Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

New Insights on the Role of Bioactive Food Derivatives in Neurodegeneration and Neuroprotection

Author(s): Alexandre Fisette, Domenico Sergi, Alyssa Breton-Morin, Savanah Descôteaux and Maria-Grazia Martinoli*

Volume 28, Issue 37, 2022

Published on: 06 October, 2022

Page: [3068 - 3081] Pages: 14

DOI: 10.2174/1381612828666220919085742

Price: $65

Abstract

Over the last three decades, neurodegenerative diseases have received increasing attention due to their frequency in the aging population and the social and economic burdens they are posing. In parallel, an era’s worth of research in neuroscience has shaped our current appreciation of the complex relationship between nutrition and the central nervous system. Particular branches of nutrition continue to galvanize neuroscientists, in particular the diverse roles that bioactive food derivatives play on health and disease. Bioactive food derivatives are nowadays recognized to directly impact brain homeostasis, specifically with respect to their actions on cellular mechanisms of oxidative stress, neuroinflammation, mitochondrial dysfunction, apoptosis and autophagy. However, ambiguities still exist regarding the significance of the influence of bioactive food derivatives on human health. In turn, gut microbiota dysbiosis is emerging as a novel player in the pathogenesis of neurodegenerative diseases. Currently, several routes of communication exist between the gut and the brain, where molecules are either released in the bloodstream or directly transported to the CNS. As such, bioactive food derivatives can modulate the complex ecosystem of the gut-brain axis, thus, targeting this communication network holds promises as a neuroprotective tool. This review aims at addressing one of the emerging aspects of neuroscience, particularly the interplay between food bioactive derivatives and neurodegeneration. We will specifically address the role that polyphenols and omega-3 fatty acids play in preventing neurodegenerative diseases and how dietary intervention complements available pharmacological approaches.

Keywords: Bioactive food derivatives, neurodegeneration, neuroprotection, oxidative stress, gut-brain axis, polyphenols, probiotics, fatty acids

[1]
Kumar R, Amruthanjali T, Singothu S, Singh SB, Bhandari V. Uncoupling proteins as a therapeutic target for the development of new era drugs against neurodegenerative disorder. Biomed Pharmacother 2022; 147: 112656.
[http://dx.doi.org/10.1016/j.biopha.2022.112656] [PMID: 35091238]
[2]
He L, Wang J, Yang Y, Li J, Tu H. Mitochondrial sirtuins in Parkinson’s disease. Neurochem Res 2022; 47(6): 1491-502.
[http://dx.doi.org/10.1007/s11064-022-03560-w] [PMID: 35220492]
[3]
Lashgari NA, Roudsari NM, Momtaz S, Sathyapalan T, Abdolghaffari AH, Sahebkar A. The involvement of JAK/STAT signaling pathway in the treatment of Parkinson’s disease. J Neuroimmunol 2021; 361: 577758.
[http://dx.doi.org/10.1016/j.jneuroim.2021.577758] [PMID: 34739911]
[4]
Hendrickx JO, Martinet W, Van Dam D, De Meyer GRY. Inflammation, nitro-oxidative stress, impaired autophagy, and insulin resistance as a mechanistic convergence between arterial stiffness and Alzheimer’s disease. Front Mol Biosci 2021; 8: 651215.
[http://dx.doi.org/10.3389/fmolb.2021.651215] [PMID: 33855048]
[5]
Appel SH, Beers DR, Zhao W. Amyotrophic lateral sclerosis is a systemic disease: Peripheral contributions to inflammation-mediated neurodegeneration. Curr Opin Neurol 2021; 34(5): 765-72.
[http://dx.doi.org/10.1097/WCO.0000000000000983] [PMID: 34402459]
[6]
Salim S. Oxidative stress and the central nervous system. J Pharmacol Exp Ther 2017; 360(1): 201-5.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[7]
Jaganjac M, Milkovic L, Zarkovic N, Zarkovic K. Oxidative stress and regeneration. Free Radic Biol Med 2022; 181: 154-65.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.02.004] [PMID: 35149216]
[8]
Snyder AM, Connor JR. Iron, the substantia nigra and related neurological disorders. Biochim Biophys Acta, Gen Subj 2009; 1790(7): 606-14.
[http://dx.doi.org/10.1016/j.bbagen.2008.08.005] [PMID: 18778755]
[9]
Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53(S3): S26-38.
[http://dx.doi.org/10.1002/ana.10483] [PMID: 12666096]
[10]
Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019; 18(6): e13031.
[http://dx.doi.org/10.1111/acel.13031] [PMID: 31432604]
[11]
He J, Zhu G, Wang G, Zhang F. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid Med Cell Longev 2020; 2020: 1-12.
[http://dx.doi.org/10.1155/2020/6137521] [PMID: 32714488]
[12]
Miyazaki I, Asanuma M. Neuron-astrocyte interactions in Parkinson’s disease. Cells 2020; 9(12): 2623.
[http://dx.doi.org/10.3390/cells9122623] [PMID: 33297340]
[13]
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl Neurodegener 2020; 9(1): 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[14]
Zhu G, Wang X, Chen L, et al. Crosstalk between the oxidative stress and glia cells after stroke: From mechanism to therapies. Front Immunol 2022; 13: 852416.
[http://dx.doi.org/10.3389/fimmu.2022.852416] [PMID: 35281064]
[15]
Pasqualetti G, Brooks DJ, Edison P. The role of neuroinflammation in dementias. Curr Neurol Neurosci Rep 2015; 15(4): 17.
[http://dx.doi.org/10.1007/s11910-015-0531-7] [PMID: 25716012]
[16]
Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 2006; 8(5-6): 929-47.
[http://dx.doi.org/10.1089/ars.2006.8.929] [PMID: 16771683]
[17]
Romeo MA, Gilardini Montani MS, Benedetti R, Arena A, Gaeta A, Cirone M. The dysregulation of autophagy and ER stress induced by HHV-6A infection activates pro-inflammatory pathways and promotes the release of inflammatory cytokines and cathepsin S by CNS cells. Virus Res 2022; 313: 198726.
[http://dx.doi.org/10.1016/j.virusres.2022.198726] [PMID: 35248672]
[18]
Han X, Sun S, Sun Y, et al. Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy 2019; 15(11): 1860-81.
[http://dx.doi.org/10.1080/15548627.2019.1596481] [PMID: 30966861]
[19]
Cho MH, Cho K, Kang HJ, et al. Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy 2014; 10(10): 1761-75.
[http://dx.doi.org/10.4161/auto.29647] [PMID: 25126727]
[20]
Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson’s disease. World J Gastroenterol 2015; 21(37): 10609-20.
[http://dx.doi.org/10.3748/wjg.v21.i37.10609] [PMID: 26457021]
[21]
Zhao F, Ci X, Man X, Li J, Wei Z, Zhang S. Food-derived pharmacological modulators of the Nrf2/ARE pathway: Their role in the treatment of diseases. Molecules 2021; 26(4): 1016.
[http://dx.doi.org/10.3390/molecules26041016] [PMID: 33671866]
[22]
Leri M, Scuto M, Ontario ML, et al. Healthy effects of plant polyphenols: Molecular mechanisms. Int J Mol Sci 2020; 21(4): 1250.
[http://dx.doi.org/10.3390/ijms21041250] [PMID: 32070025]
[23]
Sergi D, Morris AC, Kahn DE, et al. Palmitic acid triggers inflammatory responses in N42 cultured hypothalamic cells partially via ceramide synthesis but not via TLR4. Nutr Neurosci 2018; 1-14.
[PMID: 30032721]
[24]
Renaud J, Martinoli MG. Resveratrol as a protective molecule for neuroinflammation: A review of mechanisms. Curr Pharm Biotechnol 2014; 15(4): 318-29.
[http://dx.doi.org/10.2174/1389201015666140617101332] [PMID: 24938890]
[25]
Naumovski N, Sergi D. Food bioactives: Impact on brain and cardiometabolic health—findings from in vitro to human studies. Foods 2021; 10(5): 1045.
[http://dx.doi.org/10.3390/foods10051045] [PMID: 34064632]
[26]
Sergi D, Campbell FM, Grant C, et al. SerpinA3N is a novel hypothalamic gene upregulated by a high-fat diet and leptin in mice. Genes Nutr 2018; 13(1): 28.
[http://dx.doi.org/10.1186/s12263-018-0619-1] [PMID: 30519364]
[27]
Beaulieu J, Costa G, Renaud J, et al. The neuroinflammatory and neurotoxic potential of palmitic acid is mitigated by oleic acid in microglial cells and microglial-neuronal co-cultures. Mol Neurobiol 2021; 58(6): 3000-14.
[http://dx.doi.org/10.1007/s12035-021-02328-7] [PMID: 33604780]
[28]
Wink M. Current understanding of modes of action of multicomponent bioactive phytochemicals: Potential for nutraceuticals and antimicrobials. Annu Rev Food Sci Technol 2022; 13(1): 337-59.
[http://dx.doi.org/10.1146/annurev-food-052720-100326] [PMID: 35333591]
[29]
Munawar N, Ahmad A, Anwar MA, Muhammad K. Modulation of gut microbial diversity through non-pharmaceutical approaches to treat schizophrenia. Int J Mol Sci 2022; 23(5): 2625.
[http://dx.doi.org/10.3390/ijms23052625] [PMID: 35269766]
[30]
John T, Samuel B, Abolaji O, Folashade O, Oyetooke A, Oluwatosin F. Functional foods and bioactive compounds: roles in the prevention, treatment and management of neurodegenerative diseases. GSC Biol Pharm Sci 2020; 11(2): 297-313.
[http://dx.doi.org/10.30574/gscbps.2020.11.2.0143]
[31]
Manyam BV, Sánchez-Ramos JR. Traditional and complementary therapies in Parkinson’s disease. Adv Neurol 1999; 80: 565-74.
[PMID: 10410773]
[32]
Kim SR, Lee TY, Kim MS, Lee MC, Chung SJ. Use of complementary and alternative medicine by Korean patients with Parkinson’s disease. Clin Neurol Neurosurg 2009; 111(2): 156-60.
[http://dx.doi.org/10.1016/j.clineuro.2008.09.011] [PMID: 18977584]
[33]
Wang Y, Xie C, Wang WW, et al. Epidemiology of complementary and alternative medicine use in patients with Parkinson’s disease. J Clin Neurosci 2013; 20(8): 1062-7.
[http://dx.doi.org/10.1016/j.jocn.2012.10.022] [PMID: 23815871]
[34]
Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr 2000; 130(8): 2073S-85S.
[http://dx.doi.org/10.1093/jn/130.8.2073S] [PMID: 10917926]
[35]
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005; 81(1): 230S-42S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[36]
Orallo F. Trans-resveratrol: A magical elixir of eternal youth? Curr Med Chem 2008; 15(19): 1887-98.
[http://dx.doi.org/10.2174/092986708785132951] [PMID: 18691046]
[37]
Chong J, Poutaraud A, Hugueney P. Metabolism and roles of stilbenes in plants. Plant Sci 2009; 177(3): 143-55.
[http://dx.doi.org/10.1016/j.plantsci.2009.05.012]
[38]
Milke L, Aschenbrenner J, Marienhagen J, Kallscheuer N. Production of plant-derived polyphenols in microorganisms: Current state and perspectives. Appl Microbiol Biotechnol 2018; 102(4): 1575-85.
[http://dx.doi.org/10.1007/s00253-018-8747-5] [PMID: 29340710]
[39]
Rufino-Palomares EE, Pérez-Jiménez A, García-Salguero L, et al. Nutraceutical role of polyphenols and triterpenes present in the extracts of fruits and leaves of Olea europaea as antioxidants, anti-infectives and anticancer agents on healthy growth. Molecules 2022; 27(7): 2341.
[http://dx.doi.org/10.3390/molecules27072341] [PMID: 35408740]
[40]
Rudrapal M, Khairnar SJ, Khan J, et al. Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Front Pharmacol 2022; 13: 806470.
[http://dx.doi.org/10.3389/fphar.2022.806470] [PMID: 35237163]
[41]
Grosso G, Godos J, Currenti W, et al. The effect of dietary polyphenols on vascular health and hypertension: Current evidence and mechanisms of action. Nutrients 2022; 14(3): 545.
[http://dx.doi.org/10.3390/nu14030545] [PMID: 35276904]
[42]
Martiniakova M, Babikova M, Mondockova V, Blahova J, Kovacova V, Omelka R. The role of macronutrients, micronutrients and flavonoid polyphenols in the prevention and treatment of osteoporosis. Nutrients 2022; 14(3): 523.
[http://dx.doi.org/10.3390/nu14030523] [PMID: 35276879]
[43]
Caruso G, Godos J, Privitera A, et al. Phenolic acids and prevention of cognitive decline: polyphenols with a neuroprotective role in cognitive disorders and Alzheimer’s disease. Nutrients 2022; 14(4): 819.
[http://dx.doi.org/10.3390/nu14040819] [PMID: 35215469]
[44]
Yan L, Guo MS, Zhang Y, et al. Dietary plant polyphenols as the potential drugs in neurodegenerative diseases: Current evidence, advances, and opportunities. Oxid Med Cell Longev 2022; 2022: 1-40.
[http://dx.doi.org/10.1155/2022/5288698] [PMID: 35237381]
[45]
Rivas F, Poblete-Aro C, Pando ME, et al. Effects of polyphenols in aging and neurodegeneration associated with oxidative stress. Curr Med Chem 2022; 29(6): 1045-60.
[http://dx.doi.org/10.2174/0929867328666211101100632] [PMID: 34720075]
[46]
Sadrkhanloo M, Entezari M, Orouei S, et al. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci 2022; 300: 120561.
[http://dx.doi.org/10.1016/j.lfs.2022.120561] [PMID: 35460707]
[47]
Miguel CA, Noya-Riobó MV, Mazzone GL, Villar MJ, Coronel MF. Antioxidant, anti-inflammatory and neuroprotective actions of resveratrol after experimental nervous system insults. Special focus on the molecular mechanisms involved. Neurochem Int 2021; 150: 105188.
[http://dx.doi.org/10.1016/j.neuint.2021.105188] [PMID: 34536545]
[48]
Renaud J, Nabavi SF, Daglia M, Nabavi SM, Martinoli MG. Epigallocatechin-3-gallate, a promising molecule for Parkinson’s disease? Rejuvenation Res 2015; 18(3): 257-69.
[http://dx.doi.org/10.1089/rej.2014.1639] [PMID: 25625827]
[49]
Sergi D, Gélinas A, Beaulieu J, et al. Anti-apoptotic and anti-inflammatory role of trans ε-viniferin in a neuron–glia co-culture cellular model of Parkinson’s disease. Foods 2021; 10(3): 586.
[http://dx.doi.org/10.3390/foods10030586] [PMID: 33799534]
[50]
Achour I, Arel-Dubeau AM, Renaud J, et al. Oleuropein prevents neuronal death, mitigates mitochondrial superoxide production and modulates autophagy in a dopaminergic cellular model. Int J Mol Sci 2016; 17(8): 1293.
[http://dx.doi.org/10.3390/ijms17081293] [PMID: 27517912]
[51]
Freyssin A, Rioux Bilan A, Fauconneau B, et al. Trans ε-viniferin decreases amyloid deposits with greater efficiency than resveratrol in an Alzheimer’s mouse model. Front Neurosci 2022; 15: 803927.
[http://dx.doi.org/10.3389/fnins.2021.803927] [PMID: 35069106]
[52]
Singh N, Agrawal M, Doré S. Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 2013; 4(8): 1151-62.
[http://dx.doi.org/10.1021/cn400094w] [PMID: 23758534]
[53]
Fantacuzzi M, Amoroso R, Carradori S, De Filippis B. Resveratrol-based compounds and neurodegeneration: Recent insight in multitarget therapy. Eur J Med Chem 2022; 233: 114242.
[http://dx.doi.org/10.1016/j.ejmech.2022.114242] [PMID: 35276424]
[54]
Caruso G, Torrisi SA, Mogavero MP, et al. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol Ther 2022; 232: 108013.
[http://dx.doi.org/10.1016/j.pharmthera.2021.108013] [PMID: 34624428]
[55]
Adedara AO, Babalola AD, Stephano F, et al. An assessment of the rescue action of resveratrol in parkin loss of function-induced oxidative stress in Drosophila melanogaster. Sci Rep 2022; 12(1): 3922.
[http://dx.doi.org/10.1038/s41598-022-07909-7] [PMID: 35273283]
[56]
Campos J, Silva NA, Salgado AJ. Nutritional interventions for spinal cord injury: Preclinical efficacy and molecular mechanisms. Nutr Rev 2022; 80(5): 1206-21.
[http://dx.doi.org/10.1093/nutrit/nuab068] [PMID: 34472615]
[57]
Zhu T, Wang L, Wang L, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148: 112719.
[http://dx.doi.org/10.1016/j.biopha.2022.112719] [PMID: 35168073]
[58]
Zhang H, Zhao W. Resveratrol alleviates ischemic brain injury by inhibiting the activation of pro-inflammatory microglia via the CD147/MMP-9 pathway. J Stroke Cerebrovasc Dis 2022; 31(4): 106307.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2022.106307] [PMID: 35093629]
[59]
Li J, Zhao T, Qiao H, et al. Research progress of natural products for the treatment of ischemic stroke. J Integr Neurosci 2022; 21(1): 14.
[http://dx.doi.org/10.31083/j.jin2101014] [PMID: 35164450]
[60]
Jackson-Lewis V, Blesa J, Przedborski S. Animal models of Parkinson’s disease. Parkinsonism Relat Disord 2012; 18 (Suppl. 1): S183-5.
[http://dx.doi.org/10.1016/S1353-8020(11)70057-8] [PMID: 22166429]
[61]
Huang N, Zhang Y, Chen M, et al. Resveratrol delays 6-hydroxydopamine-induced apoptosis by activating the PI3K/Akt signaling pathway. Exp Gerontol 2019; 124: 110653.
[http://dx.doi.org/10.1016/j.exger.2019.110653] [PMID: 31295526]
[62]
Blanchet J, Longpré F, Bureau G, et al. Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32(5): 1243-50.
[http://dx.doi.org/10.1016/j.pnpbp.2008.03.024] [PMID: 18471948]
[63]
Guo YJ, Dong SY, Cui XX, et al. Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 2016; 60(10): 2161-75.
[http://dx.doi.org/10.1002/mnfr.201600111] [PMID: 27296520]
[64]
Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M, Farombi EO. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun 2018; 503(2): 1042-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.114] [PMID: 29935183]
[65]
Sun W, Li H, Shen Y, Xiao H. Resveratrol attenuates rotenone-induced inflammation and oxidative stress via STAT1 and Nrf2/Keap1/SLC7A11 pathway in a microglia cell line. Pathol Res Pract 2021; 225: 153576.
[http://dx.doi.org/10.1016/j.prp.2021.153576] [PMID: 34391968]
[66]
Rasheed MSU, Tripathi MK, Patel DK, Singh MP. Resveratrol regulates Nrf2-mediated expression of antioxidant and xenobiotic metabolizing enzymes in pesticides-induced parkinsonism. Protein Pept Lett 2020; 27(10): 1038-45.
[http://dx.doi.org/10.2174/0929866527666200403110036] [PMID: 32242774]
[67]
Palle S, Neerati P. Improved neuroprotective effect of resveratrol nanoparticles as evinced by abrogation of rotenone-induced behavioral deficits and oxidative and mitochondrial dysfunctions in rat model of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2018; 391(4): 445-53.
[http://dx.doi.org/10.1007/s00210-018-1474-8] [PMID: 29411055]
[68]
Zhao X, Wang J, Hu S, Wang R, Mao Y, Xie J. Neuroprotective effect of resveratrol on rotenone-treated C57BL/6 mice. Neuroreport 2017; 28(9): 498-505.
[http://dx.doi.org/10.1097/WNR.0000000000000789] [PMID: 28471847]
[69]
Bournival J, Quessy P, Martinoli MG. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 2009; 29(8): 1169-80.
[http://dx.doi.org/10.1007/s10571-009-9411-5] [PMID: 19466539]
[70]
Singh A, Yadawa AK, Chaturvedi S, Wahajuddin M, Mishra A, Singh S. Mechanism for antiParkinsonian effect of resveratrol: Involvement of transporters, synaptic proteins, dendrite arborization, biochemical alterations, ER stress and apoptosis. Food Chem Toxicol 2021; 155: 112433.
[http://dx.doi.org/10.1016/j.fct.2021.112433] [PMID: 34302886]
[71]
Zeng W, Zhang W, Lu F, Gao L, Gao G. Resveratrol attenuates MPP+-induced mitochondrial dysfunction and cell apoptosis via AKT/GSK-3β pathway in SN4741 cells. Neurosci Lett 2017; 637: 50-6.
[http://dx.doi.org/10.1016/j.neulet.2016.11.054] [PMID: 27894919]
[72]
Hou Y, Wang K, Wan W, Cheng Y, Pu X, Ye X. Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/] AKT/mTOR pathway after stroke in rats. Genes Dis 2018; 5(3): 245-55.
[http://dx.doi.org/10.1016/j.gendis.2018.06.001] [PMID: 30320189]
[73]
Lin KL, Lin KJ, Wang PW, et al. Resveratrol provides neuroprotective effects through modulation of mitochondrial dynamics and ERK1/2 regulated autophagy. Free Radic Res 2018; 52(11-12): 1371-86.
[http://dx.doi.org/10.1080/10715762.2018.1489128] [PMID: 30693838]
[74]
Lin TK, Chen SD, Chuang YC, et al. Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 2014; 15(1): 1625-46.
[http://dx.doi.org/10.3390/ijms15011625] [PMID: 24451142]
[75]
Tufekci KU, Eltutan BI, Isci KB, Genc S. Resveratrol inhibits NLRP3 inflammasome-induced pyroptosis and miR-155 expression in microglia through Sirt1/AMPK pathway. Neurotox Res 2021; 39(6): 1812-29.
[http://dx.doi.org/10.1007/s12640-021-00435-w] [PMID: 34739715]
[76]
Yang AJT, Frendo-Cumbo S, MacPherson REK. Resveratrol and metformin recover prefrontal cortex AMPK activation in diet-induced obese mice but reduce BDNF and synaptophysin protein content. J Alzheimers Dis 2019; 71(3): 945-56.
[http://dx.doi.org/10.3233/JAD-190123] [PMID: 31450493]
[77]
Yang Y, Hu L, Xia Y, et al. Resveratrol suppresses glial activation and alleviates trigeminal neuralgia via activation of AMPK. J Neuroinflammation 2016; 13(1): 84.
[http://dx.doi.org/10.1186/s12974-016-0550-6] [PMID: 27093858]
[78]
Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun 2017; 64: 162-72.
[http://dx.doi.org/10.1016/j.bbi.2017.03.003] [PMID: 28268115]
[79]
Sergi D, Naumovski N, Heilbronn LK, et al. Mitochondrial (dys)function and insulin resistance: From pathophysiological molecular mechanisms to the impact of diet. Front Physiol 2019; 10: 532.
[http://dx.doi.org/10.3389/fphys.2019.00532] [PMID: 31130874]
[80]
Farooqui T, Farooqui AA. Neuroprotective effects of phytochemicals in neurological disorders. John Wiley & Sons 2017.
[http://dx.doi.org/10.1002/9781119155195]
[81]
Jardim FR, de Rossi FT, Nascimento MX, et al. Resveratrol and brain mitochondria: A review. Mol Neurobiol 2018; 55(3): 2085-101.
[http://dx.doi.org/10.1007/s12035-017-0448-z] [PMID: 28283884]
[82]
Liu K-Y, Mo Y, Sun Y-Y. Autophagy and inflammation in ischemic stroke. Neural Regen Res 2020; 15(8): 1388-96.
[http://dx.doi.org/10.4103/1673-5374.274331] [PMID: 31997797]
[83]
Renaud J, Martinoli MG. Considerations for the use of polyphenols as therapies in neurodegenerative diseases. Int J Mol Sci 2019; 20(8): 1883.
[http://dx.doi.org/10.3390/ijms20081883] [PMID: 30995776]
[84]
McLean FH, Campbell FM, Sergi D, et al. Early and reversible changes to the hippocampal proteome in mice on a high-fat diet. Nutr Metab 2019; 16(1): 57.
[http://dx.doi.org/10.1186/s12986-019-0387-y] [PMID: 31462902]
[85]
Houlden H, Singleton AB. The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol 2012; 124(3): 325-38.
[http://dx.doi.org/10.1007/s00401-012-1013-5] [PMID: 22806825]
[86]
Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. Lancet Neurol 2012; 11(11): 986-98.
[http://dx.doi.org/10.1016/S1474-4422(12)70190-4] [PMID: 23079555]
[87]
Pankratz N, Wilk JB, Latourelle JC, et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 2009; 124(6): 593-605.
[http://dx.doi.org/10.1007/s00439-008-0582-9] [PMID: 18985386]
[88]
Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 2012; 120(6): 1060-71.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07660.x] [PMID: 22248073]
[89]
Dyall SC. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 2015; 7: 52.
[http://dx.doi.org/10.3389/fnagi.2015.00052] [PMID: 25954194]
[90]
Bousquet M, Saint-Pierre M, Julien C, Salem N Jr, Cicchetti F, Calon F. Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 2008; 22(4): 1213-25.
[http://dx.doi.org/10.1096/fj.07-9677com] [PMID: 18032633]
[91]
Massaro M, Habib A, Lubrano L, et al. The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKCε inhibition. Proc Natl Acad Sci USA 2006; 103(41): 15184-9.
[http://dx.doi.org/10.1073/pnas.0510086103] [PMID: 17018645]
[92]
Wang JY, Sekine S, Saito M. Effect of docosahexaenoic acid and ascorbate on peroxidation of retinal membranes of ODS rats. Free Radic Res 2003; 37(4): 419-24.
[http://dx.doi.org/10.1080/1071576031000070084] [PMID: 12747736]
[93]
Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 2009; 50: S400-5.
[http://dx.doi.org/10.1194/jlr.R800068-JLR200] [PMID: 19018037]
[94]
Calon F, Lim GP, Yang F, et al. Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 2004; 43(5): 633-45.
[http://dx.doi.org/10.1016/j.neuron.2004.08.013] [PMID: 15339646]
[95]
Calon F, Lim GP, Morihara T, et al. Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur J Neurosci 2005; 22(3): 617-26.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04253.x] [PMID: 16101743]
[96]
Luchtman DW, Meng Q, Wang X, Shao D, Song C. ω-3 fatty acid eicospentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. J Neurochem 2013; 124(6): 855-68.
[http://dx.doi.org/10.1111/jnc.12068] [PMID: 23106698]
[97]
Cardoso HD, Santos Junior EF, de Santana DF, et al. Omega-3 deficiency and neurodegeneration in the substantia nigra: Involvement of increased nitric oxide production and reduced BDNF expression. Biochim Biophys Acta 2014; 1840(6): 1902-12.
[http://dx.doi.org/10.1016/j.bbagen.2013.12.023] [PMID: 24361617]
[98]
Mori MA, Delattre AM, Carabelli B, et al. Neuroprotective effect of omega-3 polyunsaturated fatty acids in the 6-OHDA model of Parkinson’s disease is mediated by a reduction of inducible nitric oxide synthase. Nutr Neurosci 2018; 21(5): 341-51.
[http://dx.doi.org/10.1080/1028415X.2017.1290928] [PMID: 28221817]
[99]
Kabuto H, Amakawa M, Mankura M, Yamanushi TT, Mori A. Docosahexaenoic acid ethyl ester enhances 6-hydroxydopamine-induced neuronal damage by induction of lipid peroxidation in mouse striatum. Neurochem Res 2009; 34(7): 1299-303.
[http://dx.doi.org/10.1007/s11064-008-9909-0] [PMID: 19219632]
[100]
Joseph DKM. Muralidhara. Combined oral supplementation of fish oil and quercetin enhances neuroprotection in a chronic rotenone rat model: Relevance to Parkinson’s disease. Neurochem Res 2015; 40(5): 894-905.
[http://dx.doi.org/10.1007/s11064-015-1542-0] [PMID: 25687767]
[101]
Most J, Tosti V, Redman LM, Fontana L. Calorie restriction in humans: An update. Ageing Res Rev 2017; 39: 36-45.
[http://dx.doi.org/10.1016/j.arr.2016.08.005] [PMID: 27544442]
[102]
Bishop NA, Guarente L. Genetic links between diet and lifespan: Shared mechanisms from yeast to humans. Nat Rev Genet 2007; 8(11): 835-44.
[http://dx.doi.org/10.1038/nrg2188] [PMID: 17909538]
[103]
Zhang L, Xu H, Ding N, Li X, Chen X, Chen Z. Beneficial effects on brain micro-environment by caloric restriction in alleviating neurodegenerative diseases and brain aging. Front Physiol 2021; 12: 715443.
[http://dx.doi.org/10.3389/fphys.2021.715443] [PMID: 34899367]
[104]
Park H, Kang JH, Lee S. Autophagy in neurodegenerative diseases: A hunter for aggregates. Int J Mol Sci 2020; 21(9): 3369.
[http://dx.doi.org/10.3390/ijms21093369] [PMID: 32397599]
[105]
Arotcarena ML, Teil M, Dehay B. Autophagy in synucleinopathy: The overwhelmed and defective machinery. Cells 2019; 8(6): 565.
[http://dx.doi.org/10.3390/cells8060565] [PMID: 31181865]
[106]
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric restriction mimetics against age-associated disease: Targets, mechanisms, and therapeutic potential. Cell Metab 2019; 29(3): 592-610.
[http://dx.doi.org/10.1016/j.cmet.2019.01.018] [PMID: 30840912]
[107]
Kitada M, Koya D. The use of calorie restriction mimetics to study aging. Methods Mol Biol 2013; 1048: 95-107.
[http://dx.doi.org/10.1007/978-1-62703-556-9_8] [PMID: 23929100]
[108]
Wang SF, Wu MY, Cai CZ, Li M, Lu JH. Autophagy modulators from traditional Chinese medicine: Mechanisms and therapeutic potentials for cancer and neurodegenerative diseases. J Ethnopharmacol 2016; 194: 861-76.
[http://dx.doi.org/10.1016/j.jep.2016.10.069] [PMID: 27793785]
[109]
Xu BL, Wang R, Ma LN, et al. Comparison of the effects of resveratrol and caloric restriction on learning and memory in juvenile C57BL/6J mice. Iran J Basic Med Sci 2015; 18(11): 1118-23.
[PMID: 26949500]
[110]
Morselli E, Mariño G, Bennetzen MV, et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 2011; 192(4): 615-29.
[http://dx.doi.org/10.1083/jcb.201008167] [PMID: 21339330]
[111]
Singh S, Singh AK, Garg G, Rizvi SI. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration. Life Sci 2018; 193: 171-9.
[http://dx.doi.org/10.1016/j.lfs.2017.11.004] [PMID: 29122553]
[112]
Miller I. The gut-brain axis: Historical reflections. Microb Ecol Health Dis 2018; 29(1): 1542921.
[PMID: 30425612]
[113]
Chen CH, Lin CL, Kao CH. Irritable bowel syndrome is associated with an increased risk of dementia: A nationwide population-based study. PLoS One 2016; 11(1): e0144589.
[http://dx.doi.org/10.1371/journal.pone.0144589] [PMID: 26731277]
[114]
Lai SW, Liao KF, Lin CL, Sung FC. Irritable bowel syndrome correlates with increased risk of Parkinson’s disease in Taiwan. Eur J Epidemiol 2014; 29(1): 57-62.
[http://dx.doi.org/10.1007/s10654-014-9878-3] [PMID: 24442494]
[115]
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473(7346): 174-80.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[116]
Bezirtzoglou E. The intestinal microflora during the first weeks of life. Anaerobe 1997; 3(2-3): 173-7.
[http://dx.doi.org/10.1006/anae.1997.0102] [PMID: 16887585]
[117]
Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota. Nature 2019; 568(7753): 499-504.
[http://dx.doi.org/10.1038/s41586-019-0965-1] [PMID: 30745586]
[118]
Korpela K. Diet, microbiota, and metabolic health: Trade-off between saccharolytic and proteolytic fermentation. Annu Rev Food Sci Technol 2018; 9(1): 65-84.
[http://dx.doi.org/10.1146/annurev-food-030117-012830] [PMID: 29298101]
[119]
Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol Med 2014; 20(9): 509-18.
[http://dx.doi.org/10.1016/j.molmed.2014.05.002] [PMID: 24956966]
[120]
Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 2016; 167(6): 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[121]
Ganguli K, Meng D, Rautava S, Lu L, Walker WA, Nanthakumar N. Probiotics prevent necrotizing enterocolitis by modulating enterocyte genes that regulate innate immune-mediated inflammation. Am J Physiol Gastrointest Liver Physiol 2013; 304(2): G132-41.
[http://dx.doi.org/10.1152/ajpgi.00142.2012] [PMID: 23139215]
[122]
Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 2016; 21(6): 786-96.
[http://dx.doi.org/10.1038/mp.2016.44] [PMID: 27067014]
[123]
Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: Champion colonizer of the infant gut. Pediatr Res 2015; 77(1-2): 229-35.
[http://dx.doi.org/10.1038/pr.2014.156] [PMID: 25303277]
[124]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[125]
Dahlin M, Prast-Nielsen S. The gut microbiome and epilepsy. EBioMedicine 2019; 44: 741-6.
[http://dx.doi.org/10.1016/j.ebiom.2019.05.024] [PMID: 31160269]
[126]
Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease—a critical review. Mol Neurobiol 2019; 56(3): 1841-51.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[127]
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[128]
Zhuang ZQ, Shen LL, Li WW, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis 2018; 63(4): 1337-46.
[http://dx.doi.org/10.3233/JAD-180176] [PMID: 29758946]
[129]
Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol 2020; 19(2): 179-94.
[http://dx.doi.org/10.1016/S1474-4422(19)30356-4] [PMID: 31753762]
[130]
Cox LM, Weiner HL. Microbiota signaling pathways that influence neurologic disease. Neurotherapeutics 2018; 15(1): 135-45.
[http://dx.doi.org/10.1007/s13311-017-0598-8] [PMID: 29340928]
[131]
Caspani G, Swann J. Small talk: microbial metabolites involved in the signaling from microbiota to brain. Curr Opin Pharmacol 2019; 48: 99-106.
[http://dx.doi.org/10.1016/j.coph.2019.08.001] [PMID: 31525562]
[132]
Konjevod M, Perkovic NM, Sáiz J, Svob Strac D, Barbas C, Rojo D. Metabolomics analysis of microbiota-gut-brain axis in neurodegenerative and psychiatric diseases. J Pharm Biomed Anal 2021; 194: 113681.
[http://dx.doi.org/10.1016/j.jpba.2020.113681] [PMID: 33279302]
[133]
Zhao Y, Jaber V, Lukiw WJ. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer’s disease (AD): Detection of lipopolysaccharide (LPS) in AD hippocampus. Front Cell Infect Microbiol 2017; 7: 318.
[http://dx.doi.org/10.3389/fcimb.2017.00318] [PMID: 28744452]
[134]
Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010; 170(4): 1179-88.
[http://dx.doi.org/10.1016/j.neuroscience.2010.08.005] [PMID: 20696216]
[135]
Painold A, Mörkl S, Kashofer K, et al. A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disord 2019; 21(1): 40-9.
[http://dx.doi.org/10.1111/bdi.12682] [PMID: 30051546]
[136]
Szabó N, Kincses ZT, Toldi J, Vécsei L. Altered tryptophan metabolism in Parkinson’s disease: A possible novel therapeutic approach. J Neurol Sci 2011; 310(1-2): 256-60.
[http://dx.doi.org/10.1016/j.jns.2011.07.021] [PMID: 21824629]
[137]
Heilman PL, Wang EW, Lewis MM, et al. Tryptophan metabolites are associated with symptoms and nigral pathology in Parkinson’s disease. Mov Disord 2020; 35(11): 2028-37.
[http://dx.doi.org/10.1002/mds.28202] [PMID: 32710594]
[138]
Lyte M. Probiotics function mechanistically as delivery vehicles for neuroactive compounds: Microbial endocrinology in the design and use of probiotics. BioEssays 2011; 33(8): 574-81.
[http://dx.doi.org/10.1002/bies.201100024] [PMID: 21732396]
[139]
Shishov VA, Kirovskaia TA, Kudrin VS, Oleskin AV. Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Prikl Biokhim Mikrobiol 2009; 45(5): 550-4.
[PMID: 19845286]
[140]
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res 2018; 1693(Pt B): 128-33.
[http://dx.doi.org/10.1016/j.brainres.2018.03.015] [PMID: 29903615]
[141]
Stanaszek PM, Snell JF, O’Neill JJ. Isolation, extraction, and measurement of acetylcholine from Lactobacillus plantarum. Appl Environ Microbiol 1977; 34(2): 237-9.
[http://dx.doi.org/10.1128/aem.34.2.237-239.1977] [PMID: 907345]
[142]
Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 2012; 113(2): 411-7.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05344.x] [PMID: 22612585]
[143]
Cho YR, Chang JY, Chang HC. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J Microbiol Biotechnol 2007; 17(1): 104-9.
[PMID: 18051360]
[144]
Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J Appl Microbiol 2013; 114(1): 11-24.
[http://dx.doi.org/10.1111/j.1365-2672.2012.05434.x] [PMID: 22924898]
[145]
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015; 161(2): 264-76.
[http://dx.doi.org/10.1016/j.cell.2015.02.047] [PMID: 25860609]
[146]
Janik R, Thomason LAM, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. Neuroimage 2016; 125: 988-95.
[http://dx.doi.org/10.1016/j.neuroimage.2015.11.018] [PMID: 26577887]
[147]
Bravo JA, Forsythe P, Chew MV, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 2011; 108(38): 16050-5.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[148]
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 2015; 17(5): 565-76.
[http://dx.doi.org/10.1016/j.chom.2015.04.011] [PMID: 25974299]
[149]
van Kessel SP, Frye AK, El-Gendy AO, et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 2019; 10(1): 310.
[http://dx.doi.org/10.1038/s41467-019-08294-y] [PMID: 30659181]
[150]
Dahlin M, Elfving Å, Ungerstedt U, Åmark P. The ketogenic diet influences the levels of excitatory and inhibitory amino acids in the CSF in children with refractory epilepsy. Epilepsy Res 2005; 64(3): 115-25.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.03.008] [PMID: 15961283]
[151]
Vernocchi P, Del Chierico F, Putignani L. Gut microbiota profiling: Metabolomics based approach to unravel compounds affecting human health. Front Microbiol 2016; 7: 1144.
[http://dx.doi.org/10.3389/fmicb.2016.01144] [PMID: 27507964]
[152]
Schwiertz A, Spiegel J, Dillmann U, et al. Fecal markers of intestinal inflammation and intestinal permeability are elevated in Parkinson’s disease. Parkinsonism Relat Disord 2018; 50: 104-7.
[http://dx.doi.org/10.1016/j.parkreldis.2018.02.022] [PMID: 29454662]
[153]
Clairembault T, Leclair-Visonneau L, Coron E, et al. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun 2015; 3(1): 12.
[http://dx.doi.org/10.1186/s40478-015-0196-0] [PMID: 25775153]
[154]
Marizzoni M, Provasi S, Cattaneo A, Frisoni GB. Microbiota and neurodegenerative diseases. Curr Opin Neurol 2017; 30(6): 630-8.
[http://dx.doi.org/10.1097/WCO.0000000000000496] [PMID: 28906270]
[155]
Lorente-Picón M, Laguna A. New avenues for Parkinson’s disease therapeutics: Disease-modifying strategies based on the gut microbiota. Biomolecules 2021; 11(3): 433.
[http://dx.doi.org/10.3390/biom11030433] [PMID: 33804226]
[156]
Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 2013; 10(12): 729-40.
[http://dx.doi.org/10.1038/nrgastro.2013.180] [PMID: 24061204]
[157]
Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest 2015; 125(3): 908-17.
[http://dx.doi.org/10.1172/JCI76309] [PMID: 25664852]
[158]
Manfready RA, Engen PA, Verhagen Metman L, et al. Attenuated postprandial GLP-1 response in Parkinson’s disease. Front Neurosci 2021; 15: 660942.
[http://dx.doi.org/10.3389/fnins.2021.660942] [PMID: 34276285]
[159]
Mulvaney CA, Duarte GS, Handley J, et al. GLP-1 receptor agonists for Parkinson’s disease. Cochrane Database Syst Rev 2020; 7: CD012990.
[PMID: 32700772]
[160]
Goldman JG, Goetz CG, Berry-Kravis E, Leurgans S, Zhou L. Genetic polymorphisms in Parkinson disease subjects with and without hallucinations: An analysis of the cholecystokinin system. Arch Neurol 2004; 61(8): 1280-4.
[http://dx.doi.org/10.1001/archneur.61.8.1280] [PMID: 15313848]
[161]
Wang J, Si YM, Liu ZL, Yu L. Cholecystokinin, cholecystokinin-A receptor and cholecystokinin-B receptor gene polymorphisms in Parkinson’s disease. Pharmacogenetics 2003; 13(6): 365-9.
[http://dx.doi.org/10.1097/00008571-200306000-00008] [PMID: 12777967]
[162]
Fujii C, Harada S, Ohkoshi N, et al. Association between polymorphism of the cholecystokinin gene and idiopathic Parkinson’s disease. Clin Genet 1999; 56(5): 395-400.
[http://dx.doi.org/10.1034/j.1399-0004.1999.560508.x] [PMID: 10668930]
[163]
Zhang Z, Li H, Su Y, et al. Neuroprotective effects of a cholecystokinin analogue in the 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine Parkinson’s disease mouse model. Front Neurosci 2022; 16: 814430.
[http://dx.doi.org/10.3389/fnins.2022.814430] [PMID: 35368248]
[164]
Drucker DJ, Yusta B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu Rev Physiol 2014; 76(1): 561-83.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170317] [PMID: 24161075]
[165]
Drucker DJ. Evolving concepts and translational relevance of enteroendocrine cell biology. J Clin Endocrinol Metab 2016; 101(3): 778-86.
[http://dx.doi.org/10.1210/jc.2015-3449] [PMID: 26649620]
[166]
Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24(2): 197-211.
[http://dx.doi.org/10.1016/S0197-4580(02)00065-9] [PMID: 12498954]
[167]
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 2004; 318(1): 121-34.
[http://dx.doi.org/10.1007/s00441-004-0956-9] [PMID: 15338272]
[168]
Lee SJ, Desplats P, Sigurdson C, Tsigelny I, Masliah E. Cell-to-cell transmission of non-prion protein aggregates. Nat Rev Neurol 2010; 6(12): 702-6.
[http://dx.doi.org/10.1038/nrneurol.2010.145] [PMID: 21045796]
[169]
Kim C, Lv G, Lee JS, et al. Exposure to bacterial endotoxin generates a distinct strain of α-synuclein fibril. Sci Rep 2016; 6(1): 30891.
[http://dx.doi.org/10.1038/srep30891] [PMID: 27488222]
[170]
Stolzenberg E, Berry D, Yang D, et al. A role for neuronal alpha-synuclein in gastrointestinal immunity. J Innate Immun 2017; 9(5): 456-63.
[http://dx.doi.org/10.1159/000477990] [PMID: 28651250]
[171]
Chandra R, Hiniker A, Kuo YM, Nussbaum RL, Liddle RA. α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2017; 2(12): e92295.
[http://dx.doi.org/10.1172/jci.insight.92295] [PMID: 28614796]
[172]
Lal S, Kirkup AJ, Brunsden AM, Thompson DG, Grundy D. Vagal afferent responses to fatty acids of different chain length in the rat. Am J Physiol Gastrointest Liver Physiol 2001; 281(4): G907-15.
[http://dx.doi.org/10.1152/ajpgi.2001.281.4.G907] [PMID: 11557510]
[173]
Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 2015; 18(7): 965-77.
[http://dx.doi.org/10.1038/nn.4030] [PMID: 26030851]
[174]
Dutta SK, Verma S, Jain V, et al. Parkinson’s disease: The emerging role of gut dysbiosis, antibiotics, probiotics, and fecal microbiota transplantation. J Neurogastroenterol Motil 2019; 25(3): 363-76.
[http://dx.doi.org/10.5056/jnm19044] [PMID: 31327219]
[175]
Ait-Belgnaoui A, Durand H, Cartier C, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology 2012; 37(11): 1885-95.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.024] [PMID: 22541937]
[176]
Patel RM, Myers LS, Kurundkar AR, Maheshwari A, Nusrat A, Lin PW. Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am J Pathol 2012; 180(2): 626-35.
[http://dx.doi.org/10.1016/j.ajpath.2011.10.025] [PMID: 22155109]
[177]
Srivastav S, Neupane S, Bhurtel S, et al. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J Nutr Biochem 2019; 69: 73-86.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.021] [PMID: 31063918]
[178]
Rodes L, Saha S, Tomaro-Duchesneau C, Prakash S. Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 favorably modulates gut microbiota and reduces circulating endotoxins in F344 rats. BioMed Res Int 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/602832] [PMID: 24967382]
[179]
Mazurak N, Broelz E, Storr M, Enck P. Probiotic therapy of the irritable bowel syndrome: Why is the evidence still poor and what can be done about it? J Neurogastroenterol Motil 2015; 21(4): 471-85.
[http://dx.doi.org/10.5056/jnm15071] [PMID: 26351253]
[180]
Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: The efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46(4): 389-400.
[http://dx.doi.org/10.1111/apt.14203] [PMID: 28653751]
[181]
Purton T, Staskova L, Lane MM, et al. Prebiotic and probiotic supplementation and the tryptophan-kynurenine pathway: A systematic review and meta analysis. Neurosci Biobehav Rev 2021; 123: 1-13.
[http://dx.doi.org/10.1016/j.neubiorev.2020.12.026] [PMID: 33482244]
[182]
Mertsalmi TH, Aho VTE, Pereira PAB, et al. More than constipation - bowel symptoms in Parkinson’s disease and their connection to gut microbiota. Eur J Neurol 2017; 24(11): 1375-83.
[http://dx.doi.org/10.1111/ene.13398] [PMID: 28891262]
[183]
Minato T, Maeda T, Fujisawa Y, et al. Progression of Parkinson’s disease is associated with gut dysbiosis: Two-year follow-up study. PLoS One 2017; 12(11): e0187307.
[http://dx.doi.org/10.1371/journal.pone.0187307] [PMID: 29091972]
[184]
Pierantozzi M, Pietroiusti A, Sancesario G, et al. Reduced L -dopa absorption and increased clinical fluctuations in Helicobacter pylori -infected Parkinson’s disease patients. Neurol Sci 2001; 22(1): 89-91.
[http://dx.doi.org/10.1007/s100720170061] [PMID: 11487216]
[185]
Magistrelli L, Amoruso A, Mogna L, et al. Probiotics may have beneficial effects in Parkinson’s Disease: In vitro evidence. Front Immunol 2019; 10: 969.
[http://dx.doi.org/10.3389/fimmu.2019.00969] [PMID: 31134068]
[186]
Tankou SK, Regev K, Healy BC, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol 2018; 83(6): 1147-61.
[http://dx.doi.org/10.1002/ana.25244] [PMID: 29679417]
[187]
Rodes L, Khan A, Paul A, et al. Effect of probiotics Lactobacillus and Bifidobacterium on gut-derived lipopolysaccharides and inflammatory cytokines: An in vitro study using a human colonic microbiota model. J Microbiol Biotechnol 2013; 23(4): 518-26.
[http://dx.doi.org/10.4014/jmb.1205.05018] [PMID: 23568206]
[188]
Arunachalam K, Gill HS, Chandra RK. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur J Clin Nutr 2000; 54(3): 263-7.
[http://dx.doi.org/10.1038/sj.ejcn.1600938] [PMID: 10713750]
[189]
Gill HS, Rutherfurd KJ, Cross ML, Gopal PK. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin Nutr 2001; 74(6): 833-9.
[http://dx.doi.org/10.1093/ajcn/74.6.833] [PMID: 11722966]
[190]
Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr 2009; 101(4): 541-50.
[http://dx.doi.org/10.1017/S0007114508019880] [PMID: 18590586]
[191]
Vulevic J, Juric A, Walton GE, et al. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br J Nutr 2015; 114(4): 586-95.
[http://dx.doi.org/10.1017/S0007114515001889] [PMID: 26218845]
[192]
Savignac HM, Corona G, Mills H, et al. Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 2013; 63(8): 756-64.
[http://dx.doi.org/10.1016/j.neuint.2013.10.006] [PMID: 24140431]
[193]
Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat Rev Gastroenterol Hepatol 2019; 16(10): 605-16.
[http://dx.doi.org/10.1038/s41575-019-0173-3] [PMID: 31296969]
[194]
Shortt C, Hasselwander O, Meynier A, et al. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. Eur J Nutr 2018; 57(1): 25-49.
[http://dx.doi.org/10.1007/s00394-017-1546-4] [PMID: 29086061]
[195]
Kumar Singh A, Cabral C, Kumar R, et al. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients 2019; 11(9): 2216.
[http://dx.doi.org/10.3390/nu11092216] [PMID: 31540270]
[196]
Requena T, Martínez-Cuesta MC, Peláez C. Diet and microbiota linked in health and disease. Food Funct 2018; 9(2): 688-704.
[http://dx.doi.org/10.1039/C7FO01820G] [PMID: 29410981]
[197]
Yuan T, Ma H, Liu W, et al. Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci 2016; 7(1): 26-33.
[http://dx.doi.org/10.1021/acschemneuro.5b00260] [PMID: 26559394]
[198]
Verzelloni E, Pellacani C, Tagliazucchi D, et al. Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites. Mol Nutr Food Res 2011; 55(S1): S35-43.
[http://dx.doi.org/10.1002/mnfr.201000525] [PMID: 21240902]
[199]
Liu W, Ma H, Frost L, Yuan T, Dain JA, Seeram NP. Pomegranate phenolics inhibit formation of advanced glycation endproducts by scavenging reactive carbonyl species. Food Funct 2014; 5(11): 2996-3004.
[http://dx.doi.org/10.1039/C4FO00538D] [PMID: 25233108]
[200]
Alves-Santos AM, Sugizaki CSA, Lima GC, Naves MMV. Prebiotic effect of dietary polyphenols: A systematic review. J Funct Foods 2020; 74: 104169.
[http://dx.doi.org/10.1016/j.jff.2020.104169]
[201]
Li J, Wu T, Li N, Wang X, Chen G, Lyu X. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food Funct 2019; 10(1): 333-43.
[http://dx.doi.org/10.1039/C8FO01962B] [PMID: 30575836]
[202]
Henning SM, Yang J, Hsu M, et al. Decaffeinated green and black tea polyphenols decrease weight gain and alter microbiome populations and function in diet-induced obese mice. Eur J Nutr 2018; 57(8): 2759-69.
[http://dx.doi.org/10.1007/s00394-017-1542-8] [PMID: 28965248]
[203]
Zheng J, Yuan X, Zhang C, et al. N -Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in high-fat diet-fed mice. J Diabetes 2019; 11(1): 32-45.
[http://dx.doi.org/10.1111/1753-0407.12795] [PMID: 29845722]
[204]
Lee SI, Kang KS. N-acetylcysteine modulates lipopolysaccharide-induced intestinal dysfunction. Sci Rep 2019; 9(1): 1004.
[http://dx.doi.org/10.1038/s41598-018-37296-x] [PMID: 30700808]
[205]
Dean O, Giorlando F, Berk M. N-acetylcysteine in psychiatry: Current therapeutic evidence and potential mechanisms of action. J Psychiatry Neurosci 2011; 36(2): 78-86.
[http://dx.doi.org/10.1503/jpn.100057] [PMID: 21118657]
[206]
Berk M, Malhi GS, Gray LJ, Dean OM. The promise of N-acetylcysteine in neuropsychiatry. Trends Pharmacol Sci 2013; 34(3): 167-77.
[http://dx.doi.org/10.1016/j.tips.2013.01.001] [PMID: 23369637]
[207]
Bartoli F, Cavaleri D, Bachi B, et al. Repurposed drugs as adjunctive treatments for mania and bipolar depression: A meta-review and critical appraisal of meta-analyses of randomized placebo-controlled trials. J Psychiatr Res 2021; 143: 230-8.
[http://dx.doi.org/10.1016/j.jpsychires.2021.09.018] [PMID: 34509090]
[208]
Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta, Gen Subj 2013; 1830(8): 4117-29.
[http://dx.doi.org/10.1016/j.bbagen.2013.04.016] [PMID: 23618697]
[209]
Hype or hope? Nat Rev Microbiol 2019; 17(12): 717.
[http://dx.doi.org/10.1038/s41579-019-0283-5] [PMID: 31719687]
[210]
Araya-Quintanilla F, Gutiérrez-Espinoza H, Sánchez-Montoya U, et al. Effectiveness of omega-3 fatty acid supplementation in patients with Alzheimer disease: A systematic review and meta-analysis. Neurología (English Edition) 2020; 35(2): 105-14.
[http://dx.doi.org/10.1016/j.nrleng.2017.07.014] [PMID: 28986068]
[211]
Pantzaris M, Loukaides G, Paraskevis D, Kostaki EG, Patrikios I. Neuroaspis PLP10™, a nutritional formula rich in omega-3 and omega-6 fatty acids with antioxidant vitamins including gamma-tocopherol in early Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Neurol Neurosurg 2021; 210: 106954.
[http://dx.doi.org/10.1016/j.clineuro.2021.106954] [PMID: 34607196]
[212]
Jernerén F, Elshorbagy AK, Oulhaj A, Smith SM, Refsum H, Smith AD. Brain atrophy in cognitively impaired elderly: the importance of long-chain ω-3 fatty acids and B vitamin status in a randomized controlled trial. Am J Clin Nutr 2015; 102(1): 215-21.
[http://dx.doi.org/10.3945/ajcn.114.103283] [PMID: 25877495]
[213]
Oulhaj A, Jernerén F, Refsum H, Smith AD, de Jager CA. Omega-3 fatty acid status enhances the prevention of cognitive decline by B vitamins in mild cognitive impairment. J Alzheimers Dis 2016; 50(2): 547-57.
[http://dx.doi.org/10.3233/JAD-150777] [PMID: 26757190]
[214]
Rai SN, Singh P, Steinbusch HWM, Vamanu E, Ashraf G, Singh MP. The role of vitamins in neurodegenerative disease: An update. Biomedicines 2021; 9(10): 1284.
[http://dx.doi.org/10.3390/biomedicines9101284] [PMID: 34680401]
[215]
McNamara RK, Kalt W, Shidler MD, et al. Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging 2018; 64: 147-56.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.12.003] [PMID: 29458842]
[216]
Ibrahim A, Ali RAR, Manaf MRA, et al. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: A randomised controlled trial. PLoS One 2020; 15(12): e0244680.
[http://dx.doi.org/10.1371/journal.pone.0244680] [PMID: 33382780]
[217]
Tamtaji OR, Taghizadeh M, Daneshvar Kakhaki R, et al. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin Nutr 2019; 38(3): 1031-5.
[http://dx.doi.org/10.1016/j.clnu.2018.05.018] [PMID: 29891223]
[218]
Sergi D, Renaud J, Simola N, Martinoli MG. Diabetes, a contemporary risk for Parkinson’s disease: Epidemiological and cellular evidences. Front Aging Neurosci 2019; 11: 302.
[http://dx.doi.org/10.3389/fnagi.2019.00302] [PMID: 31787891]
[219]
Vamanu E, Gatea F. Correlations between microbiota bioactivity and bioavailability of functional compounds: A mini-review. Biomedicines 2020; 8(2): 39.
[http://dx.doi.org/10.3390/biomedicines8020039] [PMID: 32093399]
[220]
Kang KS, Wen Y, Yamabe N, Fukui M, Bishop SC, Zhu BT. Dual beneficial effects of (-)-epigallocatechin-3-gallate on levodopa methylation and hippocampal neurodegeneration: In vitro and in vivo studies. PLoS One 2010; 5(8): e11951.
[http://dx.doi.org/10.1371/journal.pone.0011951] [PMID: 20700524]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy