Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Molecular Insights on Bioactive Compounds against Covid-19: A Network Pharmacological and Computational Study

Author(s): Jayanth Jeevanandam, Esackimuthu Paramasivam, Anbumathi Palanisamy, Srikanth Raghavendran and Saraswathi Nambiappan Thangavel*

Volume 18, Issue 6, 2022

Published on: 20 October, 2022

Page: [425 - 439] Pages: 15

DOI: 10.2174/1573409918666220914092145

Price: $65

Abstract

Background: Network pharmacology based identification of phytochemicals in the form of cocktails against off-targets can play a significant role in the inhibition of SARS_CoV2 viral entry and its propagation. This study includes network pharmacology, virtual screening, docking and molecular dynamics to investigate the distinct antiviral mechanisms of effective phytochemicals against SARS_CoV2.

Methods: SARS_CoV2 human-protein interaction network was explored from the BioGRID database and analysed using Cytoscape. Further analysis was performed to explore biological function, proteinphytochemical/ drugs network and up-down regulation of pathological host target proteins. This led to understand the antiviral mechanism of phytochemicals against SARS_CoV2. The network was explored through g: Profiler, EnrichR, CTD, SwissTarget, STITCH, DrugBank, BindingDB, STRING and SuperPred. Virtual screening of phytochemicals against potential antiviral targets such as M-Pro, NSP1, Receptor binding domain, RNA binding domain, and ACE2 discloses the effective interaction between them. Further, the binding energy calculations through simulation of the docked complex explain the efficiency and stability of the interactions.

Results: The network analysis identified quercetin, genistein, luteolin, eugenol, berberine, isorhamnetin and cinnamaldehyde to be interacting with host proteins ACE2, DPP4, COMT, TUBGCP3, CENPF, BRD2 and HMOX1 which are involved in antiviral mechanisms such as viral entry, viral replication, host immune response, and antioxidant activity, thus indicating that herbal cocktails can effectively tackle the viral hijacking of the crucial biological functions of a human host. Further exploration through virtual screening, docking and molecular dynamics recognizes the effective interaction of phytochemicals such as punicalagin, scutellarin, and solamargine with their respective potential targets.

Conclusion: This work illustrates a probable strategy for the identification of phytochemical-based cocktails and off-targets which are effective against SARS_CoV 2.

Keywords: Viral-host-protein interaction network, Drug target Pathway, Antiviral drugs, Immunological response, Drug repurposing, Molecular dynamics

Graphical Abstract

[1]
Jasti, M.; Nalleballe, K.; Dandu, V.; Onteddu, S. A review of pathophysiology and neuropsychiatric manifestations of COVID-19. J. Neurol., 2021, 268(6), 2007-2012.
[http://dx.doi.org/10.1007/s00415-020-09950-w] [PMID: 32494854]
[2]
Mohamadian, M.; Chiti, H.; Shoghli, A.; Biglari, S.; Parsamanesh, N.; Esmaeilzadeh, A. COVID‐19: Virology, biology and novel laboratory diagnosis. J. Gene Med., 2021, 23(2), e3303.
[http://dx.doi.org/10.1002/jgm.3303] [PMID: 33305456]
[3]
Paules, C.I.; Marston, H.D.; Fauci, A.S. Coronavirus infections-More than just the common cold. JAMA, 2020, 323(8), 707-708.
[http://dx.doi.org/10.1001/jama.2020.0757] [PMID: 31971553]
[4]
Mungroo, M.R.; Khan, N.A.; Siddiqui, R. The increasing importance of the novel Coronavirus. Hosp. Pract., 2021, 49(1), 1-11.
[http://dx.doi.org/10.1080/21548331.2020.1828888] [PMID: 32990100]
[5]
Fung, T.S.; Liu, D.X. Human-coronavirus: Host-pathogen interaction. Annu. Rev. Microbiol., 2019, 73(1), 529-557.
[http://dx.doi.org/10.1146/annurev-micro-020518-115759] [PMID: 31226023]
[6]
Soliman, M.S.; AbdelFattah, M.; Aman, S.M.N.; Ibrahim, L.M.; Aziz, R.K. A gapless, unambiguous RNA metagenome-Assembled genome sequence of a unique SARS-CoV-2 variant encoding spike S813I and ORF1a A859V substitutions. OMICS, 2021, 25(2), 123-128.
[http://dx.doi.org/10.1089/omi.2020.0194] [PMID: 33253058]
[7]
García, L.F. Immune response, inflammation, and the clinical spectrum of COVID-19. Front. Immunol., 2020, 11, 1441.
[http://dx.doi.org/10.3389/fimmu.2020.01441] [PMID: 32612615]
[8]
Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, M.A.; Alam, A. Immune response in COVID-19: A review. J. Infect. Public Health, 2020, 13(11), 1619-1629.
[http://dx.doi.org/10.1016/j.jiph.2020.07.001] [PMID: 32718895]
[9]
Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: the perspectives on immune responses. Cell Death Differ., 2020, 27(5)1451-1454.1451–1454.doi.org/10.1038/s41418-020-0530-3
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[10]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[11]
Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[12]
Ramos-Casals, M.; Brito-Zerón, P.; Mariette, X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat. Rev. Rheumatol., 2021, 17(6), 315-332.
[http://dx.doi.org/10.1038/s41584-021-00608-z] [PMID: 33903743]
[13]
Cheng, F.; Murray, J.L.; Zhao, J.; Sheng, J.; Zhao, Z.; Rubin, D.H. Systems biology-based investigation of cellular antiviral drug targets identified by gene-trap insertional mutagenesis. PLOS Comput. Biol., 2016, 12(9), e1005074.
[http://dx.doi.org/10.1371/journal.pcbi.1005074] [PMID: 27632082]
[14]
Cheng, F.; Desai, R.J.; Handy, D.E.; Wang, R.; Schneeweiss, S.; Barabási, A.L.; Loscalzo, J. Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun., 2018, 9(1), 2691.
[http://dx.doi.org/10.1038/s41467-018-05116-5] [PMID: 30002366]
[15]
Park, K. The use of real-world data in drug repurposing. Transl. Clin. Pharmacol., 2021, 29(3), 117-124.
[http://dx.doi.org/10.12793/tcp.2021.29.e18] [PMID: 34621704]
[16]
Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res., 2020, 10(2), 354-367.
[http://dx.doi.org/10.1007/s13346-019-00691-6] [PMID: 31788762]
[17]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[18]
Nallusamy, S.; Mannu, J.; Ravikumar, C.; Angamuthu, K.; Nathan, B.; Nachimuthu, K.; Ramasamy, G.; Muthurajan, R.; Subbarayalu, M.; Neelakandan, K. Exploring phytochemicals of traditional medicinal plants exhibiting inhibitory activity against main protease, spike glycoprotein, RNA-dependent RNA polymerase and non-structural proteins of SARS-CoV-2 through virtual screening. Front. Pharmacol., 2021, 12(12), 667704.
[http://dx.doi.org/10.3389/fphar.2021.667704] [PMID: 34305589]
[19]
Bala, D. Attitudes, beliefs, and self-use of Kabasura Kudineer among urban and rural population in Tamil Nadu, India: A comparative cross-sectional study. J. Family Med. Prim. Care, 2021, 10(1), 158-166.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1634_20] [PMID: 34017720]
[20]
De Clercq, E.; Li, G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev., 2016, 29(3), 695-747.
[http://dx.doi.org/10.1128/CMR.00102-15] [PMID: 27281742]
[21]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[22]
Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 2008, 36(Database issue)(Suppl. 1), D901-D906.
[http://dx.doi.org/10.1093/nar/gkm958] [PMID: 18048412]
[23]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[24]
Nickel, J.; Gohlke, B.O.; Erehman, J.; Banerjee, P.; Rong, W.W.; Goede, A.; Dunkel, M.; Preissner, R. SuperPred: update on drug classification and target prediction. Nucleic Acids Res., 2014, 42(W1), W26-W31.
[http://dx.doi.org/10.1093/nar/gku477] [PMID: 24878925]
[25]
Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res., 2007, 36(Database), D684-D688.
[http://dx.doi.org/10.1093/nar/gkm795] [PMID: 18084021]
[26]
Wang, Y.; Zhang, S.; Li, F.; Zhou, Y.; Zhang, Y.; Wang, Z.; Zhang, R.; Zhu, J.; Ren, Y.; Tan, Y.; Qin, C.; Li, Y.; Li, X.; Chen, Y.; Zhu, F. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res., 2019, 48(D1), gkz981.
[http://dx.doi.org/10.1093/nar/gkz981] [PMID: 31691823]
[27]
Mattingly, C.J.; Rosenstein, M.C.; Colby, G.T.; Forrest, J.N., Jr; Boyer, J.L. The Comparative Toxicogenomics Database (CTD): a resource for comparative toxicological studies. J. Exp. Zoolog. A Comp. Exp. Biol., 2006, 305A(9), 689-692.
[http://dx.doi.org/10.1002/jez.a.307] [PMID: 16902965]
[28]
Reimand, J.; Arak, T.; Adler, P.; Kolberg, L.; Reisberg, S.; Peterson, H.; Vilo, J. g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res., 2016, 44(W1), W83-W89.
[http://dx.doi.org/10.1093/nar/gkw199] [PMID: 27098042]
[29]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[30]
Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; Yan, Y.; Zhang, C.; Shan, H.; Chen, S. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B, 2020, 10(7), 1228-1238.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[31]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[32]
Almeida, M.S.; Johnson, M.A.; Herrmann, T.; Geralt, M.; Wüthrich, K. Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J. Virol., 2007, 81(7), 3151-3161.
[http://dx.doi.org/10.1128/JVI.01939-06] [PMID: 17202208]
[33]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[34]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2(2), 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[35]
Tomás, F.D. The impact of using single atomistic long-range cut off schemes with the GROMOS 54A7 force field. J. Chem. Theory Comput., 2018, 14(11), 5823-5833.
[http://dx.doi.org/10.1021/acs.jctc.8b00758]
[36]
Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An automated force field topology builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037.
[http://dx.doi.org/10.1021/ct200196m] [PMID: 26598349]
[37]
Berendsen, J.H.C.; Postma, J.P.M.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration.In: Intermolecular Forces; Pullmann, B., Ed.; , 1981, pp. 331-342.
[http://dx.doi.org/10.1007/978-94-015-7658-1_21]
[38]
Vrahatis, M.N.; Androulakis, G.S.; Lambrinos, J.N.; Magoulas, G.D. A class of gradient unconstrained minimization algorithms with adaptive stepsize. J. Comput. Appl. Math., 2000, 114(2), 367-386.
[http://dx.doi.org/10.1016/S0377-0427(99)00276-9]
[39]
Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 1984, 81(8), 3684-3690.
[http://dx.doi.org/10.1063/1.448118]
[40]
Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52, 7182-7.
[http://dx.doi.org/10.1063/1.328693]
[41]
Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov., 2015, 10(5), 449-461.
[http://dx.doi.org/10.1517/17460441.2015.1032936] [PMID: 25835573]
[42]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[43]
Yuen, C.K.; Lam, J.Y.; Wong, W.M.; Mak, L.F.; Wang, X.; Chu, H.; Cai, J.P.; Jin, D.Y.; To, K.K.W.; Chan, J.F.W.; Yuen, K.Y.; Kok, K.H. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg. Microbes Infect., 2020, 9(1), 1418-1428.
[http://dx.doi.org/10.1080/22221751.2020.1780953] [PMID: 32529952]
[44]
te Velthuis, A.J.W.; van den Worm, S.H.E.; Snijder, E.J. The SARS-coronavirus nsp7+nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res., 2012, 40(4), 1737-1747.
[http://dx.doi.org/10.1093/nar/gkr893] [PMID: 22039154]
[45]
Bianchi, M.; Benvenuto, D.; Giovanetti, M.; Angeletti, S.; Ciccozzi, M.; Pascarella, S. Sars-CoV-2 envelope and membrane proteins: Structural differences linked to virus characteristics? BioMed Res. Int., 2020, 2020(30), 1-6.
[http://dx.doi.org/10.1155/2020/4389089] [PMID: 32596311]
[46]
Hamming, I.; Cooper, M.E.; Haagmans, B.L.; Hooper, N.M.; Korstanje, R.; Osterhaus, A.D.M.E.; Timens, W.; Turner, A.J.; Navis, G.; van Goor, H. The emerging role of ACE2 in physiology and disease. J. Pathol., 2007, 212(1), 1-11.
[http://dx.doi.org/10.1002/path.2162] [PMID: 17464936]
[47]
Schmidt, P.H.; Dransfield, D.T.; Claudio, J.O.; Hawley, R.G.; Trotter, K.W.; Milgram, S.L.; Goldenring, J.R. AKAP350, a multiply spliced protein kinase A-anchoring protein associated with centrosomes. J Biol. Chem., 1999, 247(5), 3055-66.
[http://dx.doi.org/10.1074/jbc.274.5.3055]
[48]
Schütz, P.; Karlberg, T.; van den Berg, S.; Collins, R.; Lehtiö, L.; Högbom, M.; Holmberg-Schiavone, L.; Tempel, W.; Park, H.W.; Hammarström, M.; Moche, M.; Thorsell, A.G.; Schüler, H. Comparative structural analysis of human DEAD-box RNA helicases. PLoS One, 2010, 5(9), e12791.
[http://dx.doi.org/10.1371/journal.pone.0012791] [PMID: 20941364]
[49]
Delaval, B.; Doxsey, S.J. Pericentrin in cellular function and disease. J. Cell Biol., 2010, 188(2), 181-190.
[http://dx.doi.org/10.1083/jcb.200908114]
[50]
Farquhar, M.J.; Harris, H.J.; Diskar, M.; Jones, S.; Mee, C.J.; Nielsen, S.U.; Brimacombe, C.L.; Molina, S.; Toms, G.L.; Maurel, P.; Howl, J.; Herberg, F.W.; van IJzendoorn, S.C.D.; Balfe, P.; McKeating, J.A. Protein Kinase A-Dependent Step(s) in hepatitis c virus entry and infectivity. J. Virol., 2008, 82(17), 8797-8811.
[http://dx.doi.org/10.1128/JVI.00592-08]
[51]
Hattula, K.; Furuhjelm, J.; Arffman, A.; Peränen, J.A. Rab8-specific GDP/GTP exchange factor is involved in actin remodeling and polarized membrane transport. Mol. Biol. Cell, 2002, 13(9), 3268-3280.
[http://dx.doi.org/10.1091/mbc.e02-03-0143] [PMID: 12221131]
[52]
Thaker, S.K.; Ch’ng, J.; Christofk, H.R. Viral hijacking of cellular metabolism. BMC Biol., 2019, 17(1), 59.
[http://dx.doi.org/10.1186/s12915-019-0678-9] [PMID: 31319842]
[53]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.
[http://dx.doi.org/10.1016/j.cell.2020.02.052]
[54]
Strollo, R.; Pozzilli, P. DPP4 inhibition: Preventing SARS‐COV ‐2 infection and/or progression of COVID ‐19? Diabetes Metab. Res. Rev., 2020, 36(8), e3330.
[http://dx.doi.org/10.1002/dmrr.3330] [PMID: 32336007]
[55]
Naghavi, M.H.; Walsh, D. Microtubule regulation and function during virus infection. J. Virol., 2017, 91(16), e00538-17.
[http://dx.doi.org/10.1128/JVI.00538-17]
[56]
Xiao, B.; Verma, S.C.; Cai, Q.; Kaul, R.; Lu, J.; Saha, A.; Robertson, E.S. Bub1 and CENP-F can contribute to Kaposi’s sarcoma-associated herpesvirus genome persistence by targeting LANA to kinetochores. J. Virol., 2010, 84(19), 9718-9732.
[http://dx.doi.org/10.1128/JVI.00713-10] [PMID: 20660191]
[57]
Arab, K.; Rossary, A.; Soulère, L.; Steghens, J.P. Conjugated linoleic acid, unlike other unsaturated fatty acids, strongly induces glutathione synthesis without any lipoperoxidation. Br. J. Nutr., 2006, 96(5), 811-819.
[http://dx.doi.org/10.1017/BJN20061910] [PMID: 17092368]
[58]
Gertz, J.; Reddy, T.E.; Varley, K.E.; Garabedian, M.J.; Myers, R.M. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner. Genome Res., 2012, 22(11), 2153-2162.
[http://dx.doi.org/10.1101/gr.135681.111] [PMID: 23019147]
[59]
Cheung, K.L.; Zhang, F.; Jaganathan, A.; Sharma, R.; Zhang, Q.; Konuma, T.; Shen, T.; Lee, J.Y.; Ren, C.; Chen, C.H.; Lu, G.; Olson, M.R.; Zhang, W.; Kaplan, M.H.; Littman, D.R.; Walsh, M.J.; Xiong, H.; Zeng, L.; Zhou, M.M. Distinct roles of Brd2 and Brd4 in potentiating the transcriptional program for Th17 cell differentiation. Mol. Cell, 2017, 65(6), 1068-1080.
[http://dx.doi.org/10.1016/j.molcel.2016.12.022]
[60]
Schoeters, E.; Verheyen, G.R.; Nelissen, I.; Van Rompay, A.R.; Hooyberghs, J.; Van Den Heuvel, R.L.; Witters, H.; Schoeters, G.E.R.; Van Tendeloo, V.F.I.; Berneman, Z.N. Microarray analyses in dendritic cells reveal potential biomarkers for chemical-induced skin sensitization. Mol. Immunol., 2007, 44(12), 3222-3233.
[http://dx.doi.org/10.1016/j.molimm.2007.01.031] [PMID: 17374397]
[61]
Dunn, L.L.; Midwinter, R.G.; Ni, J.; Hamid, H.A.; Parish, C.R.; Stocker, R. New insights into intracellular locations and functions of heme oxygenase-1. Antioxid. Redox Signal., 2014, 20(11), 1723-42.
[http://dx.doi.org/10.1089/ars.2013.5675]
[62]
Sparatore, A.; Perrino, E.; Tazzari, V.; Giustarini, D.; Rossi, R.; Rossoni, G.; Erdman, K.; Schröder, H.; Soldato, P.D. Pharmacological profile of a novel H2S-releasing aspirin. Free Radic. Biol. Med., 2009, 46(5), 586-592.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.11.013] [PMID: 19100325]
[63]
Hsu, Y.Y.; Tseng, Y.T.; Lo, Y.C. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth. Toxicol. Appl. Pharmacol., 2013, 272(3), 787-796.
[http://dx.doi.org/10.1016/j.taap.2013.08.008] [PMID: 23954465]
[64]
Roger, E.; Andreas, N. Dual regulation of skin sensitizer-induced HMOX1 expression by Bach1 and Nrf2: Comparison to the regulation of the AKR1C2-ARE element in the KeratinoSens cell line. Toxicol. Appl. Pharmacol., 2015, 288(3), 281-288.
[http://dx.doi.org/10.1016/j.taap.2015.07.027]
[65]
Masuya, Y.; Hioki, K.; Tokunaga, R.; Taketani, S. Involvement of the tyrosine phosphorylation pathway in induction of human heme oxygenase-1 by hemin, sodium arsenite and cadmium chloride. J. Biochem., 1998, 124(3), 628-633.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022158] [PMID: 9722676]
[66]
Yang, J.H.; Shin, B.Y.; Han, J.Y.; Kim, M.G.; Wi, J.E.; Kim, Y.W.; Cho, I.J.; Kim, S.C.; Shin, S.M.; Ki, S.H. Isorhamnetin protects against oxidative stress by activating Nrf2 and inducing the expression of its target genes. Toxicol. Appl. Pharmacol., 2014, 274(2), 293-301.
[http://dx.doi.org/10.1016/j.taap.2013.10.026] [PMID: 24211276]
[67]
Mühl, H.; Paulukat, J.; Höfler, S.; Hellmuth, M.; Franzen, R.; Pfeilschifter, J. The HIV protease inhibitor ritonavir synergizes with butyrate for induction of apoptotic cell death and mediates expression of heme oxygenase-1 in DLD-1 colon carcinoma cells. Br. J. Pharmacol., 2004, 143(7), 890-898.
[http://dx.doi.org/10.1038/sj.bjp.0706023] [PMID: 15504750]
[68]
Vandebriel, R.J.; Pennings, J.L.A.; Baken, K.A.; Pronk, T.E.; Boorsma, A.; Gottschalk, R.; Van Loveren, H. Keratinocyte gene expression profiles discriminate sensitizing and irritating compounds. Toxicol. Sci., 2010, 117(1), 81-89.
[http://dx.doi.org/10.1093/toxsci/kfq182] [PMID: 20566472]
[69]
Diamond, A.M.; Hu, Y.J.; Mansur, D.B. Glutathione peroxidase and viral replication: Implications for viral evolution and chemoprevention. Biofactors, 2001, 14(1-4), 205-210.
[http://dx.doi.org/10.1002/biof.5520140126] [PMID: 11568458]
[70]
Singh, P.; Sharma, S.; Kumar Rath, S. Sharad,Sand Srikanta,K.R.Genistein induces deleterious effects during its acute exposure in Swiss mice. BioMed Res. Int., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/619617]
[71]
Granado-Serrano, A.B.; Martín, M.A.; Bravo, L.; Goya, L.; Ramos, S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem. Biol. Interact., 2012, 195(2), 154-164.
[http://dx.doi.org/10.1016/j.cbi.2011.12.005]
[72]
Kesharwani, A.; Polachira, SK Anti-HSV-2 activity of Terminaliachebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement. Altern. Med., 2017, 17(1), 110.
[http://dx.doi.org/10.1186/s12906-017-1620-8]
[73]
Joshi, B.; Panda, S.K.; Jouneghani, R.S.; Liu, M.; Parajuli, N.; Leyssen, P.; Neyts, J.; Luyten, W. Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of nepal selected based on ethnobotanical evidence. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/1043471]
[74]
Sulochana, K.; Ginni, J.; Vaibhav, K. JayaParkash,Y.; Samander,K. Anti-viral activity of Zingiberfficinale (Ginger) ingredients against the Chikungunya virus. Virus Dis, 2020, 31, 270-27.
[http://dx.doi.org/10.1007/s13337-020-00584-0]
[75]
Amber, R.; Adnan, M.; Tariq, A.; Mussarat, S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. J. Pharm. Pharmacol., 2017, 69(2), 109-122.
[http://dx.doi.org/10.1111/jphp.12669] [PMID: 27905101]
[76]
Natarajan, S.; Anbarasi, C. Sathiyarajeswaran, Manickam,P.; Geetha, S.; Kathiravan, R.; Prathiba, P.; Pitchiahkumar, M.; Parthiban, P.; Kanakavalli K. and Balaji P. The efficacy of Siddha Medicine, KabasuraKudineer (KSK) compared to Vitamin C & Zinc (CZ) supplementation in the management of asymptomatic COVID-19 cases: A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21, 892.
[http://dx.doi.org/10.1186/s13063-020-04823-z] [PMID: 33109252]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy