cardiomyopathy-An update. Eur. J. Pharmacol., 2018, 818, 241-253.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.043] [PMID: 29074412]
[16]
Henninger, C.; Huelsenbeck, J.; Huelsenbeck, S.; Grösch, S.; Schad, A.; Lackner, K.J.; Kaina, B.; Fritz, G. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity. Toxicol. Appl. Pharmacol., 2012, 261(1), 66-73.
[http://dx.doi.org/10.1016/j.taap.2012.03.012] [PMID: 22712078]
[17]
Prasanna, P.L.; Renu, K.; Valsala, G.A. New molecular and biochemical insights of doxorubicin-induced hepatotoxicity. Life Sci., 2020, 250, 117599.
[http://dx.doi.org/10.1016/j.lfs.2020.117599] [PMID: 32234491]
[18]
Hansen, M.B.; Nielsen, S.E. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods, 1989, 119, 203-210.
[http://dx.doi.org/10.1016/0022-1759(89)90397-9]
[19]
Chou, T.C.; Talalay, P. Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv. Enzyme Regul., 1984, 22, 27-55.
[http://dx.doi.org/10.1016/0065-2571(84)90007-4] [PMID: 6382953]
[20]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25, 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262]
[21]
Cox, J.; Weinman, S. Mechanisms of doxorubicin resistance in hepatocellular carcinoma. Hepat. Oncol., 2016, 3(1), 57-59.
[http://dx.doi.org/10.2217/hep.15.41] [PMID: 26998221]
[22]
Speth, P.A.J.; van Hoesel, Q.G.C.M.; Haanen, C. Clinical pharmacokinetics of doxorubicin. Clin. Pharmacokinet., 1988, 15(1), 15-31.
[http://dx.doi.org/10.2165/00003088-198815010-00002] [PMID: 3042244]
[23]
Lee, H.J.; Lee, M.G. Effects of dexamethasone on the pharmacokinetics of adriamycin after intravenous administration to rats. Res. Commun. Mol. Pathol. Pharmacol., 1999, 105(1-2), 87-96.
[PMID: 10850372]
[24]
Choi, J.S.; Piao, Y.J.; Kang, K.W. Effects of quercetin on the bioavailability of doxorubicin in rats: Role of CYP3A4 and P-gp inhibition by quercetin. Arch. Pharm. Res., 2011, 34(4), 607-613.
[http://dx.doi.org/10.1007/s12272-011-0411-x] [PMID: 21544726]
[25]
Ng, I.O.L.; Liu, C.L.; Fan, S.T.; Ng, M. Expression of P-glycoprotein in hepatocellular carcinoma. A determinant of chemotherapy response. Am. J. Clin. Pathol., 2000, 113(3), 355-363.
[http://dx.doi.org/10.1309/AC1M-4TY4-U0TN-EN7T] [PMID: 10705815]
[26]
Nies, A.T.; König, J.; Pfannschmidt, M.; Klar, E.; Hofmann, W.J.; Keppler, D. Expression of the multidrug resistance proteins MRP2 and MRP3 in human hepatocellular carcinoma. Int. J. Cancer, 2001, 94(4), 492-499.
[http://dx.doi.org/10.1002/ijc.1498] [PMID: 11745434]
[27]
Solazzo, M.; Fantappiè, O.; D’Amico, M.; Sassoli, C.; Tani, A.; Cipriani, G.; Bogani, C.; Formigli, L.; Mazzanti, R. Mitochondrial expression and functional activity of breast cancer resistance protein in different multiple drug-resistant cell lines. Cancer Res., 2009, 69(18), 7235-7242.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4315] [PMID: 19706772]
[28]
Ueda, K.; Cardarelli, C.; Gottesman, M.M.; Pastan, I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci., 1987, 84(9), 3004-3008.
[http://dx.doi.org/10.1073/pnas.84.9.3004] [PMID: 3472246]
[29]
Cheung, S.T.; Cheung, P.F.Y.; Cheng, C.K.C.; Wong, N.C.L.; Fan, S.T. Granulin-epithelin precursor and ATP-dependent binding cassette (ABC)B5 regulate liver cancer cell chemoresistance. Gastroenterology, 2011, 140(1), 344-355.e2.
[http://dx.doi.org/10.1053/j.gastro.2010.07.049] [PMID: 20682318]
[30]
Shiraga, K.; Sakaguchi, K.; Senoh, T.; Ohta, T.; Ogawa, S.; Sawayama, T.; Mouri, H.; Fujiwara, A.; Tsuji, T. Modulation of doxorubicin sensitivity by cyclosporine A in hepatocellular carcinoma cells and their doxorubicin-resistant sublines. J. Gastroenterol. Hepatol., 2001, 16(4), 460-466.
[http://dx.doi.org/10.1046/j.1440-1746.2001.02457.x] [PMID: 11354286]
[31]
Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116, 281-291.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5]
[32]
Sun, X.; Jiao, X.; Pestell, T.G.; Fan, C.; Qin, S.; Mirabelli, E.; Ren, H.; Pestell, R.G. MicroRNAs and cancer stem cells: The sword and the shield. Oncogene, 2014, 33(42), 4967-4977.
[http://dx.doi.org/10.1038/onc.2013.492] [PMID: 24240682]
[33]
Tsang, W.P.; Kwok, T.T. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis, 2008, 13(10), 1215-1222.
[http://dx.doi.org/10.1007/s10495-008-0256-z] [PMID: 18758960]
[34]
Xu, Y.; Xia, F.; Ma, L.; Shan, J.; Shen, J.; Yang, Z.; Liu, J.; Cui, Y.; Bian, X.; Bie, P.; Qian, C. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett., 2011, 310(2), 160-169.
[http://dx.doi.org/10.1016/j.canlet.2011.06.027] [PMID: 21802841]
[35]
Wu, Q.; Liu, H.O.; Liu, Y.D.; Liu, W.S.; Pan, D.; Zhang, W.J.; Yang, L.; Fu, Q.; Xu, J.J.; Gu, J.X. Decreased expression of hepatocyte nuclear factor 4α (Hnf4α)/microRNA-122 (miR-122) axis in hepatitis B virus-associated hepatocellular carcinoma enhances potential oncogenic GALNT10 protein activity. J. Biol. Chem., 2015, 290(2), 1170-1185.
[http://dx.doi.org/10.1074/jbc.M114.601203] [PMID: 25422324]
[36]
Ahmed, A.Z.; Mumbrekar, K.D.; Satyam, S.M.; Shetty, P.; D’Souza, M.R.; Singh, V.K. Chia seed oil ameliorates doxorubicin-induced cardiotoxicity in female wistar rats: An electrocardiographic, biochemical and histopathological approach. Cardiovasc. Toxicol., 2021, 21(7), 533-542.
[http://dx.doi.org/10.1007/s12012-021-09644-3] [PMID: 33740233]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy