Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Review Article

The Potential Therapeutic Properties of Prunetin against Human Health Complications: A Review of Medicinal Importance and Pharmacological Activities

Author(s): Kanika Patel and Dinesh Kumar Patel*

Volume 15, Issue 3, 2022

Published on: 12 October, 2022

Page: [166 - 177] Pages: 12

DOI: 10.2174/2949681015666220912104743

Price: $65

Abstract

Background: Flavonoids are polyphenolic compounds found to be present in nature and abundant in flowers and fruits. Flavonoidal class phytochemicals have gained interest in the scientific field because of their important pharmacological activities. Several scientific studies have revealed anti-bacterial, anti-oxidant, anti-fungal, analgesic, anti-viral, anti-inflammatory, anti-tumor, anti-parasitic and anti-allergic activities of flavonoidal class phytochemicals. Prunetin is an O-methylated isoflavone that belongs to the phytochemical phytoestrogen class, found to be present in licorice, red cherry, soybean and legumes.

Methods: Biological potential and pharmacological activities of prunetin have been investigated in the present work through scientific data analysis of numerous scientific research works. Numerous literature databases have been searched in order to collect the scientific information on prunetin in the present work. Pharmacological activities of prunetin have been investigated in the present work through literature data analysis of different scientific research works. Scientific data have been collected from Google Scholar, Google, PubMed, Science Direct and Scopus. Analytical data on prunetin has been collected from literature sources and analyzed in the present work.

Results: Scientific data analysis revealed the biological importance of prunetin in medicine. Prunetin was found to be present in the pea, peach, Oregon cherry, skimmed cheese, cheese, cow kefir and goat kefir. Prunetin is also present in the Prunus avium, Andira surinamensis, Butea superba, Dalbergia sympathetica, Ficus nervosa, Pterospartum tridentatum and Pycnanthus angolensis. Pharmacological data analysis revealed the biological importance of prunetin on bone disorders, cancers, especially hepatocellular carcinoma, urinary bladder cancer, gastric cancer, ovarian cancer, human airway, gut health and enzymes. Scientific data analysis revealed biological effectiveness of prunetin for their angiogenic effects, anti-inflammatory, anti-oxidant, antimicrobial, estrogenic and vasorelaxant potential. Analytical data revealed the importance of modern analytical techniques for qualitative and quantitative analysis of prunetin in the scientific fields.

Conclusion: Scientific data analysis in the present investigation revealed the biological importance and pharmacological activities of prunetin in medicine.

Keywords: Prunetin, bone disorders, antioxidant, antimicrobial, estrogenic, vasorelaxant, hepatocellular carcinoma, urinary bladder cancer, gastric cancer, ovarian cancer

Graphical Abstract

[1]
Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc Hematol Disord Targets, 2021, 21(2), 104-114.
[http://dx.doi.org/10.2174/1871529X21666210812111931] [PMID: 34387174]
[2]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2016, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[3]
Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14(2), 117-125.
[http://dx.doi.org/10.2174/1872312814666210726112910] [PMID: 34313205]
[4]
Patel, K.; Husain, G.M.; Katiyar, D.K.; Prasad, S.K.; Patel, D.K. Sophoricoside: Bioactive compounds from Sophora japonica, their role in disease prevention and treatment. Curr. Tradit. Med., 2021, 7(2), 180-188.
[http://dx.doi.org/10.2174/2215083806666200214114106]
[5]
Patel, K.; Patel, D.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention. Curr. Bioact. Compd., 2021, 17(3), 206-213.
[http://dx.doi.org/10.2174/1573407216999200609130841]
[6]
Fu, Y.; Liu, W.; Soladoye, O.P. Towards innovative food processing of flavonoid compounds: Insights into stability and bioactivity. Lebensm. Wiss. Technol., 2021, 150, 111968.
[http://dx.doi.org/10.1016/j.lwt.2021.111968]
[7]
Patel, K.; Patel, D.K. Health benefits of quassin from quassia amara: A comprehensive review of their ethnopharmacological importance, pharmacology, phytochemistry and analytical aspects. Curr. Nutr. Food Sci., 2020, 16(1), 35-44.
[http://dx.doi.org/10.2174/1573401314666181023094645]
[8]
Pereira, S.V.; Reis, R.A.S.P.; Garbuio, D.C.; de Freitas, L.A.P. Dynamic maceration of Matricaria chamomilla inflorescences: Optimal conditions for flavonoids and antioxidant activity. Rev. Bras. Farmacogn., 2018, 28(1), 111-117.
[http://dx.doi.org/10.1016/j.bjp.2017.11.006]
[9]
Rehman, M.N.; Ahmad, M.; Sultana, S.; Zafar, M.; Edwards, S. Relative popularity level of medicinal plants in Talagang, Punjab Province, Pakistan. Rev. Bras. Farmacogn., 2017, 27(6), 751-775.
[http://dx.doi.org/10.1016/j.bjp.2017.09.004]
[10]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[11]
Dzoyem, J.P.; Tchamgoue, J.; Tchouankeu, J.C.; Kouam, S.F.; Choudhary, M.I.; Bakowsky, U. Antibacterial activity and cytotoxicity of flavonoids compounds isolated from Pseudarthria hookeri Wight & Arn. (Fabaceae). S. Afr. J. Bot., 2018, 114, 100-103.
[http://dx.doi.org/10.1016/j.sajb.2017.11.001]
[12]
Patel, K. Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “a concise report of its phytopharmaceutical importance. Curr. Tradit. Med., 2017, 3(3), 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[13]
Li, S.; Tan, H.Y.; Wang, N.; Cheung, F.; Hong, M.; Feng, Y. The potential and action mechanism of polyphenols in the treatment of liver diseases. Oxid. Med. Cell. Longev., 2018, 2018, 8394818.
[http://dx.doi.org/10.1155/2018/8394818] [PMID: 29507653]
[14]
Li, N.; Zhang, P.; Wu, H.; Wang, J.; Liu, F.; Wang, W. Natural flavonoids function as chemopreventive agents from Gancao (Glycyrrhiza inflata Batal). J. Funct. Foods, 2015, 19, 563-574.
[http://dx.doi.org/10.1016/j.jff.2015.09.045]
[15]
Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612.
[http://dx.doi.org/10.1016/j.biopha.2019.108612] [PMID: 30798142]
[16]
Patel, K.; Gadewar, M.; Tripathi, R.; Prasad, S.K.; Patel, D.K. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”. Asian Pac. J. Trop. Biomed., 2012, 2(8), 660-664.
[http://dx.doi.org/10.1016/S2221-1691(12)60116-6] [PMID: 23569990]
[17]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[18]
Yu, B.; Pan, Y.; Liu, Y.; Chen, Q.; Guo, X.; Tang, Z. A comprehensive analysis of transcriptome and phenolic compound profiles suggests the role of flavonoids in cotyledon greening in Catharanthus roseus seedling. Plant Physiol. Biochem., 2021, 167, 185-197.
[http://dx.doi.org/10.1016/j.plaphy.2021.07.028] [PMID: 34365289]
[19]
Coelho, P.L.C.; de Freitas, S.R.V-B.; Pitanga, B.P.S.; da Silva, V.D.A.; Oliveira, M.N.; Grangeiro, M.S.; Souza, C.S.; El-Bachá, R.S.; de Fátima Dias Costa, M.; Barbosa, P.R.; de Oliveira Nascimento, I.L.; Costa, S.L. Flavonoids from the Brazilian plant Croton betulaster inhibit the growth of human glioblastoma cells and induce apoptosis. Rev. Bras. Farmacogn., 2016, 26(1), 34-43.
[http://dx.doi.org/10.1016/j.bjp.2015.05.013]
[20]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7(1), 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[21]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[22]
Hoensch, H.P.; Oertel, R. The value of flavonoids for the human nutrition: Short review and perspectives. Clin. Nutr. Exp., 2015, 3, 8-14.
[http://dx.doi.org/10.1016/j.yclnex.2015.09.001]
[23]
Lu, W.; Du, Q.; Xiao, L.; Lv, C.; Quan, M.; Li, P.; Yao, L.; Song, F.; Zhang, D. Multi-omics analysis provides insights into genetic architecture of flavonoid metabolites in Populus. Ind. Crops Prod., 2021, 168, 113612.
[http://dx.doi.org/10.1016/j.indcrop.2021.113612]
[24]
Deng, M.; Jia, X.; Dong, L.; Liu, L.; Huang, F.; Chi, J.; Ma, Q.; Zhao, D.; Zhang, M.; Zhang, R. Structural elucidation of flavonoids from Shatianyu (Citrus grandis L. Osbeck) pulp and screening of key antioxidant components. Food Chem., 2022, 366, 130605.
[http://dx.doi.org/10.1016/j.foodchem.2021.130605] [PMID: 34311239]
[25]
Shi, J.; Simal-Gandara, J.; Mei, J.; Ma, W.; Peng, Q.; Shi, Y.; Xu, Q.; Lin, Z.; Lv, H. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas. Food Chem., 2021, 363, 130278.
[http://dx.doi.org/10.1016/j.foodchem.2021.130278] [PMID: 34118756]
[26]
Wang, Q.; Jin, J.; Dai, N.; Han, N.; Han, J.; Bao, B. Anti-inflammatory effects, nuclear magnetic resonance identification, and high-performance liquid chromatography isolation of the total flavonoids from Artemisia frigida. J. Food Drug Anal., 2016, 24(2), 385-391.
[http://dx.doi.org/10.1016/j.jfda.2015.11.004] [PMID: 28911593]
[27]
Yadavalli, R.; Peasari, J.R.; Mamindla, P. Praveenkumar; Mounika, S.; Ganugapati, J. Phytochemical screening and in silico studies of flavonoids from Chlorella pyrenoidosa. Informatics Med Unlocked, 2018, 10, 89-99.
[http://dx.doi.org/10.1016/j.imu.2017.12.009]
[28]
Aoi, W.; Iwasa, M.; Marunaka, Y. Metabolic functions of flavonoids: From human epidemiology to molecular mechanism. Neuropeptides, 2021, 88, 102163.
[http://dx.doi.org/10.1016/j.npep.2021.102163] [PMID: 34098453]
[29]
Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother., 2021, 140, 111596.
[http://dx.doi.org/10.1016/j.biopha.2021.111596] [PMID: 34126315]
[30]
Zhang, L.; Zhang, Z.; Fang, S.; Liu, Y.; Shang, X. Integrative analysis of metabolome and transcriptome reveals molecular regulatory mechanism of flavonoid biosynthesis in Cyclocarya paliurus under salt stress. Ind. Crops Prod., 2021, 170, 113823.
[http://dx.doi.org/10.1016/j.indcrop.2021.113823]
[31]
Carvalho, M.T.B.; Araújo-Filho, H.G.; Barreto, A.S.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Barreto, R.S.S. Wound healing properties of flavonoids: A systematic review highlighting the mechanisms of action. Phytomedicine, 2021, 90, 153636.
[http://dx.doi.org/10.1016/j.phymed.2021.153636] [PMID: 34333340]
[32]
Fu, X.; Chai, C-L.; Li, Y-P.; Li, P.; Luo, S-H.; Li, Q.; Li, M-W.; Liu, Y-Q. Metabolomics reveals abundant flavonoids in edible insect Antheraea pernyi. J. Asia Pac. Entomol., 2021, 24(3), 711-715.
[http://dx.doi.org/10.1016/j.aspen.2021.06.004]
[33]
Chen, J.; Lin, H.; Hu, M. Absorption and metabolism of genistein and its five isoflavone analogs in the human intestinal Caco-2 model. Cancer Chemother. Pharmacol., 2005, 55(2), 159-169.
[http://dx.doi.org/10.1007/s00280-004-0842-x] [PMID: 15455178]
[34]
Shi, S.; Li, J.; Zhao, X.; Liu, Q.; Song, S-J. A comprehensive review: Biological activity, modification and synthetic methodologies of prenylated flavonoids. Phytochemistry, 2021, 191, 112895.
[http://dx.doi.org/10.1016/j.phytochem.2021.112895] [PMID: 34403885]
[35]
Liao, J.; Guo, Z.; Yu, G. Process intensification and kinetic studies of ultrasound-assisted extraction of flavonoids from peanut shells. Ultrason. Sonochem., 2021, 76, 105661.
[http://dx.doi.org/10.1016/j.ultsonch.2021.105661] [PMID: 34252684]
[36]
Nam, D.C.; Kim, B.K.; Lee, H.J.; Shin, H-D.; Lee, C.J.; Hwang, S-C. Effects of prunetin on the proteolytic activity, secretion and gene expression of MMP-3 in vitro and production of MMP-3 in vivo. Korean J. Physiol. Pharmacol., 2016, 20(2), 221-228.
[http://dx.doi.org/10.4196/kjpp.2016.20.2.221] [PMID: 26937219]
[37]
Kooptiwut, S.; Samon, K.; Semprasert, N.; Suksri, K.; Yenchitsomanus, P-T. Prunetin protects against dexamethasone-induced pancreatic B-cell apoptosis via modulation of p53 signaling pathway. Nat. Prod. Commun., 2020, 15(4), 1-9.
[http://dx.doi.org/10.1177/1934578X20916328]
[38]
Ryu, J.; Lee, H.J.; Park, S.H.; Sikder, M.A.; Kim, J-O.; Hong, J-H.; Seok, J.H.; Lee, C.J. Effect of prunetin on TNF-α-Induced MUC5AC mucin gene expression, production, degradation of IκB and translocation of NF-κB p65 in human airway epithelial cells. Tuberc. Respir. Dis. (Seoul), 2013, 75(5), 205-209.
[http://dx.doi.org/10.4046/trd.2013.75.5.205] [PMID: 24348668]
[39]
Piegholdt, S.; Rimbach, G.; Wagner, A.E. The phytoestrogen prunetin affects body composition and improves fitness and lifespan in male Drosophila melanogaster. FASEB J., 2016, 30(2), 948-958.
[http://dx.doi.org/10.1096/fj.15-282061] [PMID: 26538555]
[40]
Kim, B.; Jo, C.; Choi, H-Y.; Lee, K. Prunetin relaxed isolated rat aortic rings by blocking calcium channels. Molecules, 2018, 23(9), 2372.
[http://dx.doi.org/10.3390/molecules23092372] [PMID: 30227625]
[41]
Sugai, T.; Hanaya, K.; Higashibayashi, S. Semisynthesis of prunetin, a bioactive O-methylated isoflavone from naringenin, by the sequential deacetylation of chalcone intermediates and oxidative rearrangement. Biosci. Biotechnol. Biochem., 2021, 85(1), 143-147.
[http://dx.doi.org/10.1093/bbb/zbaa021] [PMID: 33577652]
[42]
Joseph, T.B.; Wang, S.W.J.; Liu, X.; Kulkarni, K.H.; Wang, J.; Xu, H.; Hu, M. Disposition of flavonoids via enteric recycling: Enzyme stability affects characterization of prunetin glucuronidation across species, organs, and UGT isoforms. Mol. Pharm., 2007, 4(6), 883-894.
[http://dx.doi.org/10.1021/mp700135a] [PMID: 18052087]
[43]
Piegholdt, S.; Rimbach, G.; Wagner, A.E. Effects of the isoflavone prunetin on gut health and stress response in male Drosophila melanogaster. Redox Biol., 2016, 8, 119-126.
[http://dx.doi.org/10.1016/j.redox.2016.01.001] [PMID: 26774080]
[44]
Kenda, M.; Vegelj, J.; Herlah, B.; Perdih, A. Mladěnka, P.; Sollner Dolenc, M. Evaluation of firefly and Renilla luciferase inhibition in reporter-gene assays: A case of isoflavonoids. Int. J. Mol. Sci., 2021, 22(13), 6927.
[http://dx.doi.org/10.3390/ijms22136927] [PMID: 34203212]
[45]
Hu, H.; Li, H. Prunetin inhibits lipopolysaccharide-induced inflammatory cytokine production and MUC5AC expression by inactivating the TLR4/MyD88 pathway in human nasal epithelial cells. Biomed. Pharmacother., 2018, 106, 1469-1477.
[http://dx.doi.org/10.1016/j.biopha.2018.07.093] [PMID: 30119221]
[46]
Yang, G.; Ham, I.; Choi, H-Y. Anti-inflammatory effect of prunetin via the suppression of NF-κB pathway. Food Chem. Toxicol., 2013, 58, 124-132.
[http://dx.doi.org/10.1016/j.fct.2013.03.039] [PMID: 23597450]
[47]
Wong, S-L.; Chang, H-S.; Wang, G-J.; Chiang, M.Y.; Huang, H-Y.; Chen, C-H.; Tsai, S.C.; Lin, C.H.; Chen, I.S. Secondary metabolites from the roots of Neolitsea daibuensis and their anti-inflammatory activity. J. Nat. Prod., 2011, 74(12), 2489-2496.
[http://dx.doi.org/10.1021/np100874f] [PMID: 22148193]
[48]
Park, T-J.; Hong, H.; Kim, M-S.; Park, J-S.; Chi, W-J.; Kim, S-Y. Prunetin 4′-O-Phosphate, a novel compound, in RAW 264.7 macrophages exerts anti-inflammatory activity via suppression of MAP kinases and the NFκB pathway. Molecules, 2021, 26(22), 6841.
[http://dx.doi.org/10.3390/molecules26226841] [PMID: 34833933]
[49]
Khan, K.; Pal, S.; Yadav, M.; Maurya, R.; Trivedi, A.K.; Sanyal, S.; Chattopadhyay, N. Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration. J. Nutr. Biochem., 2015, 26(12), 1491-1501.
[http://dx.doi.org/10.1016/j.jnutbio.2015.07.021] [PMID: 26345541]
[50]
Tang, L.; Singh, R.; Liu, Z.; Hu, M. Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones. Mol. Pharm., 2009, 6(5), 1466-1482.
[http://dx.doi.org/10.1021/mp8002557] [PMID: 19545173]
[51]
Piegholdt, S.; Pallauf, K.; Esatbeyoglu, T.; Speck, N.; Reiss, K.; Ruddigkeit, L.; Stocker, A.; Huebbe, P.; Rimbach, G. Biochanin A and prunetin improve epithelial barrier function in intestinal CaCo-2 cells via downregulation of ERK, NF-κB, and tyrosine phosphorylation. Free Radic. Biol. Med., 2014, 70, 255-264.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.02.025] [PMID: 24631489]
[52]
Ahn, T-G.; Yang, G.; Lee, H-M.; Kim, M-D.; Choi, H-Y.; Park, K-S.; Lee, S.D.; Kook, Y.B.; An, H.J. Molecular mechanisms underlying the anti-obesity potential of prunetin, an O-methylated isoflavone. Biochem. Pharmacol., 2013, 85(10), 1525-1533.
[http://dx.doi.org/10.1016/j.bcp.2013.02.020] [PMID: 23438470]
[53]
Lee, H.J.; Lee, S.Y.; Lee, M.N.; Kim, J-H.; Chang, G.T.; Seok, J.H.; Lee, C.J. Inhibition of secretion, production and gene expression of mucin from cultured airway epithelial cells by prunetin. Phytother. Res., 2011, 25(8), 1196-1200.
[http://dx.doi.org/10.1002/ptr.3362] [PMID: 21305630]
[54]
Tsutsui, T.; Tamura, Y.; Yagi, E.; Someya, H.; Hori, I.; Metzler, M.; Barrett, J.C. Cell-transforming activity and mutagenicity of 5 phytoestrogens in cultured mammalian cells. Int. J. Cancer, 2003, 105(3), 312-320.
[http://dx.doi.org/10.1002/ijc.11046] [PMID: 12704663]
[55]
Mansoor, T.A.; Ramalho, R.M.; Luo, X.; Ramalhete, C.; Rodrigues, C.M.P.; Ferreira, M-J.U. Isoflavones as apoptosis inducers in human hepatoma HuH-7 cells. Phytother. Res., 2011, 25(12), 1819-1824.
[http://dx.doi.org/10.1002/ptr.3498] [PMID: 21495101]
[56]
Ngamrojanavanich, N.; Loontaisong, A.; Pengpreecha, S.; Cherdshewasart, W.; Pornpakakul, S.; Pudhom, K.; Roengsumran, S.; Petsom, A. Cytotoxic constituents from Butea superba Roxb. J. Ethnopharmacol., 2007, 109(2), 354-358.
[http://dx.doi.org/10.1016/j.jep.2006.07.034] [PMID: 16973318]
[57]
Wang, M.; Chang, T. Genomic analyses identify critical significant biological processes in prunetin treated gastric cancer cells; Res. Sq, 2022.
[http://dx.doi.org/10.21203/rs.3.rs-1537547/v1]
[58]
Li, G.; Qi, L.; Chen, H.; Tian, G. Involvement of NF‐κB/PI3K/AKT signaling pathway in the protective effect of prunetin against a diethylnitrosamine induced hepatocellular carcinogenesis in rats. J. Biochem. Mol. Toxicol., 2022, 36(5), 36.
[http://dx.doi.org/10.1002/jbt.23016]
[59]
Köksal Karayildirim, Ç.; Nalbantsoy, A. Karabay Yavaşoğlu, N.Ü. Prunetin inhibits nitric oxide activity and induces apoptosis in urinary bladder cancer cells via CASP3 and TNF-α genes. Mol. Biol. Rep., 2021, 48(11), 7251-7259.
[http://dx.doi.org/10.1007/s11033-021-06719-w] [PMID: 34599704]
[60]
Vetrivel, P.; Murugesan, R.; Bhosale, P.B.; Ha, S.E.; Kim, H.H.; Heo, J.D. A network pharmacological approach to reveal the pharmacological targets and its associated biological mechanisms of prunetin‐5‐o‐glucoside against gastric cancer. Cancers (Basel), 2021.
[http://dx.doi.org/10.3390/cancers13081918]
[61]
Vetrivel, P.; Kim, S.M.; Ha, S.E.; Kim, H.H.; Bhosale, P.B.; Senthil, K.; Kim, G.S. Compound prunetin induces cell death in gastric cancer cell with potent anti-proliferative properties: in vitro assay, molecular docking, dynamics, and ADMET studies. Biomolecules, 2020, 10(7), 1086.
[http://dx.doi.org/10.3390/biom10071086] [PMID: 32708333]
[62]
Zhu, S-C.; Cai, J.; Wu, C-Y.; Cheng, C-S. Molecular mechanism of Spatholobi Caulis in treatment of ovarian cancer based on network pharmacology and experimental verification. Zhongguo Zhongyao Zazhi, 2022, 47(3), 786-795.
[PMID: 35178962]
[63]
Xue, Y.; Li, H.; Zhang, Y.; Han, X.; Zhang, G.; Li, W.; Zhang, H.; Lin, Y.; Chen, P.; Sun, X.; Liu, Y.; Chu, L.; Zhang, J.; Zhang, M.; Zhang, X. Natural and synthetic flavonoids, novel blockers of the volume-regulated anion channels, inhibit endothelial cell proliferation. Pflugers Arch., 2018, 470(10), 1473-1483.
[http://dx.doi.org/10.1007/s00424-018-2170-8] [PMID: 29961148]
[64]
Jung, H.A.; Kim, A.R.; Chung, H.Y.; Choi, J.S. In vitro antioxidant activity of some selected Prunus species in Korea. Arch. Pharm. Res., 2002, 25(6), 865-872.
[http://dx.doi.org/10.1007/BF02977006] [PMID: 12510840]
[65]
Lengyel, J. Rimarčík, J.; Vagánek, A.; Klein, E. On the radical scavenging activity of isoflavones: Thermodynamics of O-H bond cleavage. Phys. Chem. Chem. Phys., 2013, 15(26), 10895-10903.
[http://dx.doi.org/10.1039/c3cp00095h] [PMID: 23698223]
[66]
Sun, X.D.; Fang, S.M.; Zang, M.D.; Yang, C.X.; Li, H.R.; Kitanaka, S.; Yang, X.D. Isoflavonoids from Caragana changduensis and their nitric oxideinhibitory activities. Zhongguo Zhongyao Zazhi, 2015, 40(16), 3220-3223.
[PMID: 26790296]
[67]
Shen, M.L.; Benson, L.M.; Johnson, K.L.; Lipsky, J.J.; Naylor, S. Effect of enzyme inhibitors on protein quaternary structure determined by on-line size exclusion chromatography-microelectrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 2001, 12(1), 97-104.
[http://dx.doi.org/10.1016/S1044-0305(00)00190-2] [PMID: 11142365]
[68]
Şöhretoğlu, D.; Sari, S.; Özel, A.; Barut, B. α-Glucosidase inhibitory effect of Potentilla astracanica and some isoflavones: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. Int. J. Biol. Macromol., 2017, 105, 1062-1070.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.132] [PMID: 28756197]
[69]
Bae, M.; Woo, M.; Kusuma, I.W.; Arung, E.T.; Yang, C.H.; Kim, Y.U. Inhibitory effects of isoflavonoids on rat prostate testosterone 5α-reductase. J. Acupunct. Meridian Stud., 2012, 5(6), 319-322.
[http://dx.doi.org/10.1016/j.jams.2012.07.022] [PMID: 23265084]
[70]
Ko, W-C.; Shih, C-M.; Lai, Y-H.; Chen, J-H.; Huang, H-L. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships. Biochem. Pharmacol., 2004, 68(10), 2087-2094.
[http://dx.doi.org/10.1016/j.bcp.2004.06.030] [PMID: 15476679]
[71]
Keung, W.M.; Vallee, B.L. Daidzin: A potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc. Natl. Acad. Sci. USA, 1993, 90(4), 1247-1251.
[http://dx.doi.org/10.1073/pnas.90.4.1247] [PMID: 8433985]
[72]
Constantinou, A.; Mehta, R.; Runyan, C.; Rao, K.; Vaughan, A.; Moon, R. Flavonoids as DNA topoisomerase antagonists and poisons: Structure-activity relationships. J. Nat. Prod., 1995, 58(2), 217-225.
[http://dx.doi.org/10.1021/np50116a009] [PMID: 7769390]
[73]
Sheikh, S.; Weiner, H. Allosteric inhibition of human liver aldehyde dehydrogenase by the isoflavone prunetin. Biochem. Pharmacol., 1997, 53(4), 471-478.
[http://dx.doi.org/10.1016/S0006-2952(96)00837-4] [PMID: 9105397]
[74]
Keung, W-M. Biochemical studies of a new class of alcohol dehydrogenase inhibitors from Radix puerariae. Alcohol. Clin. Exp. Res., 1993, 17(6), 1254-1260.
[http://dx.doi.org/10.1111/j.1530-0277.1993.tb05238.x] [PMID: 8116840]
[75]
Chen, L-W.; Cheng, M-J.; Peng, C-F.; Chen, I-S. Secondary metabolites and antimycobacterial activities from the roots of Ficus nervosa. Chem. Biodivers., 2010, 7(7), 1814-1821.
[http://dx.doi.org/10.1002/cbdv.200900227] [PMID: 20658670]
[76]
Kraft, C.; Jenett-Siems, K.; Siems, K.; Gupta, M.P.; Bienzle, U.; Eich, E. Antiplasmodial activity of isoflavones from Andira inermis. J. Ethnopharmacol., 2000, 73(1-2), 131-135.
[http://dx.doi.org/10.1016/S0378-8741(00)00285-3] [PMID: 11025148]
[77]
Wabo, H.K.; Tatsimo, S.N.; Tane, P.; Connolly, J.D.; Pycnanthuquinone, C.; Pycnanthuquinone, C. A new terpenoid-quinone from Pycnanthus angolensis. Planta Med., 2007, 73(2), 187-189.
[http://dx.doi.org/10.1055/s-2007-967103] [PMID: 17295184]
[78]
Kuete, V.; Nono, E.C.N.; Mkounga, P.; Marat, K.; Hultin, P.G.; Nkengfack, A.E. Antimicrobial activities of the CH2Cl2-CH3OH (1:1) extracts and compounds from the roots and fruits of Pycnanthus angolensis (Myristicaceae). Nat. Prod. Res., 2011, 25(4), 432-443.
[http://dx.doi.org/10.1080/14786419.2010.522577] [PMID: 21328137]
[79]
Lutter, S.; Schmalbach, K.; Esch, H.L.; Lehmann, L. The isoflavone irilone contributes to the estrogenic potential of dietary supplements containing red clover. Arch. Toxicol., 2014, 88(2), 309-321.
[http://dx.doi.org/10.1007/s00204-013-1114-5] [PMID: 23982890]
[80]
Höjer, A.; Adler, S.; Purup, S.; Hansen-Møller, J.; Martinsson, K.; Steinshamn, H.; Gustavsson, A.M. Effects of feeding dairy cows different legume-grass silages on milk phytoestrogen concentration. J. Dairy Sci., 2012, 95(8), 4526-4540.
[http://dx.doi.org/10.3168/jds.2011-5226] [PMID: 22818467]
[81]
Socas-Rodríguez, B.; Hernández-Borges, J.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Multiresidue analysis of oestrogenic compounds in cow, goat, sheep and human milk using core-shell polydopamine coated magnetic nanoparticles as extraction sorbent in micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem., 2018, 410(7), 2031-2042.
[http://dx.doi.org/10.1007/s00216-018-0882-4] [PMID: 29392379]
[82]
Tava, A. Pecio, Ł.; Stochmal, A.; Pecetti, L. Clovamide and flavonoids from leaves of Trifolium pratense and T. pratense subsp. nivale grown in Italy. Nat. Prod. Commun., 2015, 10(6), 933-936.
[http://dx.doi.org/10.1177/1934578X1501000635] [PMID: 26197520]
[83]
Frański, R.; Gierczyk, B.; Kozik, T.; Popenda, Ł.; Beszterda, M. Signals of diagnostic ions in the product ion spectra of [M - H]- ions of methoxylated flavonoids. Rapid Commun. Mass Spectrom., 2019, 33(1), 125-132.
[http://dx.doi.org/10.1002/rcm.8316] [PMID: 30357940]
[84]
Wang, S.W.J.; Chen, J.; Jia, X.; Tam, V.H.; Hu, M. Disposition of flavonoids via enteric recycling: Structural effects and lack of correlations between in vitro and in situ metabolic properties. Drug Metab. Dispos., 2006, 34(11), 1837-1848.
[http://dx.doi.org/10.1124/dmd.106.009910] [PMID: 16882763]
[85]
Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Multiresidue determination of estrogens in different dairy products by ultra-high-performance liquid chromatography triple quadrupole mass spectrometry. J. Chromatogr. A, 2017, 1496, 58-67.
[http://dx.doi.org/10.1016/j.chroma.2017.03.034] [PMID: 28363417]
[86]
Talukdar, A.C.; Jain, N.; De, S.; Krishnamurty, H.G. An isoflavone from Myristica malabarica. Phytochemistry, 2000, 53(1), 155-157.
[http://dx.doi.org/10.1016/S0031-9422(99)00489-6] [PMID: 10656424]
[87]
Li, L.; Liu, J-Z.; Luo, M.; Wang, W.; Huang, Y-Y.; Efferth, T.; Wang, H.M.; Fu, Y.J. Efficient extraction and preparative separation of four main isoflavonoids from Dalbergia odorifera T. Chen leaves by deep eutectic solvents-based negative pressure cavitation extraction followed by macroporous resin column chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1033-1034, 40-48.
[http://dx.doi.org/10.1016/j.jchromb.2016.08.005] [PMID: 27517524]
[88]
Yun, J-M. Im, S.B.; Roh, M.K.; Park, S.H.; Kwon, H.A.; Lee, J.Y.; Choi, H.Y.; Ham, I.H.; Kim, Y.B.; Lee, J.M.; Kim, D.O.; Park, K.W.; Kang, H. Prunus yedoensis bark inhibits lipopolysaccharide-induced inflammatory cytokine synthesis by IκBα degradation and MAPK activation in macrophages. J. Med. Food, 2014, 17(4), 407-413.
[http://dx.doi.org/10.1089/jmf.2013.2825] [PMID: 24720857]
[89]
Madeira, P.J.A.; Borges, C.M.; Florêncio, M.H. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometric and semi-empirical calculations study of five isoflavone aglycones. Rapid Commun. Mass Spectrom., 2010, 24(23), 3432-3440.
[http://dx.doi.org/10.1002/rcm.4791] [PMID: 21072799]
[90]
Tang, Y-P.; Hu, J.; Wang, J-H.; Lou, F-C. A new coumaronochromone from Sophora japonica. J. Asian Nat. Prod. Res., 2002, 4(1), 1-5.
[http://dx.doi.org/10.1080/10286020290019622] [PMID: 11991186]
[91]
Wu, S.J.; Fotso, S.; Li, F.; Qin, S.; Laatsch, H. Amorphane sesquiterpenes from a marine Streptomyces sp. J. Nat. Prod., 2007, 70(2), 304-306.
[http://dx.doi.org/10.1021/np050358e] [PMID: 17315965]
[92]
Rawel, H.M.; Ranters, H.; Rohn, S.; Kroll, J. Assessment of the reactivity of selected isoflavones against proteins in comparison to quercetin. J. Agric. Food Chem., 2004, 52(16), 5263-5271.
[http://dx.doi.org/10.1021/jf0354850] [PMID: 15291506]
[93]
Maul, R.; Kulling, S.E. Absorption of red clover isoflavones in human subjects: Results from a pilot study. Br. J. Nutr., 2010, 103(11), 1569-1572.
[http://dx.doi.org/10.1017/S0007114509993564] [PMID: 20067656]
[94]
Zhang, Y.; Liu, C.; Pan, Y.; Qi, Y.; Li, Y.; Li, S. Ultrasound-assisted dynamic extraction coupled with parallel countercurrent chromatography for simultaneous extraction, purification, and isolation of phytochemicals: Application to isoflavones from red clover. Anal. Bioanal. Chem., 2015, 407(16), 4597-4606.
[http://dx.doi.org/10.1007/s00216-015-8656-8] [PMID: 25860654]
[95]
Sekine, R.; Vongsvivut, J.; Robertson, E.G.; Spiccia, L.; McNaughton, D. Analysis of 5-hydroxyisoflavones by surface-enhanced Raman spectroscopy: Genistein and methoxy derivatives. J. Phys. Chem. B, 2011, 115(47), 13943-13954.
[http://dx.doi.org/10.1021/jp207730g] [PMID: 22010824]
[96]
Peng, T.; Tu, Y.Q.; Deng, Y.; Zhang, X. Studies on chemical constituents of Primula sikkmensis. Zhong Yao Cai, 2008, 31(1), 44-46.
[PMID: 18589747]
[97]
Lapcik, O.; Honys, D.; Koblovska, R.; Mackova, Z.; Vitkova, M.; Klejdus, B. Isoflavonoids are present in Arabidopsis thaliana despite the absence of any homologue to known isoflavonoid synthases. Plant Physiol. Biochem., 2006, 44(2-3), 106-114.
[http://dx.doi.org/10.1016/j.plaphy.2005.11.006] [PMID: 16650770]
[98]
Tang, Y.; Lou, F.; Wang, J.; Zhuang, S. Four new isoflavone triglycosides from Sophora japonica. J. Nat. Prod., 2001, 64(8), 1107-1110.
[http://dx.doi.org/10.1021/np010081s] [PMID: 11520241]
[99]
Tsao, R.; Papadopoulos, Y.; Yang, R.; Young, J.C.; McRae, K. Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J. Agric. Food Chem., 2006, 54(16), 5797-5805.
[http://dx.doi.org/10.1021/jf0614589] [PMID: 16881680]
[100]
Brandli, A.; Simpson, J.S.; Ventura, S. Isoflavones isolated from red clover (Trifolium pratense) inhibit smooth muscle contraction of the isolated rat prostate gland. Phytomedicine, 2010, 17(11), 895-901.
[http://dx.doi.org/10.1016/j.phymed.2010.05.006] [PMID: 20638256]
[101]
Ferrer, I.; Barber, L.B.; Thurman, E.M. Gas chromatographic-mass spectrometric fragmentation study of phytoestrogens as their trimethylsilyl derivatives: Identification in soy milk and wastewater samples. J. Chromatogr. A, 2009, 1216(32), 6024-6032.
[http://dx.doi.org/10.1016/j.chroma.2009.06.042] [PMID: 19577238]
[102]
Vitor, R.F.; Mota-Filipe, H.; Teixeira, G.; Borges, C.; Rodrigues, A.I.; Teixeira, A.; Paulo, A. Flavonoids of an extract of Pterospartum tridentatum showing endothelial protection against oxidative injury. J. Ethnopharmacol., 2004, 93(2-3), 363-370.
[http://dx.doi.org/10.1016/j.jep.2004.04.003] [PMID: 15234778]
[103]
Liu, L.; Ma, Y.; Chen, X.; Xiong, X.; Shi, S. Screening and identification of BSA bound ligands from Puerariae lobata flower by BSA functionalized Fe3O4₃ magnetic nanoparticles coupled with HPLC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 887-888, 55-60.
[http://dx.doi.org/10.1016/j.jchromb.2012.01.008] [PMID: 22305973]
[104]
Wang, H.; Liu, Y.; Zeng, Z.; He, W. Study on HPLC chromatographic fingerprint of anti-tumor active site SSCE of Caulis spatholobi. Zhongguo Zhongyao Zazhi, 2011, 36(18), 2525-2529.
[PMID: 22256759]
[105]
Klejdus, B.; Vacek, J.; Benesová, L.; Kopecký, J.; Lapcík, O.; Kubán, V. Rapid-resolution HPLC with spectrometric detection for the determination and identification of isoflavones in soy preparations and plant extracts. Anal. Bioanal. Chem., 2007, 389(7-8), 2277-2285.
[http://dx.doi.org/10.1007/s00216-007-1606-3] [PMID: 17899029]
[106]
Wu, Q.; Wang, M.; Simon, J.E. Determination of isoflavones in red clover and related species by high-performance liquid chromatography combined with ultraviolet and mass spectrometric detection. J. Chromatogr. A, 2003, 1016(2), 195-209.
[http://dx.doi.org/10.1016/j.chroma.2003.08.001] [PMID: 14601839]
[107]
Messanga, B.B.; Kimbu, S.F.; Sondengam, B.L.; Bodo, B. Triflavonoids of Ochna calodendron. Phytochemistry, 2002, 59(4), 435-438.
[http://dx.doi.org/10.1016/S0031-9422(01)00414-9] [PMID: 11830163]
[108]
Nagarajan, N.S.; Sethuraman, M.G.; Manoj, C.N.; Priya Rao, R. Dalsympathetin--a new isoflavone gentiobioside from Dalbergia sympathetica (Dennst.). Nat. Prod. Res., 2006, 20(2), 195-200.
[http://dx.doi.org/10.1080/14786410500046513] [PMID: 16319013]
[109]
de Almeida, J.G.L.; Silveira, E.R.; Pessoa, O.D.L. NMR spectral assignments of a new [C--O--C] isoflavone dimer from Andira surinamensis. Magn. Reson. Chem., 2008, 46(1), 103-106.
[http://dx.doi.org/10.1002/mrc.2138] [PMID: 18098226]
[110]
Hudson, A.T.; Bentley, R. Impurity in a common growth medium component: Presence of an isoflavonoid in samples of L-asparagine. J. Bacteriol., 1970, 104(1), 599-600.
[http://dx.doi.org/10.1128/jb.104.1.599-600.1970] [PMID: 5473912]
[111]
He, H.L.; Pan, L.L.; Gu, X.L.; Huang, J.J.; Sun, C.H.; Tang, Y.L.; Chen, L.N. Efficient discovery and capturing of nNOS-PSD-95 uncouplers from Trifolium pratense. Zhongguo Zhongyao Zazhi, 2018, 43(4), 748-754.
[PMID: 29600650]
[112]
Chen, J.; Wang, S.; Jia, X.; Bajimaya, S.; Lin, H.; Tam, V.H.; Hu, M. Disposition of flavonoids via recycling: Comparison of intestinal versus hepatic disposition. Drug Metab. Dispos., 2005, 33(12), 1777-1784.
[http://dx.doi.org/10.1124/dmd.105.003673] [PMID: 16120792]
[113]
Lasić K.; Bokulić A.; Milić A.; Nigović B.; Mornar, A. Lipophilicity and bio-mimetic properties determination of phytoestrogens using ultra-high-performance liquid chromatography. Biomed. Chromatogr., 2019, 33(8), e4551.
[http://dx.doi.org/10.1002/bmc.4551] [PMID: 30981212]
[114]
Beszterda, M.; Kasperkowiak, M. Frański, R. Comment on the published data concerning the identification of biochanin A and prunetin by LC/ESI-MS. Talanta, 2020, 211, 120733.
[http://dx.doi.org/10.1016/j.talanta.2020.120733] [PMID: 32070588]
[115]
Deshmukh, A.B.; Datir, S.S.; Bhonde, Y.; Kelkar, N.; Samdani, P.; Tamhane, V.A. De novo root transcriptome of a medicinally important rare tree Oroxylum indicum for characterization of the flavonoid biosynthesis pathway. Phytochemistry, 2018, 156, 201-213.
[http://dx.doi.org/10.1016/j.phytochem.2018.09.013] [PMID: 30317159]
[116]
Malca-Garcia, G.R.; Liu, Y. Nikolić D.; Friesen, J.B.; Lankin, D.C.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F. Investigation of red clover (Trifolium pratense) isoflavonoid residual complexity by off-line CCS-qHNMR. Fitoterapia, 2022, 156, 105016.
[http://dx.doi.org/10.1016/j.fitote.2021.105016] [PMID: 34416305]
[117]
Muchiri, R.N.; van Breemen, R.B. Single-laboratory validation of UHPLC-MS/MS assays for red clover isoflavones in human serum and dietary supplements. J. AOAC Int., 2020, 103(4), 1160-1166.
[http://dx.doi.org/10.1093/jaoacint/qsaa033] [PMID: 33241325]
[118]
Malca Garcia, G.R.; Friesen, J.B.; Liu, Y. Nikolić D.; Lankin, D.C.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F. Preparation of DESIGNER extracts of red clover (Trifolium pratense L.) by centrifugal partition chromatography. J. Chromatogr. A, 2019, 1605, 360277.
[http://dx.doi.org/10.1016/j.chroma.2019.05.057] [PMID: 31307793]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy