Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Diverse Synthetic Approaches and Biological Activities of Lucrative Pyrimidine- Triazine Hybrid Derivatives: A Review

Author(s): Kalyani Asgaonkar*, Shital Patil, Kunal Pradhan, Sushruti Tanksali and Jidnyasa Jain

Volume 20, Issue 7, 2023

Published on: 28 December, 2022

Page: [734 - 757] Pages: 24

DOI: 10.2174/1570179419666220920093734

Price: $65

Abstract

Pyrimidine and Triazine are rewarding pharmacophores as seen from their presence in different naturally and synthetically occurring drug molecules. Hybridization is a functional concept used in drug design. This updated review encompasses various synthetic procedures that have been used to prepare molecular hybrids of Pyrimidine and Triazine, detailed structureactivity relationship, and molecular docking studies with patents granted. The most potent and promising hybrid compounds have also been identified. The study has revealed the synthetic feasibility of Pyrimidine-Triazine hybrids along with a plethora of potent biological activities such as anticonvulsant, antiviral, anti-inflammatory, analgesics, etc. This paper highlights the importance of coupling Pyrimidine and Triazine to provide better insight for medicinal chemists to further explore the hybrid for a significant therapeutic effect.

Keywords: Molecular Hybridization, Pyrimidine, Triazine, Review, Synthesis, Biological activity

Graphical Abstract

[1]
Negi, M.; Chawla, P.A.; Faruk, A.; Chawla, V. Role of heterocyclic compounds in SARS and SARS CoV-2 pandemic. Bioorg. Chem., 2020, 104, 104315.
[http://dx.doi.org/10.1016/j.bioorg.2020.104315] [PMID: 33007742]
[2]
Jampilek, J. Heterocycles in medicinal Chemistry. Molecules, 2019, 24(21), 3839.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[3]
Ali, I.; Lone, M.; Al-Othman, Z.; Al-Warthan, A.; Sanagi, M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[4]
Kumar, S.; Deep, A.; Narasimhan, B. Pyrimidine derivatives as potential agents acting on central nervous system. Cent. Nerv. Syst. Agents Med. Chem., 2015, 15(1), 5-10.
[http://dx.doi.org/10.2174/1871524914666140923130138] [PMID: 25756819]
[5]
Gupta, J.K.; Chaudhary, A.; Dudhe, R.; Varuna, K.; Sharma, P.K.; Verma, P.K. A review on the synthesis and therapeutic potential of pyrimidine derivatives. Int. J. Pharm. Sci. Res., 2010, 25(5), 34-49.
[6]
Wang, S.; Yuan, X.H.; Wang, S.Q.; Zhao, W.; Chen, X.B.; Yu, B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem., 2021, 214, 113218.
[http://dx.doi.org/10.1016/j.ejmech.2021.113218] [PMID: 33540357]
[7]
Arafa, R.K.; Nour, M.S.; El-Sayed, N.A. Novel heterocyclic-fused pyrimidine derivatives: Synthesis, molecular modeling and pharmacological screening. Eur. J. Med. Chem., 2013, 69, 498-507.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.042] [PMID: 24090920]
[8]
Wang, S.; Zhao, L.J.; Zheng, Y.C.; Shen, D.D.; Miao, E.F.; Qiao, X.P.; Zhao, L.J.; Liu, Y.; Huang, R.; Yu, B.; Liu, H.M. Design, synthesis and biological evaluation of [1,2,4]triazolo[1,5-a]pyrimidines as potent lysine specific demethylase 1 (LSD1/KDM1A) inhibitors. Eur. J. Med. Chem., 2017, 125, 940-951.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.021] [PMID: 27769034]
[9]
Chang, L.; Xiao, M.; Yang, L.; Wang, S.; Wang, S.Q.; Bender, A.; Hu, A.; Chen, Z.S.; Yu, B.; Liu, H.M. Discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) that modulates ABCB1-mediated multidrug resistance (MDR). Bioorg. Med. Chem., 2018, 26(18), 5006-5017.
[http://dx.doi.org/10.1016/j.bmc.2018.08.021] [PMID: 30150104]
[10]
He, P.; Niu, S.; Wang, S.; Shi, X.; Feng, S.; Du, L.; Zhang, X.; Ma, Z.; Yu, B.; Liu, H. Discovery of WS-157 as a highly potent, selective and orally active EGFR inhibitor. Acta Pharm. Sin. B, 2019, 9(6), 1193-1203.
[http://dx.doi.org/10.1016/j.apsb.2019.06.010] [PMID: 31867165]
[11]
Li, Z.R.; Wang, S.; Yang, L.; Yuan, X.H.; Suo, F.Z.; Yu, B.; Liu, H.M. Experience-based discovery (EBD) of aryl hydrazines as new scaffolds for the development of LSD1/KDM1A inhibitors. Eur. J. Med. Chem., 2019, 166, 432-444.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.075] [PMID: 30739825]
[12]
Wang, S.; Li, Z.R.; Suo, F.Z.; Yuan, X.H.; Yu, B.; Liu, H.M. Synthesis, structure-activity relationship studies and biological characterization of new [1,2,4]triazolo[1,5-a]pyrimidine-based LSD1/KDM1A inhibitors. Eur. J. Med. Chem., 2019, 167, 388-401.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.039] [PMID: 30780087]
[13]
Wang, S.; Zhao, L.; Shi, X.J.; Ding, L.; Yang, L.; Wang, Z.Z.; Shen, D.; Tang, K.; Li, X.J.; Mamun, M.A.A.; Li, H.; Yu, B.; Zheng, Y.C.; Wang, S.; Liu, H.M. Development of highly potent, selective, and cellular active triazolo[1,5- a]pyrimidine-based inhibitors targeting the dcn1–ubc12 protein–protein interaction. J. Med. Chem., 2019, 62(5), 2772-2797.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00113] [PMID: 30803229]
[14]
Lu, N.; Huo, J.; Wang, S.; Yuan, X.H.; Liu, H.M. Drug repurposing: Discovery of troxipide analogs as potent antitumor agents. Eur. J. Med. Chem., 2020, 202, 112471.
[http://dx.doi.org/10.1016/j.ejmech.2020.112471] [PMID: 32619887]
[15]
Wang, S.; Shen, D.; Zhao, L.; Yuan, X.; Cheng, J.; Yu, B.; Zheng, Y.; Liu, H. Discovery of [1,2,4]triazolo[1,5-a]pyrimidine derivatives as new bromodomain-containing protein 4 (BRD4) inhibitors. Chin. Chem. Lett., 2020, 31(2), 418-422.
[http://dx.doi.org/10.1016/j.cclet.2019.08.029]
[16]
Wang, S.; Wang, S.Q.; Teng, Q.X.; Yang, L.; Lei, Z.N.; Yuan, X.H.; Huo, J.F.; Chen, X.B.; Wang, M.; Yu, B.; Chen, Z.S.; Liu, H.M. Structure-based design, synthesis, and biological evaluation of new triazolo[1,5- a]pyrimidine derivatives as highly potent and orally active abcb1 modulators. J. Med. Chem., 2020, 63(24), 15979-15996.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01741] [PMID: 33280384]
[17]
Shi, X.J.; Wang, S.; Li, X.J.; Yuan, X.H.; Cao, L.J.; Yu, B.; Liu, H.M. Discovery of tofacitinib derivatives as orally active antitumor agents based on the scaffold hybridization strategy. Eur. J. Med. Chem., 2020, 203, 112601.
[http://dx.doi.org/10.1016/j.ejmech.2020.112601] [PMID: 32682202]
[18]
Wang, S.; Ma, X.B.; Yuan, X.H.; Yu, B.; Xu, Y.C.; Liu, H.M. Discovery of new [1,2,4] triazolo[1,5-a]pyrimidine derivatives that Kill gastric cancer cells via the mitochondria pathway. Eur. J. Med. Chem., 2020, 203, 112630.
[http://dx.doi.org/10.1016/j.ejmech.2020.112630] [PMID: 32683165]
[19]
Huo, J.L.; Wang, S.; Yuan, X.H.; Yu, B.; Zhao, W.; Liu, H.M. Discovery of [1,2,4]triazolo[1,5-a]pyrimidines derivatives as potential anticancer agents. Eur. J. Med. Chem., 2021, 211, 113108.
[http://dx.doi.org/10.1016/j.ejmech.2020.113108] [PMID: 33385852]
[20]
Liu, Z.; Zhao, T.; Li, Z.; Sun, K.; Fu, Y.; Cheng, T.; Guo, J.; Yu, B.; Shi, X.; Liu, H. Discovery of [1,2,3]triazolo[4,5-d]pyrimidine derivatives as highly potent, selective, and cellularly active USP28 inhibitors. Acta Pharm. Sin. B, 2020, 10(8), 1476-1491.
[http://dx.doi.org/10.1016/j.apsb.2019.12.008] [PMID: 32963944]
[21]
Li, Z.; Ding, L.; Li, Z.; Wang, Z.; Suo, F.; Shen, D.; Zhao, T.; Sun, X.; Wang, J.; Liu, Y.; Ma, L.; Zhao, B.; Geng, P.; Yu, B.; Zheng, Y.; Liu, H. Development of the triazole-fused pyrimidine derivatives as highly potent and reversible inhibitors of histone lysine specific demethylase 1 (LSD1/KDM1A). Acta Pharm. Sin. B, 2019, 9(4), 794-808.
[http://dx.doi.org/10.1016/j.apsb.2019.01.001] [PMID: 31384539]
[22]
Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014, 1-31.
[http://dx.doi.org/10.1155/2014/202784] [PMID: 25383216]
[23]
Kumar, R.; Sirohi, T.S.; Singh, H.; Yadav, R.; Roy, R.K.; Chaudhary, A.; Pandeya, S.N. 1,2,4-triazine analogs as novel class of therapeutic agents. Mini Rev. Med. Chem., 2014, 14, 168-207.
[http://dx.doi.org/10.2174/1389557514666140131111837] [PMID: 24479860]
[24]
Basedia, D.K.; Dubey, B.K.; Shrivastava, B. A review on synthesis and biological activity of heterocyclic compounds bearing 1, 3, 5-triazine lead moiety. Ameri. J. Pharm. Tech. Res., 2011, 1(4), 175-177.
[25]
Giacomelli, G.; Porcheddu, A.; Luca, L. [1,3,5]-triazine: A versatile heterocycle in current applications of organic chemistry. Curr. Org. Chem., 2004, 8(15), 1497-1519.
[http://dx.doi.org/10.2174/1385272043369845]
[26]
Liu, H.; Long, S.; Rakesh, K.P.; Zha, G.F. Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. Eur. J. Med. Chem., 2020, 185, 111804.
[http://dx.doi.org/10.1016/j.ejmech.2019.111804] [PMID: 31675510]
[27]
Sunduru, N.; Agarwal, A.; Katiyar, S.B. Nishi; Goyal, N.; Gupta, S.; Chauhan, P.M.S. Synthesis of 2,4,6-trisubstituted pyrimidine and triazine heterocycles as antileishmanial agents. Bioorg. Med. Chem., 2006, 14(23), 7706-7715.
[http://dx.doi.org/10.1016/j.bmc.2006.08.009] [PMID: 16945542]
[28]
Sączewski, F.; Bułakowska, A. Synthesis, structure and anticancer activity of novel alkenyl-1,3,5-triazine derivatives. Eur. J. Med. Chem., 2006, 41(5), 611-615.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.012] [PMID: 16540207]
[29]
Marín-Ocampo, L.; Veloza, L.A.; Abonia, R.; Sepúlveda-Arias, J.C. Anti-inflammatory activity of triazine derivatives: A systematic review. Eur. J. Med. Chem., 2019, 162, 435-447.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.027] [PMID: 30469039]
[30]
Salehian, F.; Nadri, H.; Jalili-Baleh, L.; Youseftabar-Miri, L.; Abbas Bukhari, S.N.; Foroumadi, A.; Tüylü Küçükkilinç, T.; Sharifzadeh, M.; Khoobi, M. A review: Biologically active 3,4-heterocycle-fused coumarins. Eur. J. Med. Chem., 2021, 212, 113034.
[http://dx.doi.org/10.1016/j.ejmech.2020.113034] [PMID: 33276991]
[31]
Claudio, Viegas-Junior,; Danuello, A.; da Silva, Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[32]
Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov., 2016, 11(3), 281-305.
[http://dx.doi.org/10.1517/17460441.2016.1135125] [PMID: 26727036]
[33]
Matias, M.; Silvestre, S.; Falcao, A.; Alves, G. Recent highlights on molecular hybrids potentially useful in central nervous system disorders. Mini Rev. Med. Chem., 2017, 17(6), 486-517.
[http://dx.doi.org/10.2174/1389557517666161111110121] [PMID: 27834131]
[34]
Teng, Q.H.; Sun, Y.; Yao, Y.; Tang, H.T.; Li, J.R.; Pan, Y.M. Metal‐ and catalyst‐free electrochemical synthesis of quinazolinones from alkenes and 2‐aminobenzamides. ChemElectroChem, 2019, 6(12), 3120-3124.
[http://dx.doi.org/10.1002/celc.201900682]
[35]
Li, Q.Y.; Cheng, S.Y.; Tang, H.T.; Pan, Y-M. Synthesis of rutaecarpine alkaloids via an electrochemical cross dehydrogenation coupling reaction. Green Chem., 2019, 21(20), 5517-5520.
[http://dx.doi.org/10.1039/C9GC03028J]
[36]
Zarenezhad, E.; Farjam, M.; Iraji, A. Synthesis and biological activity of pyrimidines-containing hybrids: Focusing on pharmacological application. J. Mol. Struct., 2021, 1230, 129833.
[http://dx.doi.org/10.1016/j.molstruc.2020.129833]
[37]
Sui, Y.F.; Li, D.; Wang, J.; Bheemanaboina, R.R.Y.; Ansari, M.F.; Gan, L.L.; Zhou, C.H. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg. Med. Chem. Lett., 2020, 30(6), 126982.
[http://dx.doi.org/10.1016/j.bmcl.2020.126982] [PMID: 32001137]
[38]
Alfayomy, A.M.; Abdel-Aziz, S.A.; Marzouk, A.A.; Shaykoon, M.S.A.; Narumi, A.; Konno, H.; Abou-Seri, S.M.; Ragab, F.A.F. Design and synthesis of pyrimidine-5-carbonitrile hybrids as COX-2 inhibitors: Anti-inflammatory activity, ulcerogenic liability, histopathological and docking studies. Bioorg. Chem., 2021, 108, 104555.
[http://dx.doi.org/10.1016/j.bioorg.2020.104555] [PMID: 33376011]
[39]
Kolawole, O.A.; Olatomide, A.F.; Banjo, S. Anti-gastric cancer activity of 1,2,3-triazolo[4,5-d]pyrimidine hybrids (1,2,3-TPH): QSAR and molecular docking approaches. Heliyon, 2020, 6(3), e03561.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03561] [PMID: 32215327]
[40]
Kumar, D.; Khan, S.I.; Tekwani, B.L.; Ponnan, P.; Rawat, D.S. 4-Aminoquinoline-pyrimidine hybrids: Synthesis, antimalarial activity, heme binding and docking studies. Eur. J. Med. Chem., 2015, 89(7), 490-502.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.061] [PMID: 25462261]
[41]
Toan, D.N.; Thanh, N.D.; Truong, M.X.; Van, D.T. Quinoline-pyrimidine hybrid compounds from 3-acetyl-4-hydroxy-1-methylquinolin-2(1H)-one: Study on synthesis, cytotoxicity, ADMET and molecular docking. Arab. J. Chem., 2020, 13(11), 7860-7874.
[http://dx.doi.org/10.1016/j.arabjc.2020.09.018]
[42]
Maurya, S.S.; Khan, S.I.; Bahuguna, A.; Kumar, D.; Rawat, D.S. Synthesis, antimalarial activity, heme binding and docking studies of N -substituted 4-aminoquinoline-pyrimidine molecular hybrids. Eur. J. Med. Chem., 2017, 129(31), 175-185.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.024] [PMID: 28222317]
[43]
Masih, A.; Singh, S.; Agnihotri, A.K.; Giri, S.; Shrivastava, J.K.; Pandey, N.; Bhat, H.R.; Singh, U.P. Design and development of 1,3,5-triazine-thiadiazole hybrids as potent adenosine A2A receptor (A2AR) antagonist for benefit in Parkinson’s disease. Neurosci. Lett., 2020, 735(3), 135222.
[http://dx.doi.org/10.1016/j.neulet.2020.135222] [PMID: 32619652]
[44]
Maqbool, M.; Gadhavi, J.; Hivare, P.; Gupta, S.; Hoda, N. Diphenyl triazine hybrids inhibit α-synuclein fibrillogenesis: Design, synthesis and in vitro efficacy studies. Eur. J. Med. Chem., 2020, 207, 112705.
[http://dx.doi.org/10.1016/j.ejmech.2020.112705] [PMID: 32961434]
[45]
Guo, H.; Diao, Q.P. 1,3,5-Triazine-azole hybrids and their anticancer activity. Curr. Top. Med. Chem., 2020, 20(16), 1481-1492.
[http://dx.doi.org/10.2174/1568026620666200310122741] [PMID: 32156236]
[46]
Ghanim, A.M.; Rezq, S.; Ibrahim, T.S.; Romero, D.G.; Kothayer, H. Novel 1,2,4-triazine-quinoline hybrids: The privileged scaffolds as potent multi-target inhibitors of LPS-induced inflammatory response via dual COX-2 and 15-LOX inhibition. Eur. J. Med. Chem., 2021, 219, 113457.
[http://dx.doi.org/10.1016/j.ejmech.2021.113457] [PMID: 33892270]
[47]
Ibrar, A.; Kazmi, M.; Khan, A.; Halim, S.A.; Saeed, A.; Mehsud, S.; Al-Harrasi, A.; Khan, I. Robust therapeutic potential of carbazole-triazine hybrids as a new class of urease inhibitors: A distinctive combination of nitrogen-containing heterocycles. Bioorg. Chem., 2020, 95, 103479.
[http://dx.doi.org/10.1016/j.bioorg.2019.103479] [PMID: 31901517]
[48]
Narayana, B.; Vijaya Raj, K.K.; Ashalatha, B.V.; Kumari, N.S. Synthesis of some new substituted triazolo [4,3-a][1,4] benzodiazepine derivatives as potent anticonvulsants. Eur. J. Med. Chem., 2006, 41(3), 417-422.
[http://dx.doi.org/10.1016/j.ejmech.2005.12.003] [PMID: 16472891]
[49]
Srinivas, K.; Srinivas, U.; Rao, V.J.; Bhanuprakash, K.; Kishore, K.H.; Murty, U.S.N. Synthesis and antibacterial activity of 2,4,6-tri substituted s-triazines. Bioorg. Med. Chem. Lett., 2005, 15(4), 1121-1123.
[http://dx.doi.org/10.1016/j.bmcl.2004.12.020] [PMID: 15686925]
[50]
Klenke, B.; Stewart, M.; Barrett, M.P.; Brun, R.; Gilbert, I.H. Synthesis and biological evaluation of s-triazine substituted polyamines as potential new anti-trypanosomal drugs. J. Med. Chem., 2001, 44(21), 3440-3452.
[http://dx.doi.org/10.1021/jm010854+] [PMID: 11585449]
[51]
Kuriwaki, I.; Kameda, M.; Hisamichi, H.; Kikuchi, S.; Iikubo, K.; Kawamoto, Y.; Moritomo, H.; Kondoh, Y.; Amano, Y.; Tateishi, Y.; Echizen, Y.; Iwai, Y.; Noda, A.; Tomiyama, H.; Suzuki, T.; Hirano, M. Structure-based drug design of 1,3,5-triazine and pyrimidine derivatives as novel FGFR3 inhibitors with high selectivity over VEGFR2. Bioorg. Med. Chem., 2020, 28(10), 115453.
[http://dx.doi.org/10.1016/j.bmc.2020.115453] [PMID: 32278710]
[52]
Diab El-Harakeh, M.; Njeim, R.; Youssef, A.; Youssef, N.; Eid, A.A.; Bouhadir, K.H. Novel triazine-based pyrimidines suppress glomerular mesangial cells proliferation and matrix protein accumulation through a ROS-dependent mechanism in the diabetic milieu. Bioorg. Med. Chem. Lett., 2019, 29(13), 1580-1585.
[http://dx.doi.org/10.1016/j.bmcl.2019.04.052] [PMID: 31078409]
[53]
Sunduru, N. Nishi; Palne, S.; Chauhan, P.M.S.; Gupta, S. Synthesis and antileishmanial activity of novel 2,4,6-trisubstituted pyrimidines and 1,3,5-triazines. Eur. J. Med. Chem., 2009, 44(6), 2473-2481.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.016] [PMID: 19217698]
[54]
Ho, K.K.; Beasley, J.R.; Belanger, L.; Black, D.; Chan, J.H.; Dunn, D.; Hu, B.; Klon, A.; Kultgen, S.G.; Ohlmeyer, M.; Parlato, S.M.; Ray, P.C.; Pham, Q.; Rong, Y.; Roughton, A.L.; Walker, T.L.; Wright, J.; Xu, K.; Xu, Y.; Zhang, L.; Webb, M. Triazine and pyrimidine based ROCK inhibitors with efficacy in spontaneous hypertensive rat model. Bioorg. Med. Chem. Lett., 2009, 19(21), 6027-6031.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.046] [PMID: 19800787]
[55]
Gupta, L.; Sunduru, N.; Verma, A.; Srivastava, S.; Gupta, S.; Goyal, N.; Chauhan, P.M.S. Synthesis and biological evaluation of new [1,2,4]triazino[5,6-b]indol-3-ylthio-1,3,5-triazines and [1,2,4]triazino[5,6-b]indol-3-ylthio-pyrimidines against Leishmania donovani. Eur. J. Med. Chem., 2010, 45(6), 2359-2365.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.015] [PMID: 20371140]
[56]
Al-Adiwish, W.M.; Tahir, M.I.M.; Siti-Noor-Adnalizawati, A.; Hashim, S.F.; Ibrahim, N.; Yaacob, W.A. Synthesis, antibacterial activity and cytotoxicity of new fused pyrazolo[1,5-a]pyrimidine and pyrazolo[5,1-c][1,2,4]triazine derivatives from new 5-aminopyrazoles. Eur. J. Med. Chem., 2013, 64, 464-476.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.029] [PMID: 23669354]
[57]
El-Sayed Ali, T. Synthesis of some novel pyrazolo[3,4-b]pyridine and pyrazolo[3,4-d]pyrimidine derivatives bearing 5,6-diphenyl-1,2,4-triazine moiety as potential antimicrobial agents. Eur. J. Med. Chem., 2009, 44(11), 4385-4392.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.031] [PMID: 19586688]
[58]
Sahu, M.; Siddiqui, N.; Naim, M.J.; Alam, O.; Yar, M.S.; Sharma, V.; Wakode, S. Design, synthesis, and docking study of pyrimidine-triazine hybrids for gaba estimation in animal epilepsy models. Arch. Pharm., 2017, 350(9), 1700146.
[http://dx.doi.org/10.1002/ardp.201700146]
[59]
Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.064] [PMID: 28478343]
[60]
Ashour, H.M.; Shaaban, O.G.; Rizk, O.H.; El-Ashmawy, I.M. Synthesis and biological evaluation of thieno [20, 30:4,5] pyrimido[1,2-b][1,2,4]triazines and thieno[2,3-d][1,2,4]triazolo[1,5-a] pyrimidines as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2012, 62, 341-351.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.003] [PMID: 23376247]
[61]
El Azab, I.H.; Elkanzi, N.A.A. Design, synthesis, and antimicrobial evaluation of new annelated pyrimido[2,1-c][1,2,4]triazolo[3,4-f][1,2,4]triazines. Molecules, 2020, 25(6), 1339.
[http://dx.doi.org/10.3390/molecules25061339]
[62]
El-Kalyoubi, S.A. Synthesis and anticancer evaluation of some novel pyrimido[5,4-e][1,2,4]triazines and pyrazolo[3,4-d]pyrimidine using DMF-DMA as methylating and cyclizing agent. Chem. Cent. J., 2018, 12(1), 64.
[http://dx.doi.org/10.1186/s13065-018-0424-3] [PMID: 29796716]
[63]
Guertin, K.R.; Setti, L.; Qi, L.; Dunsdon, R.M.; Dymock, B.W.; Jones, P.S.; Overton, H.; Taylor, M.; Williams, G.; Sergi, J.A.; Wang, K.; Peng, Y.; Renzetti, M.; Boyce, R.; Falcioni, F.; Garippa, R.; Olivier, A.R. Identification of a novel class of orally active pyrimido[5,4-3][1,2,4]triazine-5,7-diamine-based hypoglycemic agents with protein tyrosine phosphatase inhibitory activity. Bioorg. Med. Chem. Lett., 2003, 13(17), 2895-2898.
[http://dx.doi.org/10.1016/S0960-894X(03)00623-1] [PMID: 14611852]
[64]
Aqlan, F.M.S.; Makki, M.S.T.; Abdel-Rahman, R.M. Synthesis, spectroscopic studies of fluorinated pyrimido-1,2,4-triazines: Protective effect against some plant pathogenic fungi. J. Heterocycl. Chem., 2016, 53(4), 1310-1317.
[http://dx.doi.org/10.1002/jhet.2386]
[65]
Shehta, W.; Abdel Hamid, A.M. Synthesis and antibacterial activity of some novel pyrimidine-based heterocycles. Russ. J. Gen. Chem., 2019, 89(4), 806-812.
[http://dx.doi.org/10.1134/S1070363219040273]
[66]
Kumar, D.; Khan, S.I.; Ponnan, P.; Rawat, D.S. Triazine–pyrimidine based molecular hybrids: Synthesis, docking studies and evaluation of antimalarial activity. New J. Chem., 2014, 38(10), 5087-5095.
[http://dx.doi.org/10.1039/C4NJ00978A]
[67]
Guan, B.; Jiang, C. Design and development of 1,3,5-triazine derivatives as protective agent against spinal cord injury in rat via inhibition of NF-κB. Bioorg. Med. Chem. Lett., 2021, 41, 127964.
[http://dx.doi.org/10.1016/j.bmcl.2021.127964] [PMID: 33744436]
[68]
Jakubkiene, V.; Cepla, V.; Burbuliene, M.M.; Vainilavicius, P. Synthesis and functionalization of 8-Methyl-2 h -pyrimido [2,1- c][1,2,4]triazine-3,6(1 h, 4 h)-dione. J. Heterocycl. Chem., 2012, 49(4), 737-741.
[http://dx.doi.org/10.1002/jhet.844]
[69]
Lee, I.Y.; Kim, S.Y.; Lee, J.Y.; Yu, C.M.; Lee, D.H.; Gong, Y-D. Solution-phase parallel synthesis of new 2H-pyrimido-[4,5-e][1,2,4]triazin-3-ylidenecyanamides. Tetrahedron Lett., 2004, 45(51), 9319-9322.
[http://dx.doi.org/10.1016/j.tetlet.2004.10.127]
[70]
Rawat, A.; Kaur, A. Surjit; Kaur, H. Synthesis and characterization of antitubercular triazine-chalcone hybrid molecules. Asian J. Chem., 2017, 29(9), 2084-2090.
[http://dx.doi.org/10.14233/ajchem.2017.20832]
[71]
Al-Issa, S.A. Synthesis and anticancer activity of some fused pyrimidines and related heterocycles. Saudi Pharm. J., 2013, 21(3), 305-316.
[http://dx.doi.org/10.1016/j.jsps.2012.09.002] [PMID: 23960847]
[72]
Arnold, D.M.; LaPorte, M.G.; Anderson, S.M.; Wipf, P. Condensation reactions of guanidines with bis-electrophiles: Formation of highly nitrogenous heterocycles. Tetrahedron, 2013, 69(36), 7719-7731.
[http://dx.doi.org/10.1016/j.tet.2013.04.127] [PMID: 23976798]
[73]
Safin, D.A.; Holmberg, R.J.; Burgess, K.M.N.; Robeyns, K.; Bryce, D.L.; Murugesu, M. Hybrid material constructed from Hg(NCS) 2 and 2,4,6‐Tris(2‐pyrimidyl)‐1,3,5‐triazine (TPymT): Coordination of TPymT in a 2,2′‐bipyridine‐like mode. Eur. J. Inorg. Chem., 2015, 2015(3), 441-446.
[http://dx.doi.org/10.1002/ejic.201402832]
[74]
Toyama, M.; Sakakibara, N.; Takeda, M.; Okamoto, M.; Watashi, K.; Wakita, T.; Sugiyama, M.; Mizokami, M.; Ikeda, M.; Baba, M. Pyrimidotriazine derivatives as selective inhibitors of HBV capsid assembly. Virus Res., 2019, 271, 197677.
[http://dx.doi.org/10.1016/j.virusres.2019.197677] [PMID: 31376401]
[75]
Huryn, D.; Smith, A., III The identification, characterization and optimization of small molecule probes of cysteine proteases: Experiences of the penn center for molecular discovery with cathepsin B and cathepsin L. Curr. Top. Med. Chem., 2009, 9(13), 1206-1216.
[http://dx.doi.org/10.2174/156802609789753653] [PMID: 19807666]
[76]
Hebeisen, P.; Beaufils, F.; Langlois, J.B. Novel Manufacturing process for Triaine Pyrimidne and Pyridine derivatives, European Patent, WO/2015/162084 2015.,
[77]
Xiangyang, L.; Xiuyu, Y.; Haiyang, S.; Fawang, X.; Qinggong, C.; Shenghua, C. Triazine biphenyl thiophthene pyrimidine organic compound and application thereof. Chinese Patent CN201811472709A, 2019.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy