Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Letter Article

Zika Virus NS2B-NS3 Protease: Quantum Chemical Properties Insights into Designing Inhibitory Peptides

Author(s): João Vitor Silva, Débora Savino, Mario Hiroyuki Hirata, Gláucio Monteiro Ferreira* and Jeanine Giarolla*

Volume 29, Issue 11, 2022

Published on: 12 October, 2022

Page: [901 - 910] Pages: 10

DOI: 10.2174/0929866529666220919143316

Price: $65

Abstract

Background: Zika fever affects poor and vulnerable populations, presenting cycles observed in, at least 86 countries, with no vaccine prevention or treatment available. It is known that the genus Flavivirus causes Zika Virus (ZIKV), as Dengue and Yellow Fever, whose genetic material decodes, among other proteins, a series of non-structural (NS) proteins essential for viral replication, such as NS2B-NS3 protease. Additionally, chemical and biological systems are commonly studied using molecular modeling approaches allowing, among several other processes, to elucidate mechanisms of action, molecule reactivity and/or chemical properties and the design of new drugs. Thus, considering the in silico complexes between the biological target and the bioactive molecule, it is possible to understand better experimental results based on molecular properties, which are compared with the findings of the biological activity.

Objective: Accordingly, this study aimed to present computational docking simulations of five previously reported active peptides against NS2B-NS3 protease of ZIKV and analyze some quantum chemical properties to identify the main contribution to improving the action.

Methods: The compounds were described by Rut and coworkers (2017) and Hill and coworkers (2018), submitted to docking simulation in Gold software and quantum chemical properties calculations in Wavefunction Spartan software.

Results: Total energy, electrophilicity index (ω) and energy gap (GAP) appeared to be the best properties to justify the peptide's biological activity.

Moreover, the most promising compound (P1, Km 4.18 μM) had the best value of total energy (- 2763.04001 au), electrophilicity index (8.04 eV) and GAP (6.49 eV), indicating an energetically favorable molecule with good interaction with the target and, when compared to other peptides, presented moderate reactivity. P4 showed the highest electrophilicity index value (28.64 eV), which justified the interaction ability visualized in the docking simulation. However, its GAP value (4.24 eV) was the lowest in the series, suggesting high instability, possibly validating its low biological activity value (Km 19 uM). GAP was important to understand the chemical instability, and high values can promote damage to biological response.

Conclusion: Furthermore, it was also noted that high electron affinity, related to the electrophilicity index, promoted electron-accepting characteristics, which was important to improve the biological activity of the peptides. A larger compound series must be studied to access features more precisely. However, these results have paramount importance in guiding future effort in this extremely-need health area.

Keywords: quantum chemical properties, molecular modeling, active peptides, drug design, Zika virus.

Next »
Graphical Abstract

[1]
Molyneux, D. Neglected tropical diseases. Community Eye Health, 2013, 26(82), 21-24.
[http://dx.doi.org/10.1093/bmb/ldp046] [PMID: 24023397]
[2]
CDC. Global health - Neglected tropical diseases Available from: https://www.cdc.gov/globalhealth/ntd/index.html(Accessed on: Apr 12, 2021).
[3]
Neglected tropical diseases.. Available from: https://www.who.int/news-room/q-a-detail/neglected-tropical-diseases(Accessed on: Apr 12, 2021).
[4]
Martins-Melo, F.R.; Carneiro, M.; Ramos, A.N. Jr; Heukelbach, J.; Ribeiro, A.L.P.; Werneck, G.L. The burden of neglected tropical diseases in Brazil, 1990-2016: A subnational analysis from the Global Burden of Disease Study 2016. PLoS Negl. Trop. Dis., 2018, 12(6), e0006559.
[http://dx.doi.org/10.1371/journal.pntd.0006559] [PMID: 29864133]
[5]
Grifoni, A.; Pham, J.; Sidney, J.; O’Rourke, P. H.; Paul, S.; Peters, B.; Martini, S. R.; de Silva, A. D.; Ricciardi, M. J.; Magnani, D. M. Prior dengue virus exposure shapes T cell immunity to Zika virus in humans. J. Virol., 2017, 91(24), JVI.01469-17.
[http://dx.doi.org/10.1128/JVI.01469-17]
[6]
Sun, G.; Larsen, C.N.; Baumgarth, N.; Klem, E.B.; Scheuermann, R.H. Comprehensive annotation of mature peptides and genotypes for Zika virus. PLoS One, 2017, 12(1), e0170462.
[http://dx.doi.org/10.1371/journal.pone.0170462] [PMID: 28125631]
[7]
Rosa, G.V.S.; Fierro, I.M.C.; Santos, W. Repositioning and investigational drugs for zika virus infection treatment: A patent review. Expert Opin. Ther. Pat., 2020, 847-862.
[http://dx.doi.org/10.1080/13543776.2020.1811854]
[8]
Guo, C.; Zhou, Z.; Wen, Z.; Liu, Y.; Zeng, C.; Xiao, D.; Ou, M.; Han, Y.; Huang, S.; Liu, D.; Ye, X.; Zou, X.; Wu, J.; Wang, H.; Zeng, E.Y.; Jing, C.; Yang, G. Global epidemiology of dengue outbreaks in 1990-2015: A systematic review and meta-analysis. Front. Cell. Infect. Microbiol., 2017, 7, 317.
[http://dx.doi.org/10.3389/fcimb.2017.00317] [PMID: 28748176]
[9]
Salles, T.S.; da Encarnação Sá-Guimarães, T.; de Alvarenga, E.S.L.; Guimarães-Ribeiro, V.; de Meneses, M.D.F.; de Castro-Salles, P.F.; dos Santos, C.R.; do Amaral Melo, A.C.; Soares, M.R.; Ferreira, D.F.; Moreira, M.F. History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: A review. Parasit. Vectors, 2018, 11(1), 264.
[http://dx.doi.org/10.1186/s13071-018-2830-8] [PMID: 29690895]
[10]
Phoo, W.W.; Li, Y.; Zhang, Z.; Lee, M.Y.; Loh, Y.R.; Tan, Y.B.; Ng, E.Y.; Lescar, J.; Kang, C.; Luo, D. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat. Commun., 2016, 7(1), 13410.
[http://dx.doi.org/10.1038/ncomms13410] [PMID: 27845325]
[11]
Roy, A.; Lim, L.; Srivastava, S.; Lu, Y.; Song, J. Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants. PLoS One, 2017, 12(7), e0180632.
[http://dx.doi.org/10.1371/journal.pone.0180632] [PMID: 28700665]
[12]
Nature. Molecular modelling - Latest research and reviews. Available from: https://www.nature.com/subjects/molecular-modelling (Accessed on: May 20, 2021).
[13]
Pimentel, A.S.; Guimarães, C.R.W.; Miller, Y. Molecular modeling: Advancements and applications. J. Chem., 2013, 2013, 875478.
[http://dx.doi.org/10.1155/2013/875478]
[14]
Aminpour, M.; Montemagno, C.; Tuszynski, J.A. An overview of molecular modeling for drug discovery with specific illustrative examples of applications. Molecules, 2019, 24(9), 1693.
[http://dx.doi.org/10.3390/molecules24091693] [PMID: 31052253]
[15]
Ou-Yang, S.S.; Lu, J.Y.; Kong, X.Q.; Liang, Z.J.; Luo, C.; Jiang, H. Computational drug discovery. Acta Pharmacol. Sin., 2012, 1131-1140.
[http://dx.doi.org/10.1038/aps.2012.109]
[16]
Rut, W.; Zhang, L.; Kasperkiewicz, P.; Poreba, M.; Hilgenfeld, R. Drąg, M. Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease. Antiviral Res., 2017, 139, 88-94.
[http://dx.doi.org/10.1016/j.antiviral.2016.12.018] [PMID: 28034744]
[17]
Hill, M.E.; Kumar, A.; Wells, J.A.; Hobman, T.C.; Julien, O.; Hardy, J.A. The unique cofactor region of Zika virus NS2B-NS3 protease facilitates cleavage of key host proteins. ACS Chem. Biol., 2018, 13(9), 2398-2405.
[http://dx.doi.org/10.1021/acschembio.8b00508]
[18]
Li, Y.; Zhang, Z.; Phoo, W.W.; Loh, Y.R.; Wang, W.; Liu, S.; Chen, M.W.; Hung, A.W.; Keller, T.H.; Luo, D.; Kang, C. Structural dynamics of Zika virus NS2B-NS3 protease binding to dipeptide inhibitors. Structure, 2017, 25(8), 1242-1250.e3.
[http://dx.doi.org/10.1016/j.str.2017.06.006] [PMID: 28689970]
[19]
Shiryaev, S.A.; Farhy, C.; Pinto, A.; Huang, C.T.; Simonetti, N.; Ngono, A.E.; Dewing, A.; Shresta, S.; Pinkerton, A.B.; Cieplak, P.; Strongin, A.Y.; Terskikh, A.V. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res., 2017, 143, 218-229.
[http://dx.doi.org/10.1016/j.antiviral.2017.04.015] [PMID: 28461069]
[20]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[21]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[22]
Vargas-Sánchez, R.D.; Mendoza-Wilson, A.M.; Balandrán-Quintana, R.R.; Torrescano-Urrutia, G.R.; Sánchez-Escalante, A. Study of the molecular structure and chemical reactivity of pinocembrin by DFT calculations. Comput. Theor. Chem., 2015, 1058, 21-27.
[http://dx.doi.org/10.1016/j.comptc.2015.01.014]
[23]
Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity index. Chem. Rev., 2006, 106(6), 2065-2091.
[http://dx.doi.org/10.1021/cr040109f] [PMID: 16771443]
[24]
Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev., 2003, 103(5), 1793-1874.
[http://dx.doi.org/10.1021/cr990029p] [PMID: 12744694]
[25]
Murray, J.S.; Politzer, P. The electrostatic potential: An overview. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(2), 153-163.
[http://dx.doi.org/10.1002/wcms.19]
[26]
Marinho, S.E.; Marinho, M.A. A DFT study of synthetic drug topiroxostat: MEP, HOMO, LUMO. Int. J. Sci. Eng. Res., 2016, 7(8), 1264.
[27]
Rocha, J.A.; Rego, N.C.S.; Carvalho, B.T.S.; Silva, F.I.; Sousa, J.A.; Ramos, R.M.; Passos, I.N.G.; de Moraes, J.; Leite, J.R.S.A.; Lima, F.C.A. Computational quantum chemistry, molecular docking, and ADMET predictions of imidazole alkaloids of Pilocarpus microphyllus with schistosomicidal properties. PLoS One, 2018, 13(6), e0198476.
[http://dx.doi.org/10.1371/journal.pone.0198476] [PMID: 29944674]
[28]
Costa, R.A.; Oliveira, K.M.T.; de Cássia Saraiva Nunomura, R.; Junior, E.S.A.; Pinheiro, M.L.B.; Costa, E.V.; Barison, A. Quantum chemical properties investigation and molecular docking analysis with DNA topoisomerase II of β-carboline indole alkaloids from Simaba guianensis: A combined experimental and theoretical DFT study. Struct. Chem., 2018, 29(1), 299-314.
[http://dx.doi.org/10.1007/s11224-017-1029-5]
[29]
Noureddine, O.; Issaoui, N.; Gatfaoui, S.; Al-Dossary, O.; Marouani, H. Quantum chemical calculations, spectroscopic properties and molecular docking studies of a novel piperazine derivative. J. King Saud Univ. Sci., 2021, 33(2), 101283.
[http://dx.doi.org/10.1016/j.jksus.2020.101283] [PMID: 33432258]
[30]
Schottel, B.L.; Chifotides, H.T.; Dunbar, K.R. Anion-π interactions. Chem. Soc. Rev., 2008, 37(1), 68-83.
[http://dx.doi.org/10.1039/B614208G] [PMID: 18197334]
[31]
Kan, X.; Liu, H.; Pan, Q.; Li, Z.; Zhao, Y. Anion-π interactions: From concept to application. Chinese. Chem. Lett., 2018, 29(2), 261-266.
[http://dx.doi.org/10.1016/j.cclet.2017.08.042]
[32]
Fokoue, H.; Pinheiro, P.; Fraga, C.; Sant’Anna, C. Is there anything new in molecular recognition applied to medicinal chemistry. Newchem, 2022, 45(4), 424-434.
[http://dx.doi.org/10.21577/0100-4042.20170474]
[33]
Martínez-Cifuentes, M.; Weiss-López, B.; Santos, L.; Araya-Maturana, R. Intramolecular hydrogen bond in biologically active o-carbonyl hydroquinones. Molecules, 2014, 19(7), 9354-9368.
[http://dx.doi.org/10.3390/molecules19079354] [PMID: 24995921]
[34]
Kumar, A.; Mohan, C.G.; Mishra, P.C. Molecular electrostatic potential and field as descriptors of hydrogen bonding and molecular activity. Effects of hybridization displacement charge. J. Mol. Struct., 1996, 361, 135-144.
[http://dx.doi.org/10.1016/0166-1280(95)04312-8]
[35]
Talmaciu, M.M.; Bodoki, E.; Oprean, R. Global chemical reactivity parameters for several chiral beta-blockers from density functional theory viewpoint. Med. Pharm. Rep., 2016, 89(4), 513-518.
[http://dx.doi.org/10.15386/cjmed-610] [PMID: 27857521]
[36]
Forrest, J.; Bazylewski, P.; Bauer, R.; Hong, S.; Kim, C.Y.; Giesy, J.P.; Khim, J.S.; Chang, G.S. A comprehensive model for chemical bioavailability and toxicity of organic chemicals based on first principles. Front. Mar. Sci., 2014, 1, 31.
[http://dx.doi.org/10.3389/fmars.2014.00031]
[37]
Nabati, M.; Bodaghi-Namileh, V.; Sarshar, S. Molecular modeling of the antagonist compound esketamine and its molecular docking study with non-competitive N-methyl-D-aspartate (NMDA) receptors NR1, NR2A, NR2B and NR2D. Prog. Chem. Biochem. Res., 2019, 2(3), 108-119.
[http://dx.doi.org/10.33945/SAMI/PCBR.2019.2.4]
[38]
Landeros-Martínez, L.L.; Glossman-Mitnik, D.; Flores-Holguín, N. Studying the chemical reactivity properties of the target tumor-environment tripeptides NGR (asparagine-glycine-arginine) and RGD (arginine-glycine-aspartic acid) in their interactions with tamoxifen through conceptual density functional theory. J. Mol. Model., 2018, 24(12), 336.
[http://dx.doi.org/10.1007/s00894-018-3868-4] [PMID: 30413890]
[39]
Biomed, M.; Sci, J.; Res, T.; Review, M. Molecular docking, pharmacokinetic, and DFT calculation of naproxen and its degradants. Biomed. J. Sci. Tech. Res., 2018, 9(5), 1852.
[http://dx.doi.org/10.26717/BJSTR.2018.09.001852]
[40]
Zapadka, K.L.; Becher, F.J.; Gomes dos Santos, A.L.; Jackson, S.E. Factors affecting the physical stability (Aggregation) of peptide therapeutics. Interface Focus, 2017, 2017, 30.
[http://dx.doi.org/10.1098/rsfs.2017.0030]
[41]
Laptoš, T.; Omersel, J. The importance of handling high-value biologicals: Physico-chemical instability and immunogenicity of monoclonal antibodies (review). Exp. Ther. Med., 2018, 15(4), 3161-3168.
[http://dx.doi.org/10.3892/etm.2018.5821]
[42]
Moureau, G.; Cook, S.; Lemey, P.; Nougairede, A.; Forrester, N.L.; Khasnatinov, M.; Charrel, R.N.; Firth, A.E.; Gould, E.A.; de Lamballerie, X. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences. PLoS One, 2015, 10(2), e0117849.
[http://dx.doi.org/10.1371/journal.pone.0117849] [PMID: 25719412]
[43]
Zarrouk, A.; Hammouti, B.; Dafali, A.; Bouachrine, M.; Zarrok, H.; Boukhris, S.; Al-Deyab, S.S. A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. J. Saudi Chem. Soc., 2014, 18(5), 450-455.
[http://dx.doi.org/10.1016/j.jscs.2011.09.011]
[44]
Sens, L.; de Oliveira, A.; Mascarello, A.; Brighente, I.; Yunes, R.; Nunes, R. Synthesis, antioxidant activity, acetylcholinesterase inhibition and quantum studies of thiosemicarbazones. J. Braz. Chem. Soc., 2017, 29(2), 343-352.
[http://dx.doi.org/10.21577/0103-5053.20170146]
[45]
Beytur, M.; Turhan Irak, Z.; Manap, S.; Yüksek, H. Synthesis, characterization and theoretical determination of corrosion inhibitor activities of some new 4,5-dihydro-1H-1,2,4-triazol-5-one derivatives. Heliyon, 2019, 5(6), e01809.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01809] [PMID: 31194050]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy