Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Transfer Hydrogenation Reactions by Using Simple Biomass Alcohols as Hydrogen Sources

Author(s): Xuan Qie, Ruhima Khan* and Baomin Fan*

Volume 26, Issue 14, 2022

Published on: 17 October, 2022

Page: [1350 - 1358] Pages: 9

DOI: 10.2174/1385272826666220920124246

Price: $65

Abstract

The reduction of different unsaturated compounds by transfer hydrogenation (TH) has emerged as a more efficient methodology than the classical method of using the molecular hydrogen in industry and laboratory. Transfer hydrogenation is more advantageous in terms of safety and convenience. Alcohols, formic acid, esters, H2O, etc. are the common molecules that are used as a hydrogen donor in the transfer hydrogenation reaction. Primary alcohols, namely methanol and ethanol were less explored as a hydrogen source in the TH reaction, probably due to the formation of aldehyde after dehydrogenation of these alcohols, which are more reactive and may undergo side reactions. However, methanol and ethanol are cheap, easily available, and easily handled compounds. They can be easily obtained from biomass, coal, etc. Because of these advantages, chemists became more interested in the application of methanol and ethanol as hydrogen sources in the transfer hydrogenation reaction. In this review, we present an overview of the work reported by different groups on the transfer hydrogenation reactions with methanol and ethanol as hydrogen sources.

Keywords: Transfer hydrogenation; Reduction; Biomass; Methanol; Ethanol; Hydrogen donor

Graphical Abstract

[1]
Cerveny, L. Ed.; Catalytic Hydrogenation; Elsevier: Amsterdam, 1986.
[2]
de Vries, J.G.; Elsevier, C.J. Eds.; The Handbook of Homogeneous Hydrogenation; Wiley-VCH: Weinheim, 2007.
[3]
Andersson, P.G.; Munslow, I.J. Eds.; Modern Reduction Methods; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2008.
[http://dx.doi.org/10.1002/9783527622115]
[4]
Brieger, G.; Nestrick, T.J. Catalytic transfer hydrogenation. Chem. Rev., 1974, 74(5), 567-580.
[http://dx.doi.org/10.1021/cr60291a003]
[5]
Birch, A.J.; Williamson, D.H. Homogeneous hydrogenation catalysts in organic synthesis. Org. React. (N.Y.), 1976, 24, 1-186.
[6]
Matteoli, U.; Frediani, P.; Bianchi, M.; Botteghi, C.; Gladiali, S. Asymmetric homogeneous catalysis by ruthenium complexes. J. Mol. Catal., 1981, 12(3), 265-319.
[http://dx.doi.org/10.1016/0304-5102(81)85035-3]
[7]
Zassinovich, G.; Mestroni, G.; Gladiali, S. Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts. Chem. Rev., 1992, 92(5), 1051-1069.
[http://dx.doi.org/10.1021/cr00013a015]
[8]
de Graauw, C.F.; Peters, J.A.; van Bekkum, H.; Huskens, J. Meerwein-ponndorf-verley reductions and oppenauer oxidations: An integrated approach. Synthesis, 1994, 1994(10), 1007-1017.
[http://dx.doi.org/10.1055/s-1994-25625]
[9]
Saburi, M.; Ohnuki, M.; Ogasawara, M.; Takahashi, T.; Uchida, Y. Asymmetric transfer hydrogenation of prochiral carboxylic acids catalyzed by a five-coordinate Ru(II)-binap complex. Tetrahedron Lett., 1992, 33(39), 5783-5786.
[http://dx.doi.org/10.1016/0040-4039(92)89031-7]
[10]
Braude, E.A.; Linstead, R.P.; Mitchell, P.W.D.; Wooldrige, K.R.H. Hydrogen transfer. Part VIII. Metal-catalysed transfer-hydrogenation of miscellaneous acceptors. J. Chem. Soc., 1954, 1954, 3595-3598.
[http://dx.doi.org/10.1039/jr9540003595]
[11]
Johnstone, R.A.W.; Wilby, A.H.; Entwistle, I.D. Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem. Rev., 1985, 85(2), 129-170.
[http://dx.doi.org/10.1021/cr00066a003]
[12]
Noyori, R.; Hashiguchi, S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res., 1997, 30(2), 97-102.
[http://dx.doi.org/10.1021/ar9502341]
[13]
Wang, D.; Astruc, D. The golden age of transfer hydrogenation. Chem. Rev., 2015, 115(13), 6621-6686.
[http://dx.doi.org/10.1021/acs.chemrev.5b00203] [PMID: 26061159]
[14]
Yoshinaga, K.; Kito, T.; Ohkubo, K. Asymmetric transfer hydrogenation of prochiral α,β-unsaturated acids and their esters by achiral or chiral alcohols with ruthenium chiral diphosphine complexes. Bull. Chem. Soc. Jpn., 1983, 56(6), 1786-1790.
[http://dx.doi.org/10.1246/bcsj.56.1786]
[15]
Verley, A. Exchange of functional groups between two molecules. Exchange of alcohol and aldehyde groups. Bull. Soc. Chim. Fr., 1925, 37, 537-542.
[16]
Meerwein, H.; Schmidt, R. Ein neues Verfahren zur Reduktion von Aldehyden und Ketonen. Justus Liebigs Ann. Chem., 1925, 444(1), 221-238.
[http://dx.doi.org/10.1002/jlac.19254440112]
[17]
Dubey, A.; Khaskin, E. Catalytic ester metathesis reaction and its application to transfer hydrogenation of esters. ACS Catal., 2016, 6(6), 3998-4002.
[http://dx.doi.org/10.1021/acscatal.6b00827]
[18]
Barrios-Rivera, J.; Xu, Y.; Wills, M. Probing the effects of heterocyclic functionality in [(benzene)Ru(TsDPENR)Cl] catalysts for asymmetric transfer hydrogenation. Org. Lett., 2019, 21(18), 7223-7227.
[http://dx.doi.org/10.1021/acs.orglett.9b02339] [PMID: 31361501]
[19]
Melle, P.; Thiede, J.; Hey, D.A.; Albrecht, M. Highly efficient transfer hydrogenation catalysis with tailored pyridylidene amide pincer ruthenium complexes. Chemistry, 2020, 26(58), 13226-13234.
[http://dx.doi.org/10.1002/chem.202001145] [PMID: 32452600]
[20]
Koto, Y.; Shibahara, F.; Murai, T. 1-Substituted-imidazo[1,5- a]pyridin-3-ylidenes as Highly Efficient Ligands for Rh- and Ir-catalyzed Transfer Hydrogenation of Carbonyl Compounds. Chem. Lett., 2016, 45(11), 1327-1329.
[http://dx.doi.org/10.1246/cl.160740]
[21]
Wang, F.; Zheng, L.S.; Lang, Q.W.; Yin, C.; Wu, T.; Phansavath, P.; Chen, G.Q.; Ratovelomanana-Vidal, V.; Zhang, X. Rh(III)-Catalyzed diastereoselective transfer hy-drogenation: An efficient entry to key intermediates of HIV protease inhibitors. Chem. Commun. (Camb.), 2020, 56(21), 3119-3122.
[http://dx.doi.org/10.1039/C9CC09793G] [PMID: 32090223]
[22]
Lopes, R.; Raya-Barón, Á.; Robalo, M.P.; Vinagreiro, C.; Barroso, S.; Romão, M.J.; Fernández, I.; Pereira, M.M.; Royo, B. Donor functionalized iron(II) N‐heterocyclic carbene complexes in transfer hydrogenation reactions. Eur. J. Inorg. Chem., 2021, 2021(1), 22-29.
[http://dx.doi.org/10.1002/ejic.202000868]
[23]
Funk, T.W.; Mahoney, A.R.; Sponenburg, R.A.; Zimmerman, K.P.; Kim, D.K.; Harrison, E.E. Synthesis and catalytic activity of (3,4-diphenylcyclopentadienone)iron tricarbonyl compounds in transfer hydrogenations and dehydrogenations. Organometallics, 2018, 37(7), 1133-1140.
[http://dx.doi.org/10.1021/acs.organomet.8b00037]
[24]
Xu, C.; Zhang, L.; Dong, C.; Xu, J.; Pan, Y.; Li, Y.; Zhang, H.; Li, H.; Yu, Z.; Xu, L. Iridium-catalyzed transfer hydrogenation of 1,10-phenanthrolines using formic acid as the hydrogen source. Adv. Synth. Catal., 2016, 358(4), 567-572.
[http://dx.doi.org/10.1002/adsc.201500909]
[25]
Wang, R.; Tang, Y.; Xu, M.; Meng, C.; Li, F. Transfer hydrogenation of aldehydes and ketones with isopropanol under neutral conditions catalyzed by a metal–ligand bifunctional catalyst. [Cp*Ir(2,2′-bpyO)(H 2 O)]. J. Org. Chem., 2018, 83(4), 2274-2281.
[http://dx.doi.org/10.1021/acs.joc.7b03174] [PMID: 29332392]
[26]
Cummings, S.P.; Le, T.N.; Fernandez, G.E.; Quiambao, L.G.; Stokes, B.J. Tetrahydroxydiboron-mediated palladium-catalyzed transfer hydrogenation and deuteriation of alkenes and alkynes using water as the stoichiometric H or D atom donor. J. Am. Chem. Soc., 2016, 138(19), 6107-6110.
[http://dx.doi.org/10.1021/jacs.6b02132] [PMID: 27135185]
[27]
Zhao, C.; Zhang, Z.; Liu, Y.; Shang, N.; Wang, H.J.; Wang, C.; Gao, Y. Palladium nanoparticles anchored on sustainable chitin for phenol hydrogenation to cyclohexa-none. ACS Sustain. Chem.& Eng., 2020, 8(32), 12304-12312.
[http://dx.doi.org/10.1021/acssuschemeng.0c04751]
[28]
Chen, F.; Sahoo, B.; Kreyenschulte, C.; Lund, H.; Zeng, M.; He, L.; Junge, K.; Beller, M. Selective cobalt nanoparticles for catalytic transfer hydrogenation of N-heteroarenes. Chem. Sci. (Camb.), 2017, 8(9), 6239-6246.
[http://dx.doi.org/10.1039/C7SC02062G] [PMID: 28989657]
[29]
Jiang, B.L.; Ma, S.S.; Wang, M.L.; Liu, D.S.; Xu, B.H.; Zhang, S.J. Cobalt‐catalyzed chemoselective transfer hydrogenation of C=C and C=O bonds with alkanols. ChemCatChem, 2019, 11(6), 1701-1706.
[http://dx.doi.org/10.1002/cctc.201900010]
[30]
Xu, H.; Yang, P.; Chuanprasit, P.; Hirao, H.; Zhou, J.S. Nickel-catalyzed asymmetric transfer hydrogenation of hydrazones and other ketimines. Angew. Chem. Int. Ed., 2015, 54(17), 5112-5116.
[http://dx.doi.org/10.1002/anie.201501018] [PMID: 25737093]
[31]
Garduño, J.A.; García, J.J. Nickel-catalyzed transfer hydrogenation of benzonitriles with 2-propanol and 1,4-butanediol as the hydrogen source. ACS Omega, 2017, 2(5), 2337-2343.
[http://dx.doi.org/10.1021/acsomega.7b00545] [PMID: 31457582]
[32]
Haw, J.F.; Song, W.; Marcus, D.M.; Nicholas, J.B. The mechanism of methanol to hydrocarbon catalysis. Acc. Chem. Res., 2003, 36(5), 317-326.
[http://dx.doi.org/10.1021/ar020006o] [PMID: 12755641]
[33]
Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol steam reforming for hydrogen production. Chem. Rev., 2007, 107(10), 3992-4021.
[http://dx.doi.org/10.1021/cr050198b] [PMID: 17845061]
[34]
Thomas, C.; Suss-Fink, G. Ligand effects in the rhodium-catalyzed carbonylation of methanol. Coord. Chem. Rev., 2003, 243(1-2), 125-142.
[http://dx.doi.org/10.1016/S0010-8545(03)00051-1]
[35]
Stöcker, M. Methanol-to-hydrocarbons: Catalytic materials and their behavior. Microporous Mesoporous Mater., 1999, 29(1-2), 3-48.
[http://dx.doi.org/10.1016/S1387-1811(98)00319-9]
[36]
Liu, Z.; Sun, C.; Wang, G.; Wang, Q.; Cai, G. New progress in R&D of lower olefin synthesis. Fuel Process. Technol., 2000, 62(2-3), 161-172.
[http://dx.doi.org/10.1016/S0378-3820(99)00117-4]
[37]
Mythili, R.; Venkatachalam, P.; Subramanian, P.; Uma, D. Production characterization and efficiency of biodiesel: A review. Int. J. Energy Res., 2014, 38(10), 1233-1259.
[http://dx.doi.org/10.1002/er.3165]
[38]
Olsbye, U.; Bjørgen, M.; Svelle, S.; Lillerud, K.P.; Kolboe, S. Mechanistic insight into the methanol-to-hydrocarbons reaction. Catal. Today, 2005, 106(1-4), 108-111.
[http://dx.doi.org/10.1016/j.cattod.2005.07.135]
[39]
Shen, Y.; Zhan, Y.; Li, S.; Ning, F.; Du, Y.; Huang, Y.; He, T.; Zhou, X. Hydrogen generation from methanol at near-room temperature. Chem. Sci. (Camb.), 2017, 8(11), 7498-7504.
[http://dx.doi.org/10.1039/C7SC01778B] [PMID: 29163903]
[40]
Śmigiera, E.; Kijeński, J.; Osawaru, O.; Zgudka, A.; Migdat, A.R. Methanol as hydrogen donor in the alternative fuel synthesis. Chemik, 2013, 67(6), 502-513.
[41]
Olah, G.A.; Goeppert, A.; Prakash, S.G.K. Beyond Oil and Gas: The Methanol Economy; Wiley-VCH: Weinheim, Germany, 2006.
[42]
Olah, G.A. Towards oil independence through renewable methanol chemistry. Angew. Chem. Int. Ed., 2013, 52(1), 104-107.
[http://dx.doi.org/10.1002/anie.201204995] [PMID: 23208664]
[43]
Tsuji, J.; Ohno, K. Organic syntheses by means of noble metal compounds XXI. Decarbonylation of aldehydes using rhodium complex. Tetrahedron Lett., 1965, 6(44), 3969-3971.
[http://dx.doi.org/10.1016/S0040-4039(01)89127-9]
[44]
Chaudret, B.N.; Cole-Hamilton, D.J.; Nohr, R.S.; Wilkinson, G. The reactions of chlorohydrido- and dichloro-tris(triphenylphosphine)ruthenium(II) with alkali hydrox-ides and alkoxides. Hydridohydroxobis(triphenylphosphine)ruthenium(II) monosolvates, their reactions and related compounds. J. Chem. Soc., Dalton Trans., 1977, (16), 1546-1557.
[http://dx.doi.org/10.1039/dt9770001546]
[45]
O’Connor, J.M.; Ma, J. Metal-catalyzed decarbonylation of primary aldehydes at room temperature. J. Org. Chem., 1992, 57(19), 5075-5077.
[http://dx.doi.org/10.1021/jo00045a015]
[46]
Beck, C.M.; Rathmill, S.E.; Park, Y.J.; Chen, J.; Crabtree, R.H.; Liable-Sands, L.M.; Rheingold, A.L. Aldehyde decarbonylation catalysis under mild conditions. Organometallics, 1999, 18(25), 5311-5317.
[http://dx.doi.org/10.1021/om9905106]
[47]
Abu-Hasanayn, F.; Goldman, M.E.; Goldman, A.S. Development and mechanistic study of a new aldehyde decarbonylation catalyst. J. Am. Chem. Soc., 1992, 114(7), 2520-2524.
[http://dx.doi.org/10.1021/ja00033a028]
[48]
Nishibayashi, Y.; Singh, J.D.; Arikawa, Y.; Uemura, S.; Hidai, M. Rhodium(I)-, iridium(I)-, and ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using diferrocenyl dichalcogenides as chiral ligands. J. Organomet. Chem., 1997, 531(1-2), 13-18.
[http://dx.doi.org/10.1016/S0022-328X(96)06681-8]
[49]
Pasini, T.; Lolli, A.; Albonetti, S.; Cavani, F.; Mella, M. Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: Scope, limitations, and reaction mechanism. J. Catal., 2014, 317, 206-219.
[http://dx.doi.org/10.1016/j.jcat.2014.06.023]
[50]
Zhang, J.; Chen, J. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as hydrogen donor. ACS Sustain. Chem.& Eng., 2017, 5(7), 5982-5993.
[http://dx.doi.org/10.1021/acssuschemeng.7b00778]
[51]
Grazia, L.; Bonincontro, D.; Lolli, A.; Tabanelli, T.; Lucarelli, C.; Albonetti, S.; Cavani, F. Exploiting H-transfer as a tool for the catalytic reduction of bio-based build-ing blocks: The gas-phase production of 2-methylfurfural using a FeVO 4 catalyst. Green Chem., 2017, 19(18), 4412-4422.
[http://dx.doi.org/10.1039/C7GC01749A]
[52]
Gyngazova, M.S.; Grazia, L.; Lolli, A.; Innocenti, G.; Tabanelli, T.; Mella, M.; Albonetti, S.; Cavani, F. Mechanistic insights into the catalytic transfer hydrogenation of furfural with methanol and alkaline earth oxides. J. Catal., 2019, 372, 61-73.
[http://dx.doi.org/10.1016/j.jcat.2019.02.020]
[53]
Aboo, A.H.; Bennett, E.L.; Deeprose, M.; Robertson, C.M.; Iggo, J.A.; Xiao, J. Methanol as hydrogen source: Transfer hydrogenation of aromatic aldehydes with a rhodacycle. Chem. Commun. (Camb.), 2018, 54(83), 11805-11808.
[http://dx.doi.org/10.1039/C8CC06612D] [PMID: 30280153]
[54]
Wang, R.; Han, X.; Xu, J.; Liu, P.; Li, F. Transfer hydrogenation of ketones and imines with methanol under base-free conditions catalyzed by an anionic metal–ligand bifunctional iridium catalyst. J. Org. Chem., 2020, 85(4), 2242-2249.
[http://dx.doi.org/10.1021/acs.joc.9b02957] [PMID: 31912728]
[55]
Ghosh, R.; Jana, N.C.; Panda, S.; Bagh, B. Transfer hydrogenation of aldehydes and ketones in air with methanol and ethanol by an air-stable ruthenium–triazole com-plex. ACS Sustain. Chem.& Eng., 2021, 9(13), 4903-4914.
[http://dx.doi.org/10.1021/acssuschemeng.1c00633]
[56]
Garg, N.; Paira, S.; Sundararaju, B. Efficient transfer hydrogenation of ketones using methanol as liquid organic hydrogen carrier. ChemCatChem, 2020, 12(13), 3472-3476.
[http://dx.doi.org/10.1002/cctc.202000228]
[57]
Chen, Z.; Chen, G.; Aboo, A.H.; Iggo, J.; Xiao, J. Methanol as hydrogen source: Transfer hydrogenation of aldehydes near room temperature. Asian J. Org. Chem., 2020, 9(8), 1174-1178.
[http://dx.doi.org/10.1002/ajoc.202000241]
[58]
Douthwaite, M.; Zhang, B.; Iqbal, S.; Miedziak, P.J.; Bartley, J.K.; Willock, D.J.; Hutchings, G.J. Transfer hydrogenation of methyl levulinate with methanol to gamma valerolactone over Cu-ZrO2: A sustainable approach to liquid fuels. Catal. Commun., 2022, 164, 106430.
[http://dx.doi.org/10.1016/j.catcom.2022.106430]
[59]
Yao, S.; Zhang, T.; Tang, X.; Li, D.; Zhang, W.; Lin, D.; Li, R.; Yan, H.; Liu, Y.; Feng, X.; Chen, X.; Zhou, X.; Yang, C. Octadecanol production from methyl stearate by catalytic transfer hydrogenation over synergistic Co/HAP catalysts. Energy Fuels, 2021, 35(12), 9970-9982.
[http://dx.doi.org/10.1021/acs.energyfuels.1c00729]
[60]
Zhao, Y.; Pan, F.; Li, H.; Xu, G.Q.; Chen, W. Titania-photocatalyzed transfer hydrogenation reactions with methanol as a hydrogen source: Enhanced catalytic perfor-mance by Pd-Pt alloy at ambient temperature. ChemCatChem, 2014, 6(2), 454-458.
[http://dx.doi.org/10.1002/cctc.201300905]
[61]
Tani, K.; Iseki, A.; Yamagata, T. Efficient transfer hydrogenation of alkynes and alkenes with methanol catalysed by hydrido(methoxo)iridium(III) complexes. Chem. Commun. (Camb.), 1999, (18), 1821-1822.
[http://dx.doi.org/10.1039/a905765j]
[62]
Castellanos-Blanco, N.; Flores-Alamo, M.; García, J.J. Nickel-catalyzed alkylation and transfer hydrogenation of α,β-unsaturated enones with methanol. Organometallics, 2012, 31(2), 680-686.
[http://dx.doi.org/10.1021/om2010222]
[63]
Yang, F.; Chen, J.; Xu, J.; Ma, F.; Zhou, Y.; Shinde, M.V.; Fan, B. Palladium/lewis acid co-catalyzed divergent asymmetric ring-opening reactions of azabenzonorbornadi-enes with alcohols. Org. Lett., 2016, 18(19), 4832-4835.
[http://dx.doi.org/10.1021/acs.orglett.6b02300] [PMID: 27681201]
[64]
Ma, F.; Chen, J.; Yang, F.; Shinde, M.V.; Zhou, Y.; Fan, B. Palladium/zinc co-catalyzed asymmetric transfer hydrogenation of oxabenzonorbornadienes with alcohols as hydrogen sources. Org. Biomol. Chem., 2017, 15(11), 2359-2362.
[http://dx.doi.org/10.1039/C7OB00175D] [PMID: 28256675]
[65]
Sklyaruk, J.; Zubar, V.; Borghs, J.C.; Rueping, M. Methanol as the hydrogen source in the selective transfer hydrogenation of alkynes enabled by a manganese pincer complex. Org. Lett., 2020, 22(15), 6067-6071.
[http://dx.doi.org/10.1021/acs.orglett.0c02151] [PMID: 32790430]
[66]
Aboo, A.H.; Begum, R.; Zhao, L.; Farooqi, Z.H.; Xiao, J. Methanol as hydrogen source: Chemoselective transfer hydrogenation of α,β-unsaturated ketones with a rhodacycle. Chin. J. Catal., 2019, 40(11), 1795-1799.
[http://dx.doi.org/10.1016/S1872-2067(19)63367-X]
[67]
Yang, F.; Chen, J.; Shen, G.; Zhang, X.; Fan, B. Asymmetric transfer hydrogenation reactions of N -sulfonylimines by using alcohols as hydrogen sources. Chem. Commun. (Camb.), 2018, 54(39), 4963-4966.
[http://dx.doi.org/10.1039/C8CC01284A] [PMID: 29701219]
[68]
He, Y.; Li, S.G.; Mbaezue, I.I.; Reddy, A.C.S.; Tsantrizos, Y.S. Copper-boryl mediated transfer hydrogenation of N-sulfonyl imines using methanol as the hydrogen do-nor. Tetrahedron, 2021, 85, 132063.
[http://dx.doi.org/10.1016/j.tet.2021.132063]
[69]
Chen, X.; Ai, Y.; Liu, P.; Yang, C.; Yang, J.; Li, F. Cp*Ir complex bearing a flexible bridging and functional 2,2′-methylenebibenzimidazole ligand as an auto-tandem catalyst for the synthesis of N-methyl tertiary amines from imines via transfer hydrogenation/N-methylation with methanol. J. Catal., 2021, 402, 325-334.
[http://dx.doi.org/10.1016/j.jcat.2021.08.037]
[70]
Xiang, Y.; Li, X.; Lu, C.; Ma, L.; Zhang, Q. Water-improved heterogeneous transfer hydrogenation using methanol as hydrogen donor over Pd-based catalyst. Appl. Catal. A Gen., 2010, 375(2), 289-294.
[http://dx.doi.org/10.1016/j.apcata.2010.01.004]
[71]
Sarki, N.; Goyal, V.; Tyagi, N.K. Puttaswamy; Narani, A.; Ray, A.; Natte, K. Simple RuCl 3 ‐catalyzed N ‐Methylation of Amines and Transfer Hydrogenation of Ni-troarenes using Methanol. ChemCatChem, 2021, 13(7), 1722-1729.
[http://dx.doi.org/10.1002/cctc.202001937]
[72]
Zhao, G.; Chen, H.; Yuan, Y.; Li, X.; Zhu, Z. New Process of 2-nitrotoluene into 2-methylaniline by transfer hydrogenation with methanol over X zeolite catalyst. Catal. Lett., 2016, 146(1), 174-179.
[http://dx.doi.org/10.1007/s10562-015-1633-1]
[73]
Goyal, V.; Sarki, N.; Natte, K.; Ray, A. Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source. J. Indian Chem. Soc., 2021, 98(1), 100014.
[http://dx.doi.org/10.1016/j.jics.2021.100014]
[74]
Zweifel, T.; Naubron, J.V.; Büttner, T.; Ott, T.; Grützmacher, H. Ethanol as hydrogen donor: Highly efficient transfer hydrogenations with rhodium(I) amides. Angew. Chem. Int. Ed., 2008, 47(17), 3245-3249.
[http://dx.doi.org/10.1002/anie.200704685] [PMID: 18348118]
[75]
Zhang, Y.M.; Yuan, M.L.; Liu, W.P.; Xie, J.H.; Zhou, Q.L. Iridium-catalyzed asymmetric transfer hydrogenation of alkynyl ketones using sodium formate and ethanol as hydrogen sources. Org. Lett., 2018, 20(15), 4486-4489.
[http://dx.doi.org/10.1021/acs.orglett.8b01787] [PMID: 30035549]
[76]
Weingart, P.; Thiel, W.R. Applying le chatelier’s principle for a highly efficient catalytic transfer hydrogenation with ethanol as the hydrogen source. ChemCatChem, 2018, 10(21), 4844-4848.
[http://dx.doi.org/10.1002/cctc.201801334]
[77]
Lundberg, H.; Adolfsson, H. Ruthenium-catalyzed asymmetric transfer hydrogenation of ketones in ethanol. Tetrahedron Lett., 2011, 52(21), 2754-2758.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.098]
[78]
Castellanos-Blanco, N.; Arévalo, A.; García, J.J. Nickel-catalyzed transfer hydrogenation of ketones using ethanol as a solvent and a hydrogen donor. Dalton Trans., 2016, 45(34), 13604-13614.
[http://dx.doi.org/10.1039/C6DT02725C] [PMID: 27511528]
[79]
Liu, W.P.; Yuan, M.L.; Yang, X.H.; Li, K.; Xie, J.H.; Zhou, Q.L. Efficient asymmetric transfer hydrogenation of ketones in ethanol with chiral iridium complexes of spiroPAP ligands as catalysts. Chem. Commun. (Camb.), 2015, 51(28), 6123-6125.
[http://dx.doi.org/10.1039/C5CC00479A] [PMID: 25743888]
[80]
Vásquez, P.B.; Tabanelli, T.; Monti, E.; Albonetti, S.; Bonincontro, D.; Dimitratos, N.; Cavani, F. Gas-phase catalytic transfer hydrogenation of methyl levulinate with ethanol over ZrO 2. ACS Sustain. Chem.& Eng., 2019, 7(9), 8317-8330.
[http://dx.doi.org/10.1021/acssuschemeng.8b06744]
[81]
Zweifel, T.; Scheschkewitz, D.; Ott, T.; Vogt, M.; Grützmacher, H. Chiral [Bis(olefin)amine]rhodium(I) complexes – transfer hydrogenation in ethanol. Eur. J. Inorg. Chem., 2009, 2009(36), 5561-5576.
[82]
Wang, Y.; Huang, Z.; Leng, X.; Zhu, H.; Liu, G.; Huang, Z. Transfer hydrogenation of alkenes using ethanol catalyzed by a NCP pincer iridium complex: Scope and mech-anism. J. Am. Chem. Soc., 2018, 140(12), 4417-4429.
[http://dx.doi.org/10.1021/jacs.8b01038] [PMID: 29517232]
[83]
Wang, C.; Gong, S.; Liang, Z.; Sun, Y.; Cheng, R.; Yang, B.; Liu, Y.; Yang, J.; Sun, F. Ligand-promoted iridium-catalyzed transfer hydrogenation of terminal alkynes with ethanol and its application. ACS Omega, 2019, 4(14), 16045-16051.
[http://dx.doi.org/10.1021/acsomega.9b02191] [PMID: 31592175]
[84]
Tsuchiya, Y.; Hamashima, Y.; Sodeoka, M. A new entry to Pd-H chemistry: Catalytic asymmetric conjugate reduction of enones with EtOH and a highly enantioselective synthesis of warfarin. Org. Lett., 2006, 8(21), 4851-4854.
[http://dx.doi.org/10.1021/ol0619157] [PMID: 17020319]
[85]
García, B.; Moreno, J.; Morales, G.; Melero, J.A.; Iglesias, J. Production of sorbitol via catalytic transfer hydrogenation of glucose. Appl. Sci. (Basel), 2020, 10(5), 1843.
[http://dx.doi.org/10.3390/app10051843]
[86]
Westhues, N.; Klankermayer, J. Transfer hydrogenation of carbon dioxide to methanol using a molecular ruthenium‐phosphine catalyst. ChemCatChem, 2019, 11(15), 3371-3375.
[http://dx.doi.org/10.1002/cctc.201900932]
[87]
Yadav, S.; Chaudhary, D.; Maurya, N.K.; Kumar, D.; Ishu, K.; Kuram, M.R. Transfer hydrogenation of pyridinium and quinolinium species using ethanol as a hydrogen source to access saturated N-heterocycles. Chem. Commun. (Camb.), 2022, 58(26), 4255-4258.
[http://dx.doi.org/10.1039/D2CC00241H] [PMID: 35289821]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy