Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Designing of a Novel Candidate Multi-epitope Vaccine to boost Immune Responses against SARS‐COV‐2 using Immunoinformatics and Machine Learning based Approach

Author(s): Shiva Mohammadi, Soudabe Kavusi Pour, Sajad Jalili and Mahdi Barazesh*

Volume 21, Issue 2, 2024

Published on: 19 October, 2022

Page: [356 - 375] Pages: 20

DOI: 10.2174/1570180819666220912105856

Price: $65

Abstract

Background: The fast development of an effective vaccine is the major demand for protection against the SARS-COV-2 virus outbreak. With the vast volume of data and the requirement for automatic abstract property learning, machine learning (ML) as a branch of artificial intelligence (AI) has a significant contribution in areas of vaccine discovery. The rise of ML has greatly accelerated the often lengthy vaccine approval process. ML models for COVID-19 vaccine development focus on the prediction of potential epitopes by using a variety of techniques, such as artificial neural networks, gradient boosting decision trees and deep neural networks.

In this regard, immuno-informatics tools are time-saving and cost-effective methods to hasten the design and establishment of a proficient multi-peptide candidate vaccine. The utilization of multi-epitope-based vaccines has been demonstrated to be a promising immunization approach against viruses due to the induction of long-term protective immunity.

Methods: In the present study, a comprehensive computational and machine learning based approach was conducted to design a multi-epitope-based potential candidate vaccine composed of cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) epitopes of conserved regions of Spike and Nucleocapsid proteins. The potential viral peptides as the candidate vaccine were screened regarding convenient features like hydrophilicity, flexibility, antigenicity, and charging properties. In the next step, the vaccine efficacy needs to be improved by an immune adjuvant. For this purpose, the C-terminal domain of the heat shock protein gp96 (CT-GP96) was applied as a potent adjuvant for enhancing immunity. The five assembled constructs with different peptide orders were generated and fused with the assistance of suitable linkers. All five assembled candidate vaccine constructs were modeled and their 3D structures were assessed in terms of strong immune responses stimulation and their structural stability and immune processing for response induction. Finally, the best refined model was docked to toll-like receptor 4 (TLR4). Furthermore, Molecular Dynamics (MD) simulation of the vaccine-receptor complex was done to assess the stability and related physical movements of the vaccine-TLR4 docking complex. The final candidate vaccine was computationally cloned in E. coli expression host to guarantee its high level of production.

Results: Following a comprehensive immune-informatics and machine learning-based approach, the best conserved CTL and HTL immune stimulant epitopes were selected and assembled in different orders to build five different constructs. The final validated candidate vaccine construct was selected according to its efficacy, stability, and exposure ability, molecular docking analysis with TLR4. The molecular simulations by iMODS software also confirmed the stability of the binding interface. Additionally, the computational cloning of the final assembled candidate vaccine with pET28a plasmid showed the possibility of high level production of the vaccine construct post transformation in an E. coli host.

Conclusion: The computational analysis indicated that this construct can be proposed as a potent prophylactic and therapeutic candidate multi-epitope vaccine against SARS-COV-2 once its effectiveness is verified by experimental and animal studies.

Keywords: CT-Gp96 adjuvant, Immuno-informatics, Multi-epitope peptide-based vaccine, Nucleocapsid protein, SARS-COV-2, Spike protein

Graphical Abstract

[1]
Wouters, O.J.; Shadlen, K.C.; Salcher-Konrad, M.; Pollard, A.J.; Larson, H.J.; Teerawattananon, Y.; Jit, M. Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. Lancet, 2021, 397(10278), 1023-1034.
[http://dx.doi.org/10.1016/S0140-6736(21)00306-8] [PMID: 33587887]
[2]
Gorain, B.; Choudhury, H.; Molugulu, N.; Athawale, R.B.; Kesharwani, P. Fighting strategies against the novel coronavirus pandemic: Impact on global economy. Front. Public Health, 2020, 8, 606129.
[http://dx.doi.org/10.3389/fpubh.2020.606129] [PMID: 33363098]
[3]
Lv, H.; Shi, L.; Berkenpas, J.W.; Dao, F.Y.; Zulfiqar, H.; Ding, H.; Zhang, Y.; Yang, L.; Cao, R. Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Brief. Bioinform., 2021, 22(6), bbab320.
[http://dx.doi.org/10.1093/bib/bbab320] [PMID: 34410360]
[4]
Ong, E.; Wong, M.U.; Huffman, A.; He, Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front. Immunol., 2020, 11, 1581.
[http://dx.doi.org/10.3389/fimmu.2020.01581] [PMID: 32719684]
[5]
Mahmood, A.; Wang, J.L. Machine learning for high performance organic solar cells: Current scenario and future prospects. Energy Environ. Sci., 2021, 14(1), 90-105.
[http://dx.doi.org/10.1039/D0EE02838J]
[6]
Ahmad, F.; Mahmood, A.; Muhmood, T. Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater. Sci., 2021, 9(5), 1598-1608.
[http://dx.doi.org/10.1039/D0BM01672A] [PMID: 33443512]
[7]
Mahmood, A.; Irfan, A.; Wang, J.L. Developing efficient small molecule acceptors with sp2‐hybridized nitrogen at different positions by density functional theory calculations, molecular dynamics simulations and machine learning. Chemistry, 2022, 28(2), e202103712.
[http://dx.doi.org/10.1002/chem.202103712] [PMID: 34767281]
[8]
Mahmood, A.; Wang, J.L. A time and resource efficient machine learning assisted design of non-fullerene small molecule acceptors for P3HT-based organic solar cells and green solvent selection. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(28), 15684-15695.
[http://dx.doi.org/10.1039/D1TA04742F]
[9]
Heidari, A.; Jafari Navimipour, N.; Unal, M.; Toumaj, S. Machine learning applications for COVID-19 outbreak management. Neural Comput. Appl., 2022, 10, 1-36.
[http://dx.doi.org/10.1007/s00521-022-07424-w] [PMID: 35702664]
[10]
Sunita.; Sajid, A.; Singh, Y.; Shukla, P. Computational tools for modern vaccine development. Hum. Vaccin. Immunother., 2020, 16(3), 723-735.
[http://dx.doi.org/10.1080/21645515.2019.1670035] [PMID: 31545127]
[11]
Yang, Z.; Bogdan, P.; Nazarian, S. An In silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Sci. Rep., 2021, 11(1), 3238.
[http://dx.doi.org/10.1038/s41598-021-81749-9] [PMID: 33547334]
[12]
Drosten, C.; Günther, S.; Preiser, W.; van der Werf, S.; Brodt, H.R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A.M.; Berger, A.; Burguière, A.M.; Cinatl, J.; Eickmann, M.; Escriou, N.; Grywna, K.; Kramme, S.; Manuguerra, J.C.; Müller, S.; Rickerts, V.; Stürmer, M.; Vieth, S.; Klenk, H.D.; Osterhaus, A.D.M.E.; Schmitz, H.; Doerr, H.W. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med., 2003, 348(20), 1967-1976.
[http://dx.doi.org/10.1056/NEJMoa030747] [PMID: 12690091]
[13]
Azhar, E.I.; Hui, D.S.C.; Memish, Z.A.; Drosten, C.; Zumla, A. The Middle East Respiratory Syndrome (MERS). Infect. Dis. Clin. North Am., 2019, 33(4), 891-905.
[PMID: 31668197]
[14]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[15]
Chan, J.F.W.; Kok, K.H.; Zhu, Z.; Chu, H.; To, K.K.W.; Yuan, S.; Yuen, K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[16]
Duan, L.; Zheng, Q.; Zhang, H.; Niu, Y.; Lou, Y.; Wang, H. The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: Implications for the design of spike-based vaccine immunogens. Front. Immunol., 2020, 11, 576622.
[http://dx.doi.org/10.3389/fimmu.2020.576622] [PMID: 33117378]
[17]
Ke, Z.; Oton, J.; Qu, K.; Cortese, M.; Zila, V.; McKeane, L.; Nakane, T.; Zivanov, J.; Neufeldt, C.J.; Cerikan, B.; Lu, J.M.; Peukes, J.; Xiong, X.; Kräusslich, H.G.; Scheres, S.H.W.; Bartenschlager, R.; Briggs, J.A.G. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020, 588(7838), 498-502.
[http://dx.doi.org/10.1038/s41586-020-2665-2] [PMID: 32805734]
[18]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[19]
Uddin, M.; Mustafa, F.; Rizvi, T.A.; Loney, T.; Al Suwaidi, H.; Al-Marzouqi, A.H.H.; Kamal Eldin, A.; Alsabeeha, N.; Adrian, T.E.; Stefanini, C.; Nowotny, N.; Alsheikh-Ali, A.; Senok, A.C. SARS-CoV-2/COVID-19: Viral genomics, epidemiology, vaccines, and therapeutic interventions. Viruses, 2020, 12(5), 526.
[http://dx.doi.org/10.3390/v12050526] [PMID: 32397688]
[20]
Srivastava, S.; Kamthania, M.; Kumar Pandey, R.; Kumar Saxena, A.; Saxena, V.; Kumar Singh, S.; Kumar Sharma, R.; Sharma, N. Design of novel multi-epitope vaccines against severe acute respiratory syndrome validated through multistage molecular interaction and dynamics. J. Biomol. Struct. Dyn., 2019, 37(16), 4345-4360.
[PMID: 30457455]
[21]
Goodman, A.G.; Heinen, P.P.; Guerra, S.; Vijayan, A.; Sorzano, C.O.S.; Gomez, C.E.; Esteban, M. A human multi-epitope recombinant vaccinia virus as a universal T cell vaccine candidate against influenza virus. PLoS One, 2011, 6(10), e25938.
[http://dx.doi.org/10.1371/journal.pone.0025938] [PMID: 21998725]
[22]
Shahid, F.; Ashfaq, U.A.; Javaid, A.; Khalid, H. Immunoinformatics guided rational design of a next generation multi epitope based peptide (MEBP) vaccine by exploring Zika virus proteome. Infect. Genet. Evol., 2020, 80, 104199.
[http://dx.doi.org/10.1016/j.meegid.2020.104199] [PMID: 31962160]
[23]
Dorosti, H.; Eslami, M.; Negahdaripour, M.; Ghoshoon, M.B.; Gholami, A.; Heidari, R.; Dehshahri, A.; Erfani, N.; Nezafat, N.; Ghasemi, Y. Vaccinomics approach for developing multi-epitope peptide pneumococcal vaccine. J. Biomol. Struct. Dyn., 2019, 37(13), 3524-3535.
[http://dx.doi.org/10.1080/07391102.2018.1519460] [PMID: 30634893]
[24]
Calderwood, S.K.; Gong, J.; Murshid, A. Extracellular HSPs: The complicated roles of extracellular HSPs in immunity. Front. Immunol., 2016, 7, 159.
[http://dx.doi.org/10.3389/fimmu.2016.00159] [PMID: 27199984]
[25]
Chauhan, N.; Tiwari, S.; Iype, T.; Jain, U. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators. Expert Rev. Vaccines, 2017, 16(5), 491-502.
[http://dx.doi.org/10.1080/14760584.2017.1306440] [PMID: 28285554]
[26]
Shevtsov, M.; Multhoff, G. Heat shock protein–peptide and HSP-based immunotherapies for the treatment of cancer. Front. Immunol., 2016, 7, 171.
[http://dx.doi.org/10.3389/fimmu.2016.00171] [PMID: 27199993]
[27]
Mohit, E.; Bolhassani, A.; Zahedifard, F.; Taslimi, Y.; Rafati, S. The contribution of NT-gp96 as an adjuvant for increasing HPV16 E7-specific immunity in C57BL /6 mouse model. Scand. J. Immunol., 2012, 75(1), 27-37.
[http://dx.doi.org/10.1111/j.1365-3083.2011.02620.x] [PMID: 21916914]
[28]
Wu, S.; Hong, F.; Gewirth, D.; Guo, B.; Liu, B.; Li, Z. The molecular chaperone gp96/GRP94 interacts with Toll-like receptors and integrins via its C-terminal hydrophobic domain. J. Biol. Chem., 2012, 287(9), 6735-6742.
[http://dx.doi.org/10.1074/jbc.M111.309526] [PMID: 22223641]
[29]
Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K. An overview of recent insights into the response of tlr to SARS-CoV-2 infection and the potential of tlr agonists as SARS-CoV-2 vaccine adjuvants. Viruses, 2021, 13(11), 2302.
[http://dx.doi.org/10.3390/v13112302] [PMID: 34835108]
[30]
Larsen, M.V.; Lundegaard, C.; Lamberth, K.; Buus, S.; Lund, O.; Nielsen, M. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 2007, 8(1), 424.
[http://dx.doi.org/10.1186/1471-2105-8-424] [PMID: 17973982]
[31]
Nielsen, M.; Lund, O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics, 2009, 10(1), 296.
[http://dx.doi.org/10.1186/1471-2105-10-296] [PMID: 19765293]
[32]
Nair, D.T.; Singh, K.; Siddiqui, Z.; Nayak, B.P.; Rao, K.V.S.; Salunke, D.M. Epitope recognition by diverse antibodies suggests conformational convergence in an antibody response. J. Immunol., 2002, 168(5), 2371-2382.
[http://dx.doi.org/10.4049/jimmunol.168.5.2371] [PMID: 11859128]
[33]
Ponomarenko, J.; Bui, H.H.; Li, W.; Fusseder, N.; Bourne, P.E.; Sette, A.; Peters, B. ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 2008, 9(1), 514.
[http://dx.doi.org/10.1186/1471-2105-9-514] [PMID: 19055730]
[34]
Thornton, J.M.; Edwards, M.S.; Taylor, W.R.; Barlow, D.J. Location of ‘continuous’ antigenic determinants in the protruding regions of proteins. EMBO J., 1986, 5(2), 409-413.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04226.x] [PMID: 2423325]
[35]
R Taylor, W.; M Thornton, J.; G Turnell, W. An ellipsoidal approximation of protein shape. J. Mol. Graph., 1983, 1(2), 30-38.
[http://dx.doi.org/10.1016/0263-7855(83)80001-0]
[36]
Sánchez-López, E.F.; Corigliano, M.G.; Albarracín, R.M.; Sander, V.A.; Legarralde, A.; Bengoa-Luoni, S.A.; Clemente, M. Plant Hsp90 is a novel adjuvant that elicits a strong humoral and cellular immune response against B- and T-cell epitopes of a Toxoplasma gondii SAG1 peptide. Parasit. Vectors, 2019, 12(1), 140.
[http://dx.doi.org/10.1186/s13071-019-3362-6] [PMID: 30909938]
[37]
Saha, S.; Raghava, G.P.S. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res., 2006, 34(Suppl. 2), W202-W209.
[http://dx.doi.org/10.1093/nar/gkl343] [PMID: 16844994]
[38]
Doytchinova, I.A.; Flower, D.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 2007, 8(1), 4.
[http://dx.doi.org/10.1186/1471-2105-8-4] [PMID: 17207271]
[39]
Gasteiger, E.; Hoogland, C.; Gattiker, A.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. Methods Mol. Biol., 2005, 112, 571-607.
[40]
McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405.
[http://dx.doi.org/10.1093/bioinformatics/16.4.404] [PMID: 10869041]
[41]
Kelley, L.A.; Sternberg, M.J.E. Protein structure prediction on the Web: A case study using the phyre server. Nat. Protoc., 2009, 4(3), 363-371.
[http://dx.doi.org/10.1038/nprot.2009.2] [PMID: 19247286]
[42]
Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc., 2010, 5(4), 725-738.
[http://dx.doi.org/10.1038/nprot.2010.5] [PMID: 20360767]
[43]
Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res., 2003, 31(13), 3381-3385.
[http://dx.doi.org/10.1093/nar/gkg520] [PMID: 12824332]
[44]
Shin, W-H.; Lee, G.R.; Heo, L.; Lee, H.; Seok, C. Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Design, 2014, 2(1), 1-11.
[45]
Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res., 2013, 41(W1), W384-W388.
[http://dx.doi.org/10.1093/nar/gkt458] [PMID: 23737448]
[46]
Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Suppl. 2), W407-W410.
[http://dx.doi.org/10.1093/nar/gkm290] [PMID: 17517781]
[47]
Colovos, C.; Yeates, T. ERRAT: An empirical atom-based method for validating protein structures. Protein Sci., 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916] [PMID: 8401235]
[48]
Lovell, S.C.; Davis, I.W.; Arendall, W.B., III; de Bakker, P.I.W.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Cα geometry: ϕψ and Cβ deviation. Proteins, 2003, 50(3), 437-450.
[http://dx.doi.org/10.1002/prot.10286] [PMID: 12557186]
[49]
Magnan, C.N.; Randall, A.; Baldi, P. SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics, 2009, 25(17), 2200-2207.
[http://dx.doi.org/10.1093/bioinformatics/btp386] [PMID: 19549632]
[50]
Torchala, M.; Bates, P.A. Predicting the structure of protein–protein complexes using the SwarmDock web server. Methods Mol. Biol., 2014, 1137, 181-197.
[http://dx.doi.org/10.1007/978-1-4939-0366-5_13]
[51]
Mashiach, E.; Schneidman-Duhovny, D.; Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Res., 2008, 36(Suppl. 2), W229-W232.
[http://dx.doi.org/10.1093/nar/gkn186] [PMID: 18424796]
[52]
Lopéz-Blanco, J.R.; Garzón, J.I.; Chacón, P. iMod: Multipurpose normal mode analysis in internal coordinates. Bioinformatics, 2011, 27(20), 2843-2850.
[http://dx.doi.org/10.1093/bioinformatics/btr497] [PMID: 21873636]
[53]
López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Res., 2014, 42(W1), W271-W276.
[http://dx.doi.org/10.1093/nar/gku339] [PMID: 24771341]
[54]
Tama, F.; Brooks, C.L. III Symmetry, form, and shape: Guiding principles for robustness in macromolecular machines. Annu. Rev. Biophys. Biomol. Struct., 2006, 35(1), 115-133.
[http://dx.doi.org/10.1146/annurev.biophys.35.040405.102010] [PMID: 16689630]
[55]
Meroueh, S. Normal Mode Analysis Theoretical and Applications to Biological and Chemical Systems. Brief. Bioinform., 2007, 8, 378-9.
[http://dx.doi.org/10.1093/bib/bbm010]
[56]
Van Aalten, D.M.F.; De Groot, B.L.; Findlay, J.B.C.; Berendsen, H.J.C.; Amadei, A. A comparison of techniques for calculating protein essential dynamics. J. Comput. Chem., 1997, 18(2), 169-181.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19970130)18:2<169:AID-JCC3>3.0.CO;2-T]
[57]
Wüthrich, K.; Wagner, G.; Richarz, R.; Braun, W. Correlations between internal mobility and stability of globular proteins. Biophys. J., 1980, 32(1), 549-560.
[http://dx.doi.org/10.1016/S0006-3495(80)84989-7] [PMID: 7248460]
[58]
Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D.C.; Jahn, D. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Res., 2005, 33(Web Server), W526-W531.
[http://dx.doi.org/10.1093/nar/gki376] [PMID: 15980527]
[59]
Mirza, U.M.; Rafique, S.; Ali, A.; Munir, M.; Ikram, N.; Manan, A.; Salo-Ahen, O.M.H.; Idrees, M. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci. Rep., 2016, 6(1), 37313.
[http://dx.doi.org/10.1038/srep37313] [PMID: 28442746]
[60]
Dar, H.A.; Waheed, Y.; Najmi, M.H.; Ismail, S.; Hetta, H.F.; Ali, A.; Muhammad, K. Multiepitope subunit vaccine design against COVID-19 based on the spike protein of SARS-CoV-2: An in silico analysis. J. Immunol. Res., 2020, 2020, 8893483.
[http://dx.doi.org/10.1155/2020/8893483]
[61]
Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and methods for T-and B-cell epitope prediction. J. Immunol. Res., 2017, 2017, 2680160.
[http://dx.doi.org/10.1155/2017/2680160]
[62]
Bachmair, A.; Finley, D.; Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science, 1986, 234(4773), 179-186.
[63]
Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem., 1980, 88(6), 1895-1898.
[PMID: 7462208]
[64]
Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol., 1982, 157(1), 105-132.
[http://dx.doi.org/10.1016/0022-2836(82)90515-0] [PMID: 7108955]
[65]
Kovacs, J.A.; Chacón, P.; Abagyan, R. Predictions of protein flexibility: First-order measures. Proteins, 2004, 56(4), 661-668.
[http://dx.doi.org/10.1002/prot.20151] [PMID: 15281119]
[66]
Bahar, I.; Lezon, T.R.; Bakan, A.; Shrivastava, I.H. Normal mode analysis of biomolecular structures: Functional mechanisms of membrane proteins. Chem. Rev., 2010, 110(3), 1463-1497.
[http://dx.doi.org/10.1021/cr900095e] [PMID: 19785456]
[67]
Samad, A.; Ahammad, F.; Nain, Z.; Alam, R.; Imon, R.R.; Hasan, M.; Rahman, M.S. Designing a multi-epitope vaccine against SARS-CoV-2: An immunoinformatics approach. J. Biomol. Struct. Dyn., 2022, 40(1), 14-30.
[http://dx.doi.org/10.1080/07391102.2020.1792347] [PMID: 32677533]
[68]
Mohanty, E.; Mohanty, A. Role of artificial intelligence in peptide vaccine design against RNA viruses. Inform. Med. Unlocked, 2021, 26, 100768.
[http://dx.doi.org/10.1016/j.imu.2021.100768] [PMID: 34722851]
[69]
Saadi, M.; Karkhah, A.; Nouri, H.R. Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infect. Genet. Evol., 2017, 51, 227-234.
[http://dx.doi.org/10.1016/j.meegid.2017.04.009] [PMID: 28411163]
[70]
Zhang, L. Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cell. Mol. Immunol., 2018, 15(2), 182-184.
[http://dx.doi.org/10.1038/cmi.2017.92] [PMID: 28890542]
[71]
Naveed, M.; Tehreem, S.; Arshad, S.; Bukhari, S.A.; Shabbir, M.A.; Essa, R.; Ali, N.; Zaib, S.; Khan, A.; Al-Harrasi, A.; Khan, I. Design of a novel multiple epitope-based vaccine: An immunoinformatics approach to combat SARS-CoV-2 strains. J. Infect. Public Health, 2021, 14(7), 938-946.
[http://dx.doi.org/10.1016/j.jiph.2021.04.010] [PMID: 34119848]
[72]
Peele, A.K.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Venkateswarulu, T.C. Design of multi-epitope vaccine candidate against SARS-CoV-2: A in-silico study. J. Biomol. Struct. Dyn., 2021, 39(10), 3793-3801.
[http://dx.doi.org/10.1080/07391102.2020.1770127] [PMID: 32419646]
[73]
Abdelmageed, M.I.; Abdelmoneim, A.H.; Mustafa, M.I.; Elfadol, N.M.; Murshed, N.S.; Shantier, S.W.; Makhawi, A.M. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: An immunoinformatics approach. BioMed Res. Int., 2020, 2020, 2683286.
[http://dx.doi.org/10.1155/2020/2683286]
[74]
Neefjes, J.; Jongsma, M.L.M.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol., 2011, 11(12), 823-836.
[http://dx.doi.org/10.1038/nri3084] [PMID: 22076556]
[75]
Szeto, C.; Lobos, C.A.; Nguyen, A.T.; Gras, S. TCR recognition of peptide–MHC-I: Rule makers and breakers. Int. J. Mol. Sci., 2020, 22(1), 68.
[http://dx.doi.org/10.3390/ijms22010068] [PMID: 33374673]
[76]
Zhang, G.; Petrovsky, N.; Kwoh, C.; August, J.T.; Brusic, V. PRED(TAP): A system for prediction of peptide binding to the human transporter associated with antigen processing. Immunome Res., 2006, 2(1), 3.
[http://dx.doi.org/10.1186/1745-7580-2-3] [PMID: 16719926]
[77]
Zhao, Z.; Sun, H.Q.; Wei, S.S.; Li, B.; Feng, Q.; Zhu, J.; Zeng, H.; Zou, Q.M.; Wu, C. Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection. Sci. Rep., 2015, 5(1), 12371.
[http://dx.doi.org/10.1038/srep12371] [PMID: 26201558]
[78]
Pandey, R.K.; Bhatt, T.K.; Prajapati, V.K. Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Sci. Rep., 2018, 8(1), 1125.
[http://dx.doi.org/10.1038/s41598-018-19456-1] [PMID: 29348555]
[79]
He, J.; Huang, F.; Zhang, J.; Chen, Q.; Zheng, Z.; Zhou, Q.; Chen, D.; Li, J.; Chen, J. Vaccine design based on 16 epitopes of SARSCoV‐2 spike protein. J. Med. Virol., 2021, 93(4), 2115-2131.
[http://dx.doi.org/10.1002/jmv.26596] [PMID: 33091154]
[80]
Zininga, T.; Ramatsui, L.; Shonhai, A. Heat shock proteins as immunomodulants. Molecules, 2018, 23(11), 2846.
[http://dx.doi.org/10.3390/molecules23112846] [PMID: 30388847]
[81]
Nold-Petry, C.A.; Nold, M.F.; Levy, O.; Kliger, Y.; Oren, A.; Borukhov, I.; Becker, C.; Wirtz, S.; Sandhu, M.K.; Neurath, M.; Dinarello, C.A. Gp96 peptide antagonist gp96-II confers therapeutic effects in murine intestinal inflammation. Front. Immunol., 2017, 8, 1531.
[http://dx.doi.org/10.3389/fimmu.2017.01531] [PMID: 29312281]
[82]
Bibi, S.; Ullah, I.; Zhu, B.; Adnan, M.; Liaqat, R.; Kong, W.B.; Niu, S. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci. Rep., 2021, 11(1), 1249.
[http://dx.doi.org/10.1038/s41598-020-80899-6] [PMID: 33441913]
[83]
Shey, R.A.; Ghogomu, S.M.; Esoh, K.K.; Nebangwa, N.D.; Shintouo, C.M.; Nongley, N.F.; Asa, B.F.; Ngale, F.N.; Vanhamme, L.; Souopgui, J. In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Sci. Rep., 2019, 9(1), 4409.
[http://dx.doi.org/10.1038/s41598-019-40833-x] [PMID: 30867498]
[84]
Kar, T.; Narsaria, U.; Basak, S.; Deb, D.; Castiglione, F.; Mueller, D.M.; Srivastava, A.P. A candidate multi-epitope vaccine against SARS-CoV-2. Sci. Rep., 2020, 10(1), 10895.
[http://dx.doi.org/10.1038/s41598-020-67749-1] [PMID: 32616763]
[85]
Lim, H.X.; Masomian, M.; Khalid, K.; Kumar, A.U.; MacAry, P.A.; Poh, C.L. Identification of b-cell epitopes for eliciting neutralizing antibodies against the SARS-CoV-2 spike protein through bioinformatics and monoclonal antibody targeting. Int. J. Mol. Sci., 2022, 23(8), 4341.
[http://dx.doi.org/10.3390/ijms23084341] [PMID: 35457159]
[86]
Mahmood, A.; Irfan, A.; Wang, J.L. Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(8), 4170-4180.
[http://dx.doi.org/10.1039/D1TA09762H]
[87]
Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Lahtela-Kakkonen, M.; Larsen, A.S.; Lescrinier, E.; Marimuthu, P.; Mirza, M.U.; Mustafa, G.; Nunes-Alves, A.; Pantsar, T.; Saadabadi, A.; Singaravelu, K.; Vanmeert, M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 2020, 9(1), 71.
[http://dx.doi.org/10.3390/pr9010071]
[88]
Arumugam, S.; Varamballi, P. In-silico design of envelope based multi-epitope vaccine candidate against Kyasanur forest disease virus. Sci. Rep., 2021, 11(1), 17118.
[http://dx.doi.org/10.1038/s41598-021-94488-8] [PMID: 34429443]
[89]
Droppa-Almeida, D.; Franceschi, E.; Padilha, F.F. Immune-informatic analysis and design of peptide vaccine from multi-epitopes against Corynebacterium pseudotuberculosis. Bioinform. Biol. Insights, 2018, 12, 1177932218755337.
[http://dx.doi.org/10.1177/1177932218755337] [PMID: 29780242]
[90]
Rahman, N.; Ali, F.; Basharat, Z.; Shehroz, M.; Khan, M.K.; Jeandet, P.; Nepovimova, E.; Kuca, K.; Khan, H. Vaccine design from the ensemble of surface glycoprotein epitopes of SARS-CoV-2: An immunoinformatics approach. Vaccines, 2020, 8(3), 423.
[http://dx.doi.org/10.3390/vaccines8030423] [PMID: 32731461]

© 2025 Bentham Science Publishers | Privacy Policy