Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Potential Applications for Growth Hormone Secretagogues Treatment of Amyotrophic Lateral Sclerosis

Author(s): Ramona Meanti, Elena Bresciani, Laura Rizzi*, Silvia Coco, Vanessa Zambelli, Anna Dimitroulas, Laura Molteni, Robert J. Omeljaniuk, Vittorio Locatelli and Antonio Torsello

Volume 21, Issue 12, 2023

Published on: 12 January, 2023

Page: [2376 - 2394] Pages: 19

DOI: 10.2174/1570159X20666220915103613

Price: $65

Abstract

Amyotrophic lateral sclerosis (ALS) arises from neuronal death due to complex interactions of genetic, molecular, and environmental factors. Currently, only two drugs, riluzole and edaravone, have been approved to slow the progression of this disease. However, ghrelin and other ligands of the GHS-R1a receptor have demonstrated interesting neuroprotective activities that could be exploited in this pathology. Ghrelin, a 28-amino acid hormone, primarily synthesized and secreted by oxyntic cells in the stomach wall, binds to the pituitary GHS-R1a and stimulates GH secretion; in addition, ghrelin is endowed with multiple extra endocrine bioactivities. Native ghrelin requires esterification with octanoic acid for binding to the GHS-R1a receptor; however, this esterified form is very labile and represents less than 10% of circulating ghrelin. A large number of synthetic compounds, the growth hormone secretagogues (GHS) encompassing short peptides, peptoids, and non-peptidic moieties, are capable of mimicking several biological activities of ghrelin, including stimulation of GH release, appetite, and elevation of blood IGF-I levels. GHS have demonstrated neuroprotective and anticonvulsant effects in experimental models of pathologies both in vitro and in vivo. To illustrate, some GHS, currently under evaluation by regulatory agencies for the treatment of human cachexia, have a good safety profile and are safe for human use. Collectively, evidence suggests that ghrelin and cognate GHS may constitute potential therapies for ALS.

Keywords: Growth hormone secretagogues, ghrelin, amyotrophic lateral sclerosis, ALS, Neuroinflammation, neurodegenerative diseases

Graphical Abstract

[1]
Pradhan, G.; Samson, S.L.; Sun, Y. Ghrelin. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(6), 619-624.
[http://dx.doi.org/10.1097/MCO.0b013e328365b9be] [PMID: 24100676]
[2]
Ngo, S.T.; Wang, H.; Henderson, R.D.; Bowers, C.; Steyn, F.J. Ghrelin as a treatment for amyotrophic lateral sclerosis. J. Neuroendocrinol., 2021, 33(7), e12938.
[http://dx.doi.org/10.1111/jne.12938] [PMID: 33512025]
[3]
Steinman, J.; DeBoer, M.D. Treatment of cachexia. Vitam. Horm., 2013, 92, 197-242.
[http://dx.doi.org/10.1016/B978-0-12-410473-0.00008-8] [PMID: 23601426]
[4]
Vestergaard, E.T.; Krag, M.B.; Poulsen, M.M.; Pedersen, S.B.; Moller, N.; Jorgensen, J.O.L.; Jessen, N. Ghrelin- and GH-induced insulin resistance: No association with retinol-binding protein-4. Endocr. Connect., 2013, 2(2), 96-103.
[http://dx.doi.org/10.1530/EC-13-0019] [PMID: 23781325]
[5]
Bowers, C.Y. In Vitro and in Vivo Activity of a Small Synthetic Peptide with Potent GH Releasing Activity; The Endocrine Society: San Francisco, CA, 1982, p. 205.
[6]
Howard, A.D.; Feighner, S.D.; Cully, D.F.; Arena, J.P.; Liberator, P.A.; Rosenblum, C.I.; Hamelin, M.; Hreniuk, D.L.; Palyha, O.C.; Anderson, J.; Paress, P.S.; Diaz, C.; Chou, M.; Liu, K.K.; McKee, K.K.; Pong, S.S.; Chaung, L.Y.; Elbrecht, A.; Dashkevicz, M.; Heavens, R.; Rigby, M.; Sirinathsinghji, D.J.S.; Dean, D.C.; Melillo, D.G.; Patchett, A.A.; Nargund, R.; Griffin, P.R.; DeMartino, J.A.; Gupta, S.K.; Schaeffer, J.M.; Smith, R.G.; Van der Ploeg, L.H.T. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science, 1996, 273(5277), 974-977.
[http://dx.doi.org/10.1126/science.273.5277.974] [PMID: 8688086]
[7]
Bresciani, E.; Rizzi, L.; Coco, S.; Molteni, L.; Meanti, R.; Locatelli, V.; Torsello, A. Growth hormone secretagogues and the regulation of calcium signaling in muscle. Int. J. Mol. Sci., 2019, 20(18), 4361.
[http://dx.doi.org/10.3390/ijms20184361] [PMID: 31491959]
[8]
Sinha, D.K.; Balasubramanian, A.; Tatem, A.J.; Rivera-Mirabal, J.; Yu, J.; Kovac, J.; Pastuszak, A.W.; Lipshultz, L.I. Beyond the androgen receptor: The role of growth hormone secretagogues in the modern management of body composition in hypogonadal males. Transl. Androl. Urol., 2020, 9(S2), S149-S159.
[http://dx.doi.org/10.21037/tau.2019.11.30] [PMID: 32257855]
[9]
Soares, J.B.; Leite-Moreira, A.F. Ghrelin, des-acyl ghrelin and obestatin: Three pieces of the same puzzle. Peptides, 2008, 29(7), 1255-1270.
[http://dx.doi.org/10.1016/j.peptides.2008.02.018] [PMID: 18396350]
[10]
Nagaoka, U.; Shimizu, T.; Uchihara, T.; Komori, T.; Hosoda, H.; Takahashi, K. Decreased plasma ghrelin in male ALS patients is associated with poor prognosis. Neurosci Res, 2021, S01680102(21), 237-246.
[http://dx.doi.org/10.1016/j.neures.2021.11.003]
[11]
Pellecchia, M.T.; Pivonello, R.; Longo, K.; Manfredi, M.; Tessitore, A.; Amboni, M.; Pivonello, C.; Rocco, M.; Cozzolino, A.; Colao, A.; Barone, P. Multiple system atrophy is associated with changes in peripheral insulin-like growth factor system. Mov. Disord., 2010, 25(15), 2621-2626.
[http://dx.doi.org/10.1002/mds.23320] [PMID: 20683839]
[12]
Bilic, E.; Bilic, E.; Rudan, I.; Kusec, V.; Zurak, N.; Delimar, D.; Zagar, M. Comparison of the growth hormone, IGF-1 and insulin in cerebrospinal fluid and serum between patients with motor neuron disease and healthy controls. Eur. J. Neurol., 2006, 13(12), 1340-1345.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01503.x] [PMID: 17116217]
[13]
Morselli, L.L.; Bongioanni, P.; Genovesi, M.; Licitra, R.; Rossi, B.; Murri, L.; Rossi, G.; Martino, E.; Gasperi, M. Growth hormone secretion is impaired in amyotrophic lateral sclerosis. Clin. Endocrinol. (Oxf.), 2006, 65(3), 385-388.
[http://dx.doi.org/10.1111/j.1365-2265.2006.02609.x] [PMID: 16918961]
[14]
Gasperi, M.; Castellano, A.E. Growth hormone/insulin-like growth factor I axis in neurodegenerative diseases. J. Endocrinol. Invest., 2010, 33(8), 587-591.
[http://dx.doi.org/10.1007/BF03346653] [PMID: 20930497]
[15]
Carrera-Juliá, S.; Moreno, M.L.; Barrios, C.; de la Rubia Ortí, J.E.; Drehmer, E. Antioxidant alternatives in the treatment of amyotrophic lateral sclerosis: A comprehensive review. Front. Physiol., 2020, 11, 63.
[http://dx.doi.org/10.3389/fphys.2020.00063] [PMID: 32116773]
[16]
Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS genetics, mechanisms, and therapeutics: Where are we now? Front. Neurosci., 2019, 13, 1310.
[http://dx.doi.org/10.3389/fnins.2019.01310] [PMID: 31866818]
[17]
Goutman, S.A.; Hardiman, O.; Al-Chalabi, A.; Chió, A.; Savelieff, M.G.; Kiernan, M.C.; Feldman, E.L. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol., 2022, 21(5), 465-479.
[http://dx.doi.org/10.1016/S1474-4422(21)00414-2] [PMID: 35334234]
[18]
Chiò, A.; Logroscino, G.; Traynor, B.J.; Collins, J.; Simeone, J.C.; Goldstein, L.A.; White, L.A. Global epidemiology of amyotrophic lateral sclerosis: A systematic review of the published literature. Neuroepidemiology, 2013, 41(2), 118-130.
[http://dx.doi.org/10.1159/000351153] [PMID: 23860588]
[19]
Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929.
[http://dx.doi.org/10.1111/ene.14393] [PMID: 32526057]
[20]
Brotman, R.G.; Moreno-Escobar, M.C.; Joseph, J.; Pawar, G. Amyotrophic lateral sclerosis. In: StatPearls; StatPearls Publishing: Treasure Island, FL, 2021.
[21]
Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int., 2015, 6(1), 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[22]
Logroscino, G.; Traynor, B.J.; Hardiman, O.; Chiò, A.; Mitchell, D.; Swingler, R.J.; Millul, A.; Benn, E.; Beghi, E. Incidence of amyotrophic lateral sclerosis in Europe. J. Neurol. Neurosurg. Psychiatry, 2010, 81(4), 385-390.
[http://dx.doi.org/10.1136/jnnp.2009.183525] [PMID: 19710046]
[23]
Byrne, S.; Walsh, C.; Lynch, C.; Bede, P.; Elamin, M.; Kenna, K.; McLaughlin, R.; Hardiman, O. Rate of familial amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2011, 82(6), 623-627.
[http://dx.doi.org/10.1136/jnnp.2010.224501] [PMID: 21047878]
[24]
Marin, B.; Boumédiene, F.; Logroscino, G.; Couratier, P.; Babron, M.C.; Leutenegger, A.L.; Copetti, M.; Preux, P.M.; Beghi, E. Variation in worldwide incidence of amyotrophic lateral sclerosis: A meta-analysis. Int. J. Epidemiol., 2016, 46(1), dyw061.
[http://dx.doi.org/10.1093/ije/dyw061] [PMID: 27185810]
[25]
Ferraiuolo, L.; Kirby, J.; Grierson, A.J.; Sendtner, M.; Shaw, P.J. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat. Rev. Neurol., 2011, 7(11), 616-630.
[http://dx.doi.org/10.1038/nrneurol.2011.152] [PMID: 22051914]
[26]
Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet, 2011, 377(9769), 942-955.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[27]
Rothstein, J.D. Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv. Neurol., 1995, 68, 7-20.
[PMID: 8787245]
[28]
Lin, C.L.G.; Bristol, L.A.; Jin, L.; Dykes-Hoberg, M.; Crawford, T.; Clawson, L.; Rothstein, J.D. Aberrant RNA processing in a neurodegenerative disease: The cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron, 1998, 20(3), 589-602.
[http://dx.doi.org/10.1016/S0896-6273(00)80997-6] [PMID: 9539131]
[29]
Guo, H.; Lai, L.; Butchbach, M.E.R.; Stockinger, M.P.; Shan, X.; Bishop, G.A.; Lin, C.L. Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum. Mol. Genet., 2003, 12(19), 2519-2532.
[http://dx.doi.org/10.1093/hmg/ddg267] [PMID: 12915461]
[30]
Goodall, E.F.; Morrison, K.E. Amyotrophic lateral sclerosis (motor neuron disease): Proposed mechanisms and pathways to treatment. Expert Rev. Mol. Med., 2006, 8(11), 1-22.
[http://dx.doi.org/10.1017/S1462399406010854] [PMID: 16723044]
[31]
Matyja, E.; Taraszewska, A.; Nagańska, E.; Rafałowska, J.; Gębarowska, J. Astroglial alterations in amyotrophic lateral sclerosis (ALS) model of slow glutamate excitotoxicity in vitro. Folia Neuropathol., 2006, 44(3), 183-190.
[PMID: 17039413]
[32]
Van Den Bosch, L.; Van Damme, P.; Vleminckx, V.; Van Houtte, E.; Lemmens, G.; Missiaen, L.; Callewaert, G.; Robberecht, W. An α-mercaptoacrylic acid derivative (PD150606) inhibits selective motor neuron death via inhibition of kainate-induced Ca2+ influx and not via calpain inhibition. Neuropharmacology, 2002, 42(5), 706-713.
[http://dx.doi.org/10.1016/S0028-3908(02)00010-2] [PMID: 11985829]
[33]
Kawahara, Y.; Ito, K.; Sun, H.; Aizawa, H.; Kanazawa, I.; Kwak, S. RNA editing and death of motor neurons. Nature, 2004, 427(6977), 801-801.
[http://dx.doi.org/10.1038/427801a] [PMID: 14985749]
[34]
Forsberg, K.; Andersen, P.M.; Marklund, S.L.; Brännström, T. Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta Neuropathol., 2011, 121(5), 623-634.
[http://dx.doi.org/10.1007/s00401-011-0805-3] [PMID: 21287393]
[35]
Kiselyov, K.; Muallem, S. ROS and intracellular ion channels. Cell Calcium, 2016, 60(2), 108-114.
[http://dx.doi.org/10.1016/j.ceca.2016.03.004] [PMID: 26995054]
[36]
Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.; Serre, V.; Moore, D.G.; Verschueren, A.; Rouzier, C.; Le Ber, I.; Augé, G.; Cochaud, C.; Lespinasse, F.; N’Guyen, K.; de Septenville, A.; Brice, A.; Yu-Wai-Man, P.; Sesaki, H.; Pouget, J.; Paquis-Flucklinger, V. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain, 2014, 137(8), 2329-2345.
[http://dx.doi.org/10.1093/brain/awu138] [PMID: 24934289]
[37]
Granatiero, V.; Manfredi, G. Mitochondrial transport and turnover in the pathogenesis of amyotrophic lateral sclerosis. Biology (Basel), 2019, 8(2), 36.
[http://dx.doi.org/10.3390/biology8020036] [PMID: 31083575]
[38]
Lewinski, F.; Keller, B.U. Ca2+, mitochondria and selective motoneuron vulnerability: Implications for ALS. Trends Neurosci., 2005, 28(9), 494-500.
[http://dx.doi.org/10.1016/j.tins.2005.07.001] [PMID: 16026864]
[39]
Cozzolino, M.; Rossi, S.; Mirra, A.; Carrì, M.T. Mitochondrial dynamism and the pathogenesis of Amyotrophic Lateral Sclerosis. Front. Cell. Neurosci., 2015, 9, 31.
[http://dx.doi.org/10.3389/fncel.2015.00031] [PMID: 25713513]
[40]
Echaniz-Laguna, A.; Zoll, J.; Ribera, F.; Tranchant, C.; Warter, J.M.; Lonsdorfer, J.; Lampert, E. Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Ann. Neurol., 2002, 52(5), 623-627.
[http://dx.doi.org/10.1002/ana.10357] [PMID: 12402260]
[41]
Jaiswal, M. Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: Implications for motoneurons specific calcium dysregulation. Mol. Cell. Ther., 2014, 2(1), 26.
[http://dx.doi.org/10.1186/2052-8426-2-26] [PMID: 26056593]
[42]
Pasinelli, P.; Brown, R.H. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat. Rev. Neurosci., 2006, 7(9), 710-723.
[http://dx.doi.org/10.1038/nrn1971] [PMID: 16924260]
[43]
Boillée, S.; Vande, V.C.; Cleveland, D.W. ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron, 2006, 52(1), 39-59.
[http://dx.doi.org/10.1016/j.neuron.2006.09.018] [PMID: 17015226]
[44]
D’Amico, E.; Factor-Litvak, P.; Santella, R.M.; Mitsumoto, H. Clinical perspective of oxidative stress in sporadic ALS. Free Radic. Biol. Med., 2013, 65, 509-27.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.06.029] [PMID: 23797033]
[45]
Wijesekera, L.C.; Nigel Leigh, P. Amyotrophic lateral sclerosis. Orphanet J. Rare Dis., 2009, 4(1), 3.
[http://dx.doi.org/10.1186/1750-1172-4-3] [PMID: 19192301]
[46]
De Vos, K.J.; Hafezparast, M. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research? Neurobiol. Dis., 2017, 105, 283-299.
[http://dx.doi.org/10.1016/j.nbd.2017.02.004] [PMID: 28235672]
[47]
Corbo, M.; Hays, A.P. Peripherin and neurofilament protein coexist in spinal spheroids of motor neuron disease. J. Neuropathol. Exp. Neurol., 1992, 51(5), 531-537.
[http://dx.doi.org/10.1097/00005072-199209000-00008] [PMID: 1381416]
[48]
Ikenaka, K.; Katsuno, M.; Kawai, K.; Ishigaki, S.; Tanaka, F.; Sobue, G. Disruption of axonal transport in motor neuron diseases. Int. J. Mol. Sci., 2012, 13(1), 1225-1238.
[http://dx.doi.org/10.3390/ijms13011225] [PMID: 22312314]
[49]
Boylan, K. Familial ALS. Neurol. Clin., 2015, 33(4), 807-830.
[http://dx.doi.org/10.1016/j.ncl.2015.07.001] [PMID: 26515623]
[50]
Pang, S.Y.Y.; Hsu, J.S.; Teo, K.C.; Li, Y.; Kung, M.H.W.; Cheah, K.S.E.; Chan, D.; Cheung, K.M.C.; Li, M.; Sham, P.C.; Ho, S.L. Burden of rare variants in ALS genes influences survival in familial and sporadic ALS. Neurobiol. Aging, 2017, 58, 238.e9-238.e15.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.06.007] [PMID: 28709720]
[51]
Iacoangeli, A.; Al Khleifat, A.; Jones, A.R.; Sproviero, W.; Shatunov, A.; Opie-Martin, S.; Morrison, K.E.; Shaw, P.J.; Shaw, C.E.; Fogh, I.; Dobson, R.J.; Newhouse, S.J.; Al-Chalabi, A. C9orf72 intermediate expansions of 24-30 repeats are associated with ALS. Acta Neuropathol. Commun., 2019, 7(1), 115.
[http://dx.doi.org/10.1186/s40478-019-0724-4] [PMID: 31315673]
[52]
Harms, M.B.; Cady, J.; Zaidman, C.; Cooper, P.; Bali, T.; Allred, P.; Cruchaga, C.; Baughn, M.; Pestronk, A.; Goate, A. Lack of C9ORF72 coding mutations supports a gain of function for repeat expansions in ALS. Neurobiol. Aging, 2013, 34(9), 2234.e13-2234.e19.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.006] [PMID: 23597494]
[53]
Van Mossevelde, S.; van der Zee, J.; Cruts, M.; Van Broeckhoven, C. Relationship between C9orf72 repeat size and clinical phenotype. Curr. Opin. Genet. Dev., 2017, 44, 117-124.
[http://dx.doi.org/10.1016/j.gde.2017.02.008] [PMID: 28319737]
[54]
Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X.; Rahmani, Z.; Krizus, A.; McKenna-Yasek, D.; Cayabyab, A.; Gaston, S.M.; Berger, R.; Tanzi, R.E.; Halperin, J.J.; Herzfeldt, B.; Van den Bergh, R.; Hung, W-Y.; Bird, T.; Deng, G.; Mulder, D.W.; Smyth, C.; Laing, N.G.; Soriano, E.; Pericak-Vance, M.A.; Haines, J.; Rouleau, G.A.; Gusella, J.S.; Horvitz, H.R.; Brown, R.H. Jr Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 1993, 362(6415), 59-62.
[http://dx.doi.org/10.1038/362059a0] [PMID: 8446170]
[55]
Kaur, S.J.; McKeown, S.R.; Rashid, S. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene, 2016, 577(2), 109-118.
[http://dx.doi.org/10.1016/j.gene.2015.11.049] [PMID: 26657039]
[56]
Hand, C.K.; Rouleau, G.A. Familial amyotrophic lateral sclerosis. Muscle Nerve, 2002, 25(2), 135-159.
[http://dx.doi.org/10.1002/mus.10001] [PMID: 11870681]
[57]
Buratti, E.; Baralle, F.E. Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front. Biosci., 2008, 13(13), 867-878.
[http://dx.doi.org/10.2741/2727] [PMID: 17981595]
[58]
Kühnlein, P.; Sperfeld, A.D.; Vanmassenhove, B.; Van Deerlin, V.; Lee, V.M.Y.; Trojanowski, J.Q.; Kretzschmar, H.A.; Ludolph, A.C.; Neumann, M. Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Arch. Neurol., 2008, 65(9), 1185-1189.
[http://dx.doi.org/10.1001/archneur.65.9.1185] [PMID: 18779421]
[59]
Kwiatkowski, T.J., Jr; Bosco, D.A.; LeClerc, A.L.; Tamrazian, E.; Vanderburg, C.R.; Russ, C.; Davis, A.; Gilchrist, J.; Kasarskis, E.J.; Munsat, T.; Valdmanis, P.; Rouleau, G.A.; Hosler, B.A.; Cortelli, P.; de Jong, P.J.; Yoshinaga, Y.; Haines, J.L.; Pericak-Vance, M.A.; Yan, J.; Ticozzi, N.; Siddique, T.; McKenna-Yasek, D.; Sapp, P.C.; Horvitz, H.R.; Landers, J.E.; Brown, R.H., Jr Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 2009, 323(5918), 1205-1208.
[http://dx.doi.org/10.1126/science.1166066] [PMID: 19251627]
[60]
Nolan, M.; Talbot, K.; Ansorge, O. Pathogenesis of FUS-associated ALS and FTD: Insights from rodent models. Acta Neuropathol. Commun., 2016, 4(1), 99.
[http://dx.doi.org/10.1186/s40478-016-0358-8] [PMID: 27600654]
[61]
Merner, N.D.; Girard, S.L.; Catoire, H.; Bourassa, C.V.; Belzil, V.V.; Rivière, J.B.; Hince, P.; Levert, A.; Dionne-Laporte, A.; Spiegelman, D.; Noreau, A.; Diab, S.; Szuto, A.; Fournier, H.; Raelson, J.; Belouchi, M.; Panisset, M.; Cossette, P.; Dupré, N.; Bernard, G.; Chouinard, S.; Dion, P.A.; Rouleau, G.A. Exome sequencing identifies FUS mutations as a cause of essential tremor. Am. J. Hum. Genet., 2012, 91(2), 313-319.
[http://dx.doi.org/10.1016/j.ajhg.2012.07.002] [PMID: 22863194]
[62]
Ticozzi, N.; Silani, V.; LeClerc, A.L.; Keagle, P.; Gellera, C.; Ratti, A.; Taroni, F.; Kwiatkowski, T.J., Jr; McKenna-Yasek, D.M.; Sapp, P.C.; Brown, R.H., Jr; Landers, J.E. Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort. Neurology, 2009, 73(15), 1180-1185.
[http://dx.doi.org/10.1212/WNL.0b013e3181bbff05] [PMID: 19741215]
[63]
Fischer, L.R.; Culver, D.G.; Tennant, P.; Davis, A.A.; Wang, M.; Castellano-Sanchez, A.; Khan, J.; Polak, M.A.; Glass, J.D. Amyotrophic lateral sclerosis is a distal axonopathy: Evidence in mice and man. Exp. Neurol., 2004, 185(2), 232-240.
[http://dx.doi.org/10.1016/j.expneurol.2003.10.004] [PMID: 14736504]
[64]
Mancuso, R.; Santos-Nogueira, E.; Osta, R.; Navarro, X. Electrophysiological analysis of a murine model of motoneuron disease. Clin. Neurophysiol., 2011, 122(8), 1660-1670.
[http://dx.doi.org/10.1016/j.clinph.2011.01.045] [PMID: 21354365]
[65]
Moloney, E.B.; de Winter, F.; Verhaagen, J. ALS as a distal axonopathy: Molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front. Neurosci., 2014, 8, 252.
[http://dx.doi.org/10.3389/fnins.2014.00252] [PMID: 25177267]
[66]
Zhou, J.; Li, A.; Li, X.; Yi, J. Dysregulated mitochondrial Ca2+ and ROS signaling in skeletal muscle of ALS mouse model. Arch. Biochem. Biophys., 2019, 663, 249-258.
[http://dx.doi.org/10.1016/j.abb.2019.01.024] [PMID: 30682329]
[67]
Afifi, A.K.; Aleu, F.P.; Goodgold, J.; MacKay, B. Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis. Neurology, 1966, 16(5), 475-481.
[http://dx.doi.org/10.1212/WNL.16.5.475] [PMID: 5949060]
[68]
Sasaki, S.; Iwata, M. Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2007, 66(1), 10-16.
[http://dx.doi.org/10.1097/nen.0b013e31802c396b] [PMID: 17204932]
[69]
Wong, P.C.; Pardo, C.A.; Borchelt, D.R.; Lee, M.K.; Copeland, N.G.; Jenkins, N.A.; Sisodia, S.S.; Cleveland, D.W.; Price, D.L. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron, 1995, 14(6), 1105-1116.
[http://dx.doi.org/10.1016/0896-6273(95)90259-7] [PMID: 7605627]
[70]
Deng, H.X.; Shi, Y.; Furukawa, Y.; Zhai, H.; Fu, R.; Liu, E.; Gorrie, G.H.; Khan, M.S.; Hung, W.Y.; Bigio, E.H.; Lukas, T.; Dal Canto, M.C.; O’Halloran, T.V.; Siddique, T. Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria. Proc. Natl. Acad. Sci. USA, 2006, 103(18), 7142-7147.
[http://dx.doi.org/10.1073/pnas.0602046103] [PMID: 16636275]
[71]
Napoli, L.; Crugnola, V.; Lamperti, C.; Silani, V.; Di Mauro, S.; Bresolin, N.; Moggio, M. Ultrastructural mitochondrial abnormalities in patients with sporadic amyotrophic lateral sclerosis. Arch. Neurol., 2011, 68(12), 1612-1613.
[http://dx.doi.org/10.1001/archneur.68.12.1612] [PMID: 22159065]
[72]
Fidziańska, A. Morphological differences between the atrophied small muscle fibres in amyotrophic lateral sclerosis and Werdnig-Hoffmann disease. Acta Neuropathol., 1976, 34(4), 321-327.
[http://dx.doi.org/10.1007/BF00696561] [PMID: 1274524]
[73]
Wiedemann, F.R.; Winkler, K.; Kuznetsov, A.V.; Bartels, C.; Vielhaber, S.; Feistner, H.; Kunz, W.S. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J. Neurol. Sci., 1998, 156(1), 65-72.
[http://dx.doi.org/10.1016/S0022-510X(98)00008-2] [PMID: 9559989]
[74]
Al-Sarraj, S.; King, A.; Cleveland, M.; Pradat, P.F.; Corse, A.; Rothstein, J.D.; Leigh, P.N.; Abila, B.; Bates, S.; Wurthner, J.; Meininger, V. Mitochondrial abnormalities and low grade inflammation are present in the skeletal muscle of a minority of patients with amyotrophic lateral sclerosis; an observational myopathology study. Acta Neuropathol. Commun., 2014, 2(1), 165.
[http://dx.doi.org/10.1186/s40478-014-0165-z] [PMID: 25510661]
[75]
Crugnola, V.; Lamperti, C.; Lucchini, V.; Ronchi, D.; Peverelli, L.; Prelle, A.; Sciacco, M.; Bordoni, A.; Fassone, E.; Fortunato, F.; Corti, S.; Silani, V.; Bresolin, N.; Di Mauro, S.; Comi, G.P.; Moggio, M. Mitochondrial respiratory chain dysfunction in muscle from patients with amyotrophic lateral sclerosis. Arch. Neurol., 2010, 67(7), 849-854.
[http://dx.doi.org/10.1001/archneurol.2010.128] [PMID: 20625092]
[76]
Artuso, L.; Zoccolella, S.; Favia, P.; Amati, A.; Capozzo, R.; Logroscino, G.; Serlenga, L.; Simone, I.; Gasparre, G.; Petruzzella, V. Mitochondrial genome aberrations in skeletal muscle of patients with motor neuron disease. Amyotroph. Lateral Scler. Frontotemporal Degener., 2013, 14(4), 261-266.
[http://dx.doi.org/10.3109/21678421.2012.735239] [PMID: 23134511]
[77]
Bernardini, C.; Censi, F.; Lattanzi, W.; Barba, M.; Calcagnini, G.; Giuliani, A.; Tasca, G.; Sabatelli, M.; Ricci, E.; Michetti, F. Mitochondrial network genes in the skeletal muscle of amyotrophic lateral sclerosis patients. PLoS One, 2013, 8(2), e57739.
[http://dx.doi.org/10.1371/journal.pone.0057739] [PMID: 23469062]
[78]
Russell, A.P.; Wada, S.; Vergani, L.; Hock, M.B.; Lamon, S.; Léger, B.; Ushida, T.; Cartoni, R.; Wadley, G.D.; Hespel, P.; Kralli, A.; Soraru, G.; Angelini, C.; Akimoto, T. Disruption of skeletal muscle mitochondrial network genes and miRNAs in amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 49, 107-117.
[http://dx.doi.org/10.1016/j.nbd.2012.08.015] [PMID: 22975021]
[79]
Gurney, M.E.; Pu, H.; Chiu, A.Y.; Dal Canto, M.C.; Polchow, C.Y.; Alexander, D.D.; Caliendo, J.; Hentati, A.; Kwon, Y.W.; Deng, H.X.; Chen, W.; Zhai, P.; Sufit, R.L.; Siddique, T. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science, 1994, 264(5166), 1772-1775.
[http://dx.doi.org/10.1126/science.8209258] [PMID: 8209258]
[80]
Turner, M.R.; Bowser, R.; Bruijn, L.; Dupuis, L.; Ludolph, A.; McGrath, M.; Manfredi, G.; Maragakis, N.; Miller, R.G.; Pullman, S.L.; Rutkove, S.B.; Shaw, P.J.; Shefner, J.; Fischbeck, K.H. Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 2013, 14(Suppl. 1), 19-32.
[http://dx.doi.org/10.3109/21678421.2013.778554] [PMID: 23678877]
[81]
Luo, G.; Yi, J.; Ma, C.; Xiao, Y.; Yi, F.; Yu, T.; Zhou, J. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model. PLoS One, 2013, 8(12), e82112.
[http://dx.doi.org/10.1371/journal.pone.0082112] [PMID: 24324755]
[82]
Ding, Y.; Fang, H.; Shang, W.; Xiao, Y.; Sun, T.; Hou, N.; Pan, L.; Sun, X.; Ma, Q.; Zhou, J.; Wang, X.; Zhang, X.; Cheng, H. Mitoflash altered by metabolic stress in insulin-resistant skeletal muscle. J. Mol. Med. (Berl.), 2015, 93(10), 1119-1130.
[http://dx.doi.org/10.1007/s00109-015-1278-y] [PMID: 25908643]
[83]
Morimoto, N.; Nagai, M.; Ohta, Y.; Miyazaki, K.; Kurata, T.; Morimoto, M.; Murakami, T.; Takehisa, Y.; Ikeda, Y.; Kamiya, T.; Abe, K. Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res., 2007, 1167, 112-117.
[http://dx.doi.org/10.1016/j.brainres.2007.06.045] [PMID: 17689501]
[84]
Li, L.; Zhang, X.; Le, W. Altered macroautophagy in the spinal cord of SOD1 mutant mice. Autophagy, 2008, 4(3), 290-293.
[http://dx.doi.org/10.4161/auto.5524] [PMID: 18196963]
[85]
Sasaki, S. Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol., 2011, 70(5), 349-359.
[http://dx.doi.org/10.1097/NEN.0b013e3182160690] [PMID: 21487309]
[86]
Hara, H.; Kuwano, K.; Araya, J. Mitochondrial quality control in COPD and IPF. Cells, 2018, 7(8), 86.
[http://dx.doi.org/10.3390/cells7080086] [PMID: 30042371]
[87]
Zhou, J.; Yi, J.; Fu, R.; Liu, E.; Siddique, T.; Ríos, E.; Deng, H.X. Hyperactive intracellular calcium signaling associated with localized mitochondrial defects in skeletal muscle of an animal model of amyotrophic lateral sclerosis. J. Biol. Chem., 2010, 285(1), 705-712.
[http://dx.doi.org/10.1074/jbc.M109.041319] [PMID: 19889637]
[88]
Dupuis, L.; Scala, F.; Rene, F.; Tapia, M.; Oudart, H.; Pradat, P.F.; Meininger, V.; Loeffler, J.P. Up‐regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB J., 2003, 17(14), 1-19.
[http://dx.doi.org/10.1096/fj.02-1182fje] [PMID: 14500553]
[89]
Wong, M.; Martin, L.J. Skeletal muscle-restricted expression of human SOD1 causes motor neuron degeneration in transgenic mice. Hum. Mol. Genet., 2010, 19(11), 2284-2302.
[http://dx.doi.org/10.1093/hmg/ddq106] [PMID: 20223753]
[90]
Yi, J.; Ma, C.; Li, Y.; Weisleder, N.; Ríos, E.; Ma, J.; Zhou, J. Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J. Biol. Chem., 2011, 286(37), 32436-32443.
[http://dx.doi.org/10.1074/jbc.M110.217711] [PMID: 21795684]
[91]
Chin, E.R.; Chen, D.; Bobyk, K.D.; Mázala, D.A.G. Perturbations in intracellular Ca2+ handling in skeletal muscle in the G93A* SOD1 mouse model of amyotrophic lateral sclerosis. Am. J. Physiol. Cell Physiol., 2014, 307(11), C1031-C1038.
[http://dx.doi.org/10.1152/ajpcell.00237.2013] [PMID: 25252949]
[92]
Faes, L.; Callewaert, G. Mitochondrial dysfunction in familial amyotrophic lateral sclerosis. J. Bioenerg. Biomembr., 2011, 43(6), 587-592.
[http://dx.doi.org/10.1007/s10863-011-9393-0] [PMID: 22072073]
[93]
Le Masson, G.; Przedborski, S.; Abbott, L.F. A computational model of motor neuron degeneration. Neuron, 2014, 83(4), 975-988.
[http://dx.doi.org/10.1016/j.neuron.2014.07.001] [PMID: 25088365]
[94]
Muller, F.L.; Song, W.; Jang, Y.C.; Liu, Y.; Sabia, M.; Richardson, A.; Van Remmen, H. Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(3), R1159-R1168.
[http://dx.doi.org/10.1152/ajpregu.00767.2006] [PMID: 17584954]
[95]
Körner, S.; Kollewe, K.; Ilsemann, J.; Müller-Heine, A.; Dengler, R.; Krampfl, K.; Petri, S. Prevalence and prognostic impact of comorbidities in amyotrophic lateral sclerosis. Eur. J. Neurol., 2013, 20(4), 647-654.
[http://dx.doi.org/10.1111/ene.12015] [PMID: 23094606]
[96]
Bouteloup, C.; Desport, J.C.; Clavelou, P.; Guy, N.; Derumeaux-Burel, H.; Ferrier, A.; Couratier, P. Hypermetabolism in ALS patients: An early and persistent phenomenon. J. Neurol., 2009, 256(8), 1236-1242.
[http://dx.doi.org/10.1007/s00415-009-5100-z] [PMID: 19306035]
[97]
Vaisman, N.; Lusaus, M.; Nefussy, B.; Niv, E.; Comaneshter, D.; Hallack, R.; Drory, V.E. Do patients with amyotrophic lateral sclerosis (ALS) have increased energy needs? J. Neurol. Sci., 2009, 279(1-2), 26-29.
[http://dx.doi.org/10.1016/j.jns.2008.12.027] [PMID: 19185883]
[98]
Desport, J.C.; Torny, F.; Lacoste, M.; Preux, P.M.; Couratier, P. Hypermetabolism in ALS: Correlations with clinical and paraclinical parameters. Neurodegener. Dis., 2005, 2(3-4), 202-207.
[http://dx.doi.org/10.1159/000089626] [PMID: 16909026]
[99]
Gallo, V.; Wark, P.A.; Jenab, M.; Pearce, N.; Brayne, C.; Vermeulen, R.; Andersen, P.M.; Hallmans, G.; Kyrozis, A.; Vanacore, N.; Vahdaninia, M.; Grote, V.; Kaaks, R.; Mattiello, A.; Bueno-de-Mesquita, H.B.; Peeters, P.H.; Travis, R.C.; Petersson, J.; Hansson, O.; Arriola, L.; Jimenez-Martin, J.M.; Tjønneland, A.; Halkjaer, J.; Agnoli, C.; Sacerdote, C.; Bonet, C.; Trichopoulou, A.; Gavrila, D.; Overvad, K.; Weiderpass, E.; Palli, D.; Quirós, J.R.; Tumino, R.; Khaw, K.T.; Wareham, N.; Barricante-Gurrea, A.; Fedirko, V.; Ferrari, P.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Boeing, H.; Vigl, M.; Middleton, L.; Riboli, E.; Vineis, P. Prediagnostic body fat and risk of death from amyotrophic lateral sclerosis: The EPIC cohort. Neurology, 2013, 80(9), 829-838.
[http://dx.doi.org/10.1212/WNL.0b013e3182840689] [PMID: 23390184]
[100]
O’Reilly, É.J.; Wang, H.; Weisskopf, M.G.; Fitzgerald, K.C.; Falcone, G.; McCullough, M.L.; Thun, M.; Park, Y.; Kolonel, L.N.; Ascherio, A. Premorbid body mass index and risk of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Frontotemporal Degener., 2013, 14(3), 205-211.
[http://dx.doi.org/10.3109/21678421.2012.735240] [PMID: 23134505]
[101]
Dorst, J.; Kühnlein, P.; Hendrich, C.; Kassubek, J.; Sperfeld, A.D.; Ludolph, A.C. Patients with elevated triglyceride and cholesterol serum levels have a prolonged survival in amyotrophic lateral sclerosis. J. Neurol., 2011, 258(4), 613-617.
[http://dx.doi.org/10.1007/s00415-010-5805-z] [PMID: 21128082]
[102]
Dupuis, L.; Corcia, P.; Fergani, A.; Gonzalez De Aguilar, J.L.; Bonnefont-Rousselot, D.; Bittar, R.; Seilhean, D.; Hauw, J.J.; Lacomblez, L.; Loeffler, J.P.; Meininger, V. Dyslipidemia is a protective factor in amyotrophic lateral sclerosis. Neurology, 2008, 70(13), 1004-1009.
[http://dx.doi.org/10.1212/01.wnl.0000285080.70324.27] [PMID: 18199832]
[103]
Calvo, A.; Moglia, C.; Lunetta, C.; Marinou, K.; Ticozzi, N.; Ferrante, G.D.; Scialo, C.; Sorarù, G.; Trojsi, F.; Conte, A.; Falzone, Y.M.; Tortelli, R.; Russo, M.; Chiò, A.; Sansone, V.A.; Mora, G.; Silani, V.; Volanti, P.; Caponnetto, C.; Querin, G.; Monsurrò, M.R.; Sabatelli, M.; Riva, N.; Logroscino, G.; Messina, S.; Fini, N.; Mandrioli, J. Factors predicting survival in ALS: A multicenter Italian study. J. Neurol., 2017, 264(1), 54-63.
[http://dx.doi.org/10.1007/s00415-016-8313-y] [PMID: 27778156]
[104]
Peter, R.S.; Rosenbohm, A.; Dupuis, L.; Brehme, T.; Kassubek, J.; Rothenbacher, D.; Nagel, G.; Ludolph, A.C. Life course body mass index and risk and prognosis of amyotrophic lateral sclerosis: results from the ALS registry Swabia. Eur. J. Epidemiol., 2017, 32(10), 901-908.
[http://dx.doi.org/10.1007/s10654-017-0318-z] [PMID: 28975435]
[105]
Jawaid, A.; Murthy, S.B.; Wilson, A.M.; Qureshi, S.U.; Amro, M.J.; Wheaton, M.; Simpson, E.; Harati, Y.; Strutt, A.M.; York, M.K.; Schulz, P.E. A decrease in body mass index is associated with faster progression of motor symptoms and shorter survival in ALS. Amyotroph. Lateral Scler., 2010, 11(6), 542-548.
[http://dx.doi.org/10.3109/17482968.2010.482592] [PMID: 20500116]
[106]
Marin, B.; Arcuti, S.; Jesus, P.; Logroscino, G.; Copetti, M.; Fontana, A.; Nicol, M.; Raymondeau, M.; Desport, J.C.; Preux, P.M.; Couratier, P. Population-based evidence that survival in amyotrophic lateral sclerosis is related to weight loss at diagnosis. Neurodegener. Dis., 2016, 16(3-4), 225-234.
[http://dx.doi.org/10.1159/000442444] [PMID: 26866503]
[107]
Paganoni, S.; Deng, J.; Jaffa, M.; Cudkowicz, M.E.; Wills, A.M. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve, 2011, 44(1), 20-24.
[http://dx.doi.org/10.1002/mus.22114] [PMID: 21607987]
[108]
Palamiuc, L.; Schlagowski, A.; Ngo, S.T.; Vernay, A.; Dirrig-Grosch, S.; Henriques, A.; Boutillier, A.L.; Zoll, J.; Echaniz-Laguna, A.; Loeffler, J.P.; René, F. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol. Med., 2015, 7(5), 526-546.
[http://dx.doi.org/10.15252/emmm.201404433] [PMID: 25820275]
[109]
Gorges, M.; Vercruysse, P.; Müller, H.P.; Huppertz, H.J.; Rosenbohm, A.; Nagel, G.; Weydt, P.; Petersén, Å.; Ludolph, A.C.; Kassubek, J.; Dupuis, L. Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry, 2017, 88(12), 1033-1041.
[http://dx.doi.org/10.1136/jnnp-2017-315795] [PMID: 28596251]
[110]
Sol, J.; Jové, M.; Povedano, M.; Sproviero, W.; Domínguez, R.; Piñol-Ripoll, G.; Romero-Guevara, R.; Hye, A.; Al-Chalabi, A.; Torres, P.; Andres-Benito, P.; Area-Gómez, E.; Pamplona, R.; Ferrer, I.; Ayala, V.; Portero-Otín, M. Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Commun., 2021, 3(3), fcab143.
[http://dx.doi.org/10.1093/braincomms/fcab143] [PMID: 34396104]
[111]
Yamanaka, K.; Komine, O. The multi-dimensional roles of astrocytes in ALS. Neurosci. Res., 2018, 126, 31-38.
[http://dx.doi.org/10.1016/j.neures.2017.09.011] [PMID: 29054467]
[112]
McCombe, P.A.; Lee, J.D.; Woodruff, T.M.; Henderson, R.D. The peripheral immune system and amyotrophic lateral sclerosis. Front. Neurol., 2020, 11, 279.
[http://dx.doi.org/10.3389/fneur.2020.00279] [PMID: 32373052]
[113]
Bonafede, R.; Mariotti, R. ALS pathogenesis and therapeutic approaches: The role of mesenchymal stem cells and extracellular vesicles. Front. Cell. Neurosci., 2017, 11, 80.
[http://dx.doi.org/10.3389/fncel.2017.00080] [PMID: 28377696]
[114]
Hooten, K.G.; Beers, D.R.; Zhao, W.; Appel, S.H. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics, 2015, 12(2), 364-375.
[http://dx.doi.org/10.1007/s13311-014-0329-3] [PMID: 25567201]
[115]
Chiu, I.M.; Phatnani, H.; Kuligowski, M.; Tapia, J.C.; Carrasco, M.A.; Zhang, M.; Maniatis, T.; Carroll, M.C. Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice. Proc. Natl. Acad. Sci. USA, 2009, 106(49), 20960-20965.
[http://dx.doi.org/10.1073/pnas.0911405106] [PMID: 19933335]
[116]
Graber, D.J.; Hickey, W.F.; Harris, B.T. Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis. J. Neuroinflammation, 2010, 7(1), 8.
[http://dx.doi.org/10.1186/1742-2094-7-8] [PMID: 20109233]
[117]
Van Dyke, J.M.; Smit-Oistad, I.M.; Macrander, C.; Krakora, D.; Meyer, M.G.; Suzuki, M. Macrophage-mediated inflammation and glial response in the skeletal muscle of a rat model of familial amyotrophic lateral sclerosis (ALS). Exp. Neurol., 2016, 277, 275-282.
[http://dx.doi.org/10.1016/j.expneurol.2016.01.008] [PMID: 26775178]
[118]
Pestana, F.; Edwards-Faret, G.; Belgard, T.G.; Martirosyan, A.; Holt, M.G. No longer underappreciated: The emerging concept of astrocyte heterogeneity in neuroscience. Brain Sci., 2020, 10(3), 168.
[http://dx.doi.org/10.3390/brainsci10030168] [PMID: 32183137]
[119]
Schiffer, D.; Fiano, V. Astrogliosis in ALS: possible interpretations according to pathogenetic hypotheses. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2004, 5(1), 22-25.
[http://dx.doi.org/10.1080/14660820310016822] [PMID: 15204020]
[120]
Pehar, M.; Harlan, B.A.; Killoy, K.M.; Vargas, M.R. Role and Therapeutic Potential of Astrocytes in Amyotrophic Lateral Sclerosis. Curr. Pharm. Des., 2018, 23(33), 5010-5021.
[http://dx.doi.org/10.2174/1381612823666170622095802] [PMID: 28641533]
[121]
Vargas, M.R.; Johnson, J.A. Astrogliosis in amyotrophic lateral sclerosis: Role and therapeutic potential of astrocytes. Neurotherapeutics, 2010, 7(4), 471-481.
[http://dx.doi.org/10.1016/j.nurt.2010.05.012] [PMID: 20880509]
[122]
Yang, C.; Wang, H.; Qiao, T.; Yang, B.; Aliaga, L.; Qiu, L.; Tan, W.; Salameh, J.; McKenna-Yasek, D.M.; Smith, T.; Peng, L.; Moore, M.J.; Brown, R.H., Jr; Cai, H.; Xu, Z. Partial loss of TDP-43 function causes phenotypes of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA, 2014, 111(12), E1121-E1129.
[http://dx.doi.org/10.1073/pnas.1322641111] [PMID: 24616503]
[123]
Howland, D.S.; Liu, J.; She, Y.; Goad, B.; Maragakis, N.J.; Kim, B.; Erickson, J.; Kulik, J.; DeVito, L.; Psaltis, G.; DeGennaro, L.J.; Cleveland, D.W.; Rothstein, J.D. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl. Acad. Sci. USA, 2002, 99(3), 1604-1609.
[http://dx.doi.org/10.1073/pnas.032539299] [PMID: 11818550]
[124]
Lechtzin, N. Respiratory effects of amyotrophic lateral sclerosis: problems and solutions. Respir. Care, 2006, 51(8), 871-881.
[PMID: 16867198]
[125]
Braun, A.T.; Caballero-Eraso, C.; Lechtzin, N. Amyotrophic lateral sclerosis and the respiratory system. Clin. Chest Med., 2018, 39(2), 391-400.
[http://dx.doi.org/10.1016/j.ccm.2018.01.003] [PMID: 29779597]
[126]
Newsom-Davis, I.C.; Lyall, R.A.; Leigh, P.N.; Moxham, J.; Goldstein, L.H. The effect of non-invasive positive pressure ventilation (NIPPV) on cognitive function in amyotrophic lateral sclerosis (ALS): A prospective study. J. Neurol. Neurosurg. Psychiatry, 2001, 71(4), 482-487.
[http://dx.doi.org/10.1136/jnnp.71.4.482] [PMID: 11561031]
[127]
Pinto, S.; Carvalho, M. Breathing new life into treatment advances for respiratory failure in amyotrophic lateral sclerosis patients. Neurodegener. Dis. Manag., 2014, 4(1), 83-102.
[http://dx.doi.org/10.2217/nmt.13.74] [PMID: 24640982]
[128]
Similowski, T.; Attali, V.; Bensimon, G.; Salachas, F.; Mehiri, S.; Arnulf, I.; Lacomblez, L.; Zelter, M.; Meininger, V.; Derenne, J-P.H. Diaphragmatic dysfunction and dyspnoea in amyotrophic lateral sclerosis. Eur. Respir. J., 2000, 15(2), 332-337.
[http://dx.doi.org/10.1034/j.1399-3003.2000.15b19.x] [PMID: 10706501]
[129]
de Carvalho, M.; Swash, M.; Pinto, S. Diaphragmatic neurophysiology and respiratory markers in ALS. Front. Neurol., 2019, 10, 143.
[http://dx.doi.org/10.3389/fneur.2019.00143] [PMID: 30846968]
[130]
Bensimon, G.; Lacomblez, L.; Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. N. Engl. J. Med., 1994, 330(9), 585-591.
[http://dx.doi.org/10.1056/NEJM199403033300901] [PMID: 8302340]
[131]
Lacomblez, L.; Bensimon, G.; Meininger, V.; Leigh, P.N.; Guillet, P. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Lancet, 1996, 347(9013), 1425-1431.
[http://dx.doi.org/10.1016/S0140-6736(96)91680-3] [PMID: 8676624]
[132]
Bensimon, G.; Lacomblez, L.; Delumeau, J.C.; Bejuit, R.; Truffinet, P.; Meininger, V. A study of riluzole in the treatment of advanced stage or elderly patients with amyotrophic lateral sclerosis. J. Neurol., 2002, 249(5), 609-615.
[http://dx.doi.org/10.1007/s004150200071] [PMID: 12021952]
[133]
Distad, B.J.; Meekins, G.D.; Liou, L.L.; Weiss, M.D.; Carter, G.T.; Miller, R.G. Drug therapy in amyotrophic lateral sclerosis. Phys. Med. Rehabil. Clin. N. Am., 2008, 19(3), 633-651.
[http://dx.doi.org/10.1016/j.pmr.2008.04.005]
[134]
Bellingham, M.C. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci. Ther., 2011, 17(1), 4-31.
[http://dx.doi.org/10.1111/j.1755-5949.2009.00116.x] [PMID: 20236142]
[135]
Dyer, A.M.; Smith, A. Riluzole 5 mg/mL oral suspension: for optimized drug delivery in amyotrophic lateral sclerosis. Drug Des. Devel. Ther., 2016, 11, 59-64.
[http://dx.doi.org/10.2147/DDDT.S123776] [PMID: 28053507]
[136]
Schultz, J. Disease-modifying treatment of amyotrophic lateral sclerosis. Am. J. Manag. Care, 2018, 24(15), S327-S335.
[PMID: 30207671]
[137]
Shefner, J.; Heiman-Patterson, T.; Pioro, E.P.; Wiedau-Pazos, M.; Liu, S.; Zhang, J.; Agnese, W.; Apple, S. Long-term edaravone efficacy in amyotrophic lateral sclerosis: Post-hoc analyses of Study 19 (MCI186-19). Muscle Nerve, 2020, 61(2), 218-221.
[http://dx.doi.org/10.1002/mus.26740] [PMID: 31621933]
[138]
Distad, B.J.; Weiss, M.D. Edaravone for amyotrophic lateral sclerosis: More evidence for long‐term benefit. Muscle Nerve, 2020, 61(2), 129-130.
[http://dx.doi.org/10.1002/mus.26770] [PMID: 31778230]
[139]
Ito, H.; Wate, R.; Zhang, J.; Ohnishi, S.; Kaneko, S.; Ito, H.; Nakano, S.; Kusaka, H. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp. Neurol., 2008, 213(2), 448-455.
[http://dx.doi.org/10.1016/j.expneurol.2008.07.017] [PMID: 18718468]
[140]
Ahmadinejad, F.; Geir Møller, S.; Hashemzadeh-Chaleshtori, M.; Bidkhori, G.; Jami, M.S. Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants, 2017, 6(3), 51.
[http://dx.doi.org/10.3390/antiox6030051] [PMID: 28698499]
[141]
Hardiman, O.; van den Berg, L.H. Edaravone: A new treatment for ALS on the horizon? Lancet Neurol., 2017, 16(7), 490-491.
[http://dx.doi.org/10.1016/S1474-4422(17)30163-1] [PMID: 28522180]
[142]
Brooks, B.R.; Jorgenson, J.A.; Newhouse, B.J.; Shefner, J.M.; Agnese, W. Edaravone in the treatment of amyotrophic lateral sclerosis: efficacy and access to therapy - a roundtable discussion. Am. J. Manag. Care, 2018, 24(9)(Suppl.), S175-S186.
[PMID: 29693363]
[143]
Abe, K.; Aoki, M.; Tsuji, S.; Itoyama, Y.; Sobue, G.; Togo, M.; Hamada, C.; Tanaka, M.; Akimoto, M.; Nakamura, K.; Takahashi, F.; Kondo, K.; Yoshino, H.; Abe, K.; Aoki, M.; Tsuji, S.; Itoyama, Y.; Sobue, G.; Togo, M.; Hamada, C.; Sasaki, H.; Yabe, I.; Doi, S.; Warita, H.; Imai, T.; Ito, H.; Fukuchi, M.; Osumi, E.; Wada, M.; Nakano, I.; Morita, M.; Ogata, K.; Maruki, Y.; Ito, K.; Kano, O.; Yamazaki, M.; Takahashi, Y.; Ishiura, H.; Ogino, M.; Koike, R.; Ishida, C.; Uchiyama, T.; Mizoguchi, K.; Obi, T.; Watanabe, H.; Atsuta, N.; Aiba, I.; Taniguchi, A.; Sawada, H.; Hazama, T.; Fujimura, H.; Kusaka, H.; Kunieda, T.; Kikuchi, H.; Matsuo, H.; Ueyama, H.; Uekawa, K.; Tanaka, M.; Akimoto, M.; Ueda, M.; Murakami, A.; Sumii, R.; Kudou, T.; Nakamura, K.; Morimoto, K.; Yoneoka, T.; Hirai, M.; Sasaki, K.; Terai, H.; Natori, T.; Matsui, H.; Kotani, K.; Yoshida, K.; Iwasaki, T.; Takahashi, F.; Kondo, K.; Yoshino, H. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: A randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2017, 16(7), 505-512.
[http://dx.doi.org/10.1016/S1474-4422(17)30115-1] [PMID: 28522181]
[144]
Miller, R.G.; Jackson, C.E.; Kasarskis, E.J.; England, J.D.; Forshew, D.; Johnston, W.; Kalra, S.; Katz, J.S.; Mitsumoto, H.; Rosenfeld, J.; Shoesmith, C.; Strong, M.J.; Woolley, S.C. Practice Parameter update: The care of the patient with amyotrophic lateral sclerosis: Drug, nutritional, and respiratory therapies (an evidence-based review): Report of the quality standards subcommittee of the american academy of neurology. Neurology, 2009, 73(15), 1218-1226.
[http://dx.doi.org/10.1212/WNL.0b013e3181bc0141] [PMID: 19822872]
[145]
Kasarskis, E.J.; Mendiondo, M.S.; Wells, S.; Malguizo, M.; Thompson, M.; Healey, M.; Kryscio, R.J. The ALS Nutrition/] NIPPV Study: Design, feasibility, and initial results. Amyotroph. Lateral Scler., 2011, 12(1), 17-25.
[http://dx.doi.org/10.3109/17482968.2010.515225] [PMID: 21271789]
[146]
Greenwood, D.I. Nutrition management of amyotrophic lateral sclerosis. Nutr. Clin. Pract., 2013, 28(3), 392-399.
[http://dx.doi.org/10.1177/0884533613476554] [PMID: 23466470]
[147]
Talbot, K. Motor neurone disease. Postgrad. Med. J., 2002, 78(923), 513-519.
[http://dx.doi.org/10.1136/pmj.78.923.513] [PMID: 12357010]
[148]
Miller, R.G.; Jackson, C.E.; Kasarskis, E.J.; England, J.D.; Forshew, D.; Johnston, W.; Kalra, S.; Katz, J.S.; Mitsumoto, H.; Rosenfeld, J.; Shoesmith, C.; Strong, M.J.; Woolley, S.C. Practice Parameter update: The care of the patient with amyotrophic lateral sclerosis: Multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 2009, 73(15), 1227-1233.
[http://dx.doi.org/10.1212/WNL.0b013e3181bc01a4] [PMID: 19822873]
[149]
Weiss, M.D.; Macklin, E.A.; Simmons, Z.; Knox, A.S.; Greenblatt, D.J.; Atassi, N.; Graves, M.; Parziale, N.; Salameh, J.S.; Quinn, C.; Brown, R.H., Jr; Distad, J.B.; Trivedi, J.; Shefner, J.M.; Barohn, R.J.; Pestronk, A.; Swenson, A.; Cudkowicz, M.E. A randomized trial of mexiletine in ALS. Neurology, 2016, 86(16), 1474-1481.
[http://dx.doi.org/10.1212/WNL.0000000000002507] [PMID: 26911633]
[150]
Rosenfeld, J.; Strong, M.J. Challenges in the understanding and treatment of amyotrophic lateral sclerosis/Motor neuron disease. Neurotherapeutics, 2015, 12(2), 317-325.
[http://dx.doi.org/10.1007/s13311-014-0332-8] [PMID: 25572957]
[151]
Bourke, S.C.; Gibson, G.J. Non‐invasive ventilation in ALS: current practice and future role. Amyotroph. Lateral Scler. Other Motor Neuron Disord., 2004, 5(2), 67-71.
[http://dx.doi.org/10.1080/14660820410020330] [PMID: 15204008]
[152]
Filipi, T.; Hermanova, Z.; Tureckova, J.; Vanatko, O.; Anderova, M. Glial cells-the strategic targets in amyotrophic lateral sclerosis treatment. J. Clin. Med., 2020, 9(1), 261.
[http://dx.doi.org/10.3390/jcm9010261] [PMID: 31963681]
[153]
Lepore, A.C.; Rauck, B.; Dejea, C.; Pardo, A.C.; Rao, M.S.; Rothstein, J.D.; Maragakis, N.J. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci., 2008, 11(11), 1294-1301.
[http://dx.doi.org/10.1038/nn.2210] [PMID: 18931666]
[154]
Rizzo, F.; Riboldi, G.; Salani, S.; Nizzardo, M.; Simone, C.; Corti, S.; Hedlund, E. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell. Mol. Life Sci., 2014, 71(6), 999-1015.
[http://dx.doi.org/10.1007/s00018-013-1480-4] [PMID: 24100629]
[155]
Baumert, B.; Sobuś, A.; Gołąb-Janowska, M.; Paczkowska, E.; Łuczkowska, K.; Rogińska, D.; Zawiślak, A.; Milczarek, S.; Osękowska, B.; Pawlukowska, W.; Meller, A.; Machowska-Sempruch, K.; Wełnicka, A.; Safranow, K.; Nowacki, P.; Machaliński, B. Repeated application of autologous bone marrow-derived lineage-negative stem/progenitor cells—focus on immunological pathways in patients with ALS. Cells, 2020, 9(8), 1822.
[http://dx.doi.org/10.3390/cells9081822] [PMID: 32752182]
[156]
Ahmed, R.M.; Phan, K.; Highton-Williamson, E.; Strikwerda-Brown, C.; Caga, J.; Ramsey, E.; Zoing, M.; Devenney, E.; Kim, W.S.; Hodges, J.R.; Piguet, O.; Halliday, G.M.; Kiernan, M.C. Eating peptides: biomarkers of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia. Ann. Clin. Transl. Neurol., 2019, 6(3), 486-495.
[http://dx.doi.org/10.1002/acn3.721] [PMID: 30911572]
[157]
Ngo, S.T.; Steyn, F.J.; Huang, L.; Mantovani, S.; Pfluger, C.M.M.; Woodruff, T.M.; O’Sullivan, J.D.; Henderson, R.D.; McCombe, P.A. Altered expression of metabolic proteins and adipokines in patients with amyotrophic lateral sclerosis. J. Neurol. Sci., 2015, 357(1-2), 22-27.
[http://dx.doi.org/10.1016/j.jns.2015.06.053] [PMID: 26198021]
[158]
Rhea, E.M.; Salameh, T.S.; Gray, S.; Niu, J.; Banks, W.A.; Tong, J. Ghrelin transport across the blood-brain barrier can occur independently of the growth hormone secretagogue receptor. Mol. Metab., 2018, 18, 88-96.
[http://dx.doi.org/10.1016/j.molmet.2018.09.007] [PMID: 30293893]
[159]
Meanti, R.; Rizzi, L.; Bresciani, E.; Molteni, L.; Locatelli, V.; Coco, S.; Omeljaniuk, R.J.; Torsello, A. Hexarelin modulation of MAPK and PI3K/Akt pathways in neuro-2a cells inhibits hydrogen peroxide-induced apoptotic toxicity. Pharmaceuticals (Basel), 2021, 14(5), 444.
[http://dx.doi.org/10.3390/ph14050444] [PMID: 34066741]
[160]
Chung, H.; Kim, E.; Lee, D.H.; Seo, S.; Ju, S.; Lee, D.; Kim, H.; Park, S. Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation. Endocrinology, 2007, 148(1), 148-159.
[http://dx.doi.org/10.1210/en.2006-0991] [PMID: 17053024]
[161]
Hwang, S.; Moon, M.; Kim, S.; Hwang, L.; Ahn, K.J.; Park, S. Neuroprotective effect of ghrelin is associated with decreased expression of prostate apoptosis response-4. Endocr. J., 2009, 56(4), 609-617.
[http://dx.doi.org/10.1507/endocrj.K09E-072] [PMID: 19352052]
[162]
Morgan, A. H.; Rees, D. J.; Andrews, Z. B.; Davies, J. S. Ghrelin mediated neuroprotection - a possible therapy for Parkinson’s disease? Neuropharmacology, 2018, 136(Pt B), 317-326.
[http://dx.doi.org/10.1016/j.neuropharm.2017.12.027]
[163]
Moon, M.; Kim, H.G.; Hwang, L.; Seo, J.H.; Kim, S.; Hwang, S.; Kim, S.; Lee, D.; Chung, H.; Oh, M.S.; Lee, K.T.; Park, S. Neuroprotective effect of ghrelin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease by blocking microglial activation. Neurotox. Res., 2009, 15(4), 332-347.
[http://dx.doi.org/10.1007/s12640-009-9037-x] [PMID: 19384567]
[164]
Gahete, M.D.; Córdoba-Chacón, J.; Kineman, R.D.; Luque, R.M.; Castaño, J.P. Role of ghrelin system in neuroprotection and cognitive functions: Implications in Alzheimer’s disease. Peptides, 2011, 32(11), 2225-2228.
[http://dx.doi.org/10.1016/j.peptides.2011.09.019] [PMID: 21983104]
[165]
Liu, F.; Li, Z.; He, X.; Yu, H.; Feng, J. Ghrelin attenuates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis involving NLRP3 inflammasome signaling pathway and pyroptosis. Front. Pharmacol., 2019, 10, 1320.
[http://dx.doi.org/10.3389/fphar.2019.01320] [PMID: 31780940]
[166]
Lim, E.; Lee, S.; Li, E.; Kim, Y.; Park, S. Ghrelin protects spinal cord motoneurons against chronic glutamate-induced excitotoxicity via ERK1/2 and phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β pathways. Exp. Neurol., 2011, 230(1), 114-122.
[http://dx.doi.org/10.1016/j.expneurol.2011.04.003] [PMID: 21530509]
[167]
Chen, J.; Splenser, A.; Guillory, B.; Luo, J.; Mendiratta, M.; Belinova, B.; Halder, T.; Zhang, G.; Li, Y.P.; Garcia, J.M. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J. Cachexia Sarcopenia Muscle, 2015, 6(2), 132-143.
[http://dx.doi.org/10.1002/jcsm.12023] [PMID: 26136189]
[168]
Jiao, Q.; Du, X.; Li, Y.; Gong, B.; Shi, L.; Tang, T.; Jiang, H. The neurological effects of ghrelin in brain diseases: Beyond metabolic functions. Neurosci. Biobehav. Rev., 2017, 73, 98-111.
[http://dx.doi.org/10.1016/j.neubiorev.2016.12.010] [PMID: 27993602]
[169]
Vincent, A.M.; Mobley, B.C.; Hiller, A.; Feldman, E.L. IGF-I prevents glutamate-induced motor neuron programmed cell death. Neurobiol. Dis., 2004, 16(2), 407-416.
[http://dx.doi.org/10.1016/j.nbd.2004.03.001] [PMID: 15193297]
[170]
Chung, H.; Seo, S.; Moon, M.; Park, S. Phosphatidylinositol-3-kinase/Akt/glycogen synthase kinase-3β and ERK1/2 pathways mediate protective effects of acylated and unacylated ghrelin against oxygen-glucose deprivation-induced apoptosis in primary rat cortical neuronal cells. J. Endocrinol., 2008, 198(3), 511-521.
[http://dx.doi.org/10.1677/JOE-08-0160] [PMID: 18541646]
[171]
Philips, T.; Robberecht, W. Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol., 2011, 10(3), 253-263.
[http://dx.doi.org/10.1016/S1474-4422(11)70015-1] [PMID: 21349440]
[172]
Liu, J.; Wang, F. Role of Neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front. Immunol., 2017, 8, 1005.
[http://dx.doi.org/10.3389/fimmu.2017.01005] [PMID: 28871262]
[173]
Inoue, M.; Shinohara, M.L. NLRP3 Inflammasome and MS/EAE. Autoimmune Dis., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/859145] [PMID: 23365725]
[174]
Song, L.; Pei, L.; Yao, S.; Wu, Y.; Shang, Y. NLRP3 Inflammasome in neurological diseases, from functions to therapies. Front. Cell. Neurosci., 2017, 11, 63.
[http://dx.doi.org/10.3389/fncel.2017.00063] [PMID: 28337127]
[175]
Wang, S.; Yuan, Y.H.; Chen, N.H.; Wang, H.B. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson’s disease. Int. Immunopharmacol., 2019, 67, 458-464.
[http://dx.doi.org/10.1016/j.intimp.2018.12.019] [PMID: 30594776]
[176]
Shi, J.; Gao, W.; Shao, F. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci., 2017, 42(4), 245-254.
[http://dx.doi.org/10.1016/j.tibs.2016.10.004] [PMID: 27932073]
[177]
Johann, S.; Heitzer, M.; Kanagaratnam, M.; Goswami, A.; Rizo, T.; Weis, J.; Troost, D.; Beyer, C. NLRP3 inflammasome is expressed by astrocytes in the SOD1 mouse model of ALS and in human sporadic ALS patients. Glia, 2015, 63(12), 2260-2273.
[http://dx.doi.org/10.1002/glia.22891] [PMID: 26200799]
[178]
Deora, V.; Lee, J.D.; Albornoz, E.A.; McAlary, L.; Jagaraj, C.J.; Robertson, A.A.B.; Atkin, J.D.; Cooper, M.A.; Schroder, K.; Yerbury, J.J.; Gordon, R.; Woodruff, T.M. The microglial NLRP3 inflammasome is activated by amyotrophic lateral sclerosis proteins. Glia, 2020, 68(2), 407-421.
[http://dx.doi.org/10.1002/glia.23728] [PMID: 31596526]
[179]
Frago, L.; Chowen, J. Involvement of astrocytes in mediating the central effects of ghrelin. Int. J. Mol. Sci., 2017, 18(3), 536.
[http://dx.doi.org/10.3390/ijms18030536] [PMID: 28257088]
[180]
Loeffler, J.P.; Picchiarelli, G.; Dupuis, L.; Gonzalez De Aguilar, J.L. The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis. Brain Pathol., 2016, 26(2), 227-236.
[http://dx.doi.org/10.1111/bpa.12350] [PMID: 26780251]
[181]
Lunetta, C.; Serafini, M.; Prelle, A.; Magni, P.; Dozio, E.; Ruscica, M.; Sassone, J.; Colciago, C.; Moggio, M.; Corbo, M.; Silani, V. Impaired expression of insulin‐like growth factor‐1 system in skeletal muscle of amyotrophic lateral sclerosis patients. Muscle Nerve, 2012, 45(2), 200-208.
[http://dx.doi.org/10.1002/mus.22288] [PMID: 22246875]
[182]
Dobrowolny, G.; Giacinti, C.; Pelosi, L.; Nicoletti, C.; Winn, N.; Barberi, L.; Molinaro, M.; Rosenthal, N.; Musarò, A. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J. Cell Biol., 2005, 168(2), 193-199.
[http://dx.doi.org/10.1083/jcb.200407021] [PMID: 15657392]
[183]
Dobrowolny, G.; Aucello, M.; Molinaro, M.; Musarò, A. Local expression of mIgf-1 modulates ubiquitin, caspase and CDK5 expression in skeletal muscle of an ALS mouse model. Neurol. Res., 2008, 30(2), 131-136.
[http://dx.doi.org/10.1179/174313208X281235] [PMID: 18397603]
[184]
Riddoch-Contreras, J.; Yang, S.Y.; Dick, J.R.T.; Goldspink, G.; Orrell, R.W.; Greensmith, L. Mechano-growth factor, an IGF-I splice variant, rescues motoneurons and improves muscle function in SOD1G93A mice. Exp. Neurol., 2009, 215(2), 281-289.
[http://dx.doi.org/10.1016/j.expneurol.2008.10.014] [PMID: 19038252]
[185]
Shandilya, A.; Mehan, S. Dysregulation of IGF-1/GLP-1 signaling in the progression of ALS: potential target activators and influences on neurological dysfunctions. Neurol. Sci., 2021, 42(8), 3145-3166.
[http://dx.doi.org/10.1007/s10072-021-05328-6] [PMID: 34018075]
[186]
Cooper, C.; Burden, S.T.; Cheng, H.; Molassiotis, A. Understanding and managing cancer-related weight loss and anorexia: insights from a systematic review of qualitative research. J. Cachexia Sarcopenia Muscle, 2015, 6(1), 99-111.
[http://dx.doi.org/10.1002/jcsm.12010] [PMID: 26136417]
[187]
Hiura, Y.; Takiguchi, S.; Yamamoto, K.; Kurokawa, Y.; Yamasaki, M.; Nakajima, K.; Miyata, H.; Fujiwara, Y.; Mori, M.; Doki, Y. Fall in plasma ghrelin concentrations after cisplatin-based chemotherapy in esophageal cancer patients. Int. J. Clin. Oncol., 2012, 17(4), 316-323.
[http://dx.doi.org/10.1007/s10147-011-0289-0] [PMID: 21773688]
[188]
Bresciani, E.; Rizzi, L.; Molteni, L.; Ravelli, M.; Liantonio, A.; Ben Haj Salah, K.; Fehrentz, J.A.; Martinez, J.; Omeljaniuk, R.J.; Biagini, G.; Locatelli, V.; Torsello, A. JMV2894, a novel growth hormone secretagogue, accelerates body mass recovery in an experimental model of cachexia. Endocrine, 2017, 58(1), 106-114.
[http://dx.doi.org/10.1007/s12020-016-1184-2] [PMID: 27896546]
[189]
Granado, M.; Priego, T.; Martín, A.I.; Villanúa, M.Á.; López-Calderón, A. Ghrelin receptor agonist GHRP-2 prevents arthritis-induced increase in E3 ubiquitin-ligating enzymes MuRF1 and MAFbx gene expression in skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2005, 289(6), E1007-E1014.
[http://dx.doi.org/10.1152/ajpendo.00109.2005] [PMID: 16030067]
[190]
Sirago, G.; Conte, E.; Fracasso, F.; Cormio, A.; Fehrentz, J.A.; Martinez, J.; Musicco, C.; Camerino, G.M.; Fonzino, A.; Rizzi, L.; Torsello, A.; Lezza, A.M.S.; Liantonio, A.; Cantatore, P.; Pesce, V. Growth hormone secretagogues hexarelin and JMV2894 protect skeletal muscle from mitochondrial damages in a rat model of cisplatin-induced cachexia. Sci. Rep., 2017, 7(1), 13017.
[http://dx.doi.org/10.1038/s41598-017-13504-y] [PMID: 29026190]
[191]
Conte, E.; Bresciani, E.; Rizzi, L.; Cappellari, O.; De Luca, A.; Torsello, A.; Liantonio, A. Cisplatin-induced skeletal muscle dysfunction: Mechanisms and counteracting therapeutic strategies. Int. J. Mol. Sci., 2020, 21(4), 1242.
[http://dx.doi.org/10.3390/ijms21041242] [PMID: 32069876]
[192]
Conte, E.; Camerino, G.M.; Mele, A.; De Bellis, M.; Pierno, S.; Rana, F.; Fonzino, A.; Caloiero, R.; Rizzi, L.; Bresciani, E.; Ben Haj Salah, K.; Fehrentz, J.A.; Martinez, J.; Giustino, A.; Mariggiò, M.A.; Coluccia, M.; Tricarico, D.; Lograno, M.D.; De Luca, A.; Torsello, A.; Conte, D.; Liantonio, A. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia. J. Cachexia Sarcopenia Muscle, 2017, 8(3), 386-404.
[http://dx.doi.org/10.1002/jcsm.12185] [PMID: 28294567]
[193]
Sugiyama, M.; Yamaki, A.; Furuya, M.; Inomata, N.; Minamitake, Y.; Ohsuye, K.; Kangawa, K. Ghrelin improves body weight loss and skeletal muscle catabolism associated with angiotensin II-induced cachexia in mice. Regul. Pept., 2012, 178(1-3), 21-28.
[http://dx.doi.org/10.1016/j.regpep.2012.06.003] [PMID: 22750276]
[194]
Porporato, P.E.; Filigheddu, N.; Reano, S.; Ferrara, M.; Angelino, E.; Gnocchi, V.F.; Prodam, F.; Ronchi, G.; Fagoonee, S.; Fornaro, M.; Chianale, F.; Baldanzi, G.; Surico, N.; Sinigaglia, F.; Perroteau, I.; Smith, R.G.; Sun, Y.; Geuna, S.; Graziani, A. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice. J. Clin. Invest., 2013, 123(2), 611-622.
[http://dx.doi.org/10.1172/JCI39920] [PMID: 23281394]
[195]
Wu, C.S.; Wei, Q.; Wang, H.; Kim, D.M.; Balderas, M.; Wu, G.; Lawler, J.; Safe, S.; Guo, S.; Devaraj, S.; Chen, Z.; Sun, Y. Protective effects of ghrelin on fasting-induced muscle atrophy in aging mice. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(4), 621-630.
[http://dx.doi.org/10.1093/gerona/gly256] [PMID: 30407483]
[196]
Barazzoni, R.; Bosutti, A.; Stebel, M.; Cattin, M.R.; Roder, E.; Visintin, L.; Cattin, L.; Biolo, G.; Zanetti, M.; Guarnieri, G. Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle. Am. J. Physiol. Endocrinol. Metab., 2005, 288(1), E228-E235.
[http://dx.doi.org/10.1152/ajpendo.00115.2004] [PMID: 15328073]
[197]
Barazzoni, R.; Zhu, X.; DeBoer, M.; Datta, R.; Culler, M.D.; Zanetti, M.; Guarnieri, G.; Marks, D.L. Combined effects of ghrelin and higher food intake enhance skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rats with chronic kidney disease. Kidney Int., 2010, 77(1), 23-28.
[http://dx.doi.org/10.1038/ki.2009.411] [PMID: 19890275]
[198]
Barazzoni, R.; Gortan Cappellari, G.; Palus, S.; Vinci, P.; Ruozi, G.; Zanetti, M.; Semolic, A.; Ebner, N.; von Haehling, S.; Sinagra, G.; Giacca, M.; Springer, J. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J. Cachexia Sarcopenia Muscle, 2017, 8(6), 991-998.
[http://dx.doi.org/10.1002/jcsm.12254] [PMID: 29098797]
[199]
Barazzoni, R.; Zanetti, M.; Semolic, A.; Cattin, M.R.; Pirulli, A.; Cattin, L.; Guarnieri, G. High-fat diet with acyl-ghrelin treatment leads to weight gain with low inflammation, high oxidative capacity and normal triglycerides in rat muscle. PLoS One, 2011, 6(10), e26224.
[http://dx.doi.org/10.1371/journal.pone.0026224] [PMID: 22039445]
[200]
Ruozi, G.; Bortolotti, F.; Falcione, A.; Dal Ferro, M.; Ukovich, L.; Macedo, A.; Zentilin, L.; Filigheddu, N.; Cappellari, G.G.; Baldini, G.; Zweyer, M.; Barazzoni, R.; Graziani, A.; Zacchigna, S.; Giacca, M. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat. Commun., 2015, 6(1), 7388.
[http://dx.doi.org/10.1038/ncomms8388] [PMID: 26066847]
[201]
Togliatto, G.; Trombetta, A.; Dentelli, P.; Gallo, S.; Rosso, A.; Cotogni, P.; Granata, R.; Falcioni, R.; Delale, T.; Ghigo, E.; Brizzi, M.F. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes, 2015, 64(4), 1370-1382.
[http://dx.doi.org/10.2337/db14-0991] [PMID: 25368096]
[202]
Gortan, C.G.; Zanetti, M.; Semolic, A.; Vinci, P.; Ruozi, G.; Falcione, A.; Filigheddu, N.; Guarnieri, G.; Graziani, A.; Giacca, M.; Barazzoni, R. Unacylated ghrelin reduces skeletal muscle reactive oxygen species generation and inflammation and prevents high-fat diet-induced hyperglycemia and whole-body insulin resistance in rodents. Diabetes, 2016, 65(4), 874-886.
[http://dx.doi.org/10.2337/db15-1019] [PMID: 26822085]
[203]
Gortan Cappellari, G.; Zanetti, M.; Vinci, P.; Guarnieri, G.; Barazzoni, R. Unacylated Ghrelin: A novel regulator of muscle intermediate metabolism with potential beneficial effects in chronic kidney disease. J. Ren. Nutr., 2017, 27(6), 474-477.
[http://dx.doi.org/10.1053/j.jrn.2017.05.005] [PMID: 29056169]
[204]
Li, W.G.; Gavrila, D.; Liu, X.; Wang, L.; Gunnlaugsson, S.; Stoll, L.L.; McCormick, M.L.; Sigmund, C.D.; Tang, C.; Weintraub, N.L. Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation, 2004, 109(18), 2221-2226.
[http://dx.doi.org/10.1161/01.CIR.0000127956.43874.F2] [PMID: 15117840]
[205]
Wu, R.; Dong, W.; Zhou, M.; Zhang, F.; Marini, C.P.; Ravikumar, T.S.; Wang, P. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. Am. J. Respir. Crit. Care Med., 2007, 176(8), 805-813.
[http://dx.doi.org/10.1164/rccm.200604-511OC] [PMID: 17626913]
[206]
Chen, J.; Liu, X.; Shu, Q.; Li, S.; Luo, F. Ghrelin attenuates lipopolysaccharide-induced acute lung injury through NO pathway. Med. Sci. Monit., 2008, 14(7), BR141-BR146.
[PMID: 18591913]
[207]
Li, B.; Zeng, M.; He, W.; Huang, X.; Luo, L.; Zhang, H.; Deng, D.Y.B. Ghrelin protects alveolar macrophages against lipopolysaccharide-induced apoptosis through growth hormone secretagogue receptor 1a-dependent c-Jun N-terminal kinase and Wnt/β-catenin signaling and suppresses lung inflammation. Endocrinology, 2015, 156(1), 203-217.
[http://dx.doi.org/10.1210/en.2014-1539] [PMID: 25337654]
[208]
Imazu, Y.; Yanagi, S.; Miyoshi, K.; Tsubouchi, H.; Yamashita, S.; Matsumoto, N.; Ashitani, J.; Kangawa, K.; Nakazato, M. Ghrelin ameliorates bleomycin-induced acute lung injury by protecting alveolar epithelial cells and suppressing lung inflammation. Eur. J. Pharmacol., 2011, 672(1-3), 153-158.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.183] [PMID: 21996315]
[209]
Rocha, N.N.; de Oliveira, M.V.; Braga, C.L.; Guimarães, G.; Maia, L.A.; Padilha, G.A.; Silva, J.D.; Takiya, C.M.; Capelozzi, V.L.; Silva, P.L.; Rocco, P.R.M. Ghrelin therapy improves lung and cardiovascular function in experimental emphysema. Respir. Res., 2017, 18(1), 185.
[http://dx.doi.org/10.1186/s12931-017-0668-9] [PMID: 29100513]
[210]
Bidan, C.M.; Veldsink, A.C.; Meurs, H.; Gosens, R. Airway and extracellular matrix mechanics in COPD. Front. Physiol., 2015, 6, 346.
[http://dx.doi.org/10.3389/fphys.2015.00346] [PMID: 26696894]
[211]
Zambelli, V.; Rizzi, L.; Delvecchio, P.; Bresciani, E.; Rezoagli, E.; Molteni, L.; Meanti, R.; Cuttin, M.S.; Bovo, G.; Coco, S.; Omeljaniuk, R.J.; Locatelli, V.; Bellani, G.; Torsello, A. Hexarelin modulates lung mechanics, inflammation, and fibrosis in acute lung injury. Drug Target Insights, 2021, 15, 26-33.
[http://dx.doi.org/10.33393/dti.2021.2347] [PMID: 34871336]
[212]
Tian, X.; Liu, Z.; Yu, T.; Yang, H.; Feng, L. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress. Life Sci., 2018, 196, 1-8.
[http://dx.doi.org/10.1016/j.lfs.2017.07.023] [PMID: 28751159]
[213]
Guven, B.; Gokce, M.; Saydam, O.; Can, M.; Bektas, S.; Yurtlu, S. Effect of ghrelin on inflammatory response in lung contusion. Kaohsiung J. Med. Sci., 2013, 29(2), 69-74.
[http://dx.doi.org/10.1016/j.kjms.2012.08.011] [PMID: 23347807]
[214]
Li, G.; Liu, J.; Xia, W.F.; Zhou, C.L.; Lv, L.Q. Protective effects of ghrelin in ventilator-induced lung injury in rats. Int. Immunopharmacol., 2017, 52, 85-91.
[http://dx.doi.org/10.1016/j.intimp.2017.08.026] [PMID: 28886582]
[215]
Kodama, T.; Ashitani, J.I.; Matsumoto, N.; Kangawa, K.; Nakazato, M. Ghrelin treatment suppresses neutrophil-dominant inflammation in airways of patients with chronic respiratory infection. Pulm. Pharmacol. Ther., 2008, 21(5), 774-779.
[http://dx.doi.org/10.1016/j.pupt.2008.05.001] [PMID: 18571961]
[216]
Miki, K.; Maekura, R.; Nagaya, N.; Nakazato, M.; Kimura, H.; Murakami, S.; Ohnishi, S.; Hiraga, T.; Miki, M.; Kitada, S.; Yoshimura, K.; Tateishi, Y.; Arimura, Y.; Matsumoto, N.; Yoshikawa, M.; Yamahara, K.; Kangawa, K. Ghrelin treatment of cachectic patients with chronic obstructive pulmonary disease: A multicenter, randomized, double-blind, placebo-controlled trial. PLoS One, 2012, 7(5), e35708.
[http://dx.doi.org/10.1371/journal.pone.0035708] [PMID: 22563468]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy