Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Deciphering the Plasticizers for the Development of Polysaccharide based Biodegradable Edible Coatings

Author(s): Sudarshan Singh Lakhawat, Pushpender Kumar Sharma, Sunil Kumar, Aishwarya Pandey and Vikram Kumar*

Volume 19, Issue 6, 2023

Published on: 03 November, 2022

Page: [582 - 589] Pages: 8

DOI: 10.2174/1573401318666220908105130

Price: $65

Abstract

There is persistently high demand for fresh fruits and vegetables all over the world. One of the crucial factors that reduce the shelf life of fruits and vegetables is temperature- dependent oxidation during transportation and long storage. Fruits and vegetable coating using ecofriendly coatings hold a great advantage over the other synthetic coating materials. The fruits and vegetables with coating can prevent rapid oxidation even at warm temperatures. They enhance the quality and shelf life and maintain nutritional properties. Though edible coatings prove to be beneficial, the major drawback associated with them is the vulnerability towards moisture- dependent rapid degradation of these fruits and vegetables. Use of appropriate plasticizers would be helpful in enhancing the moisture and oxidation resistance. The current review article will highlight the use of various plasticizers used with polysaccharide-based coatings.

Keywords: Plasticizers, coating, edible, biodegradable, plasticity, polymers

Graphical Abstract

[1]
Pem D, Jeewon R. Fruit and vegetable intake: Benefits and progress of nutrition education interventions- narrative review article. Iran J Public Health 2015; 44(10): 1309-21.
[PMID: 26576343]
[2]
Jafarzadeh S, Mohammadi Nafchi A, Salehabadi A, Oladzad-abbasabadi N, Jafari SM. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Adv Colloid Interface Sci 2021; 291: 102405.
[http://dx.doi.org/10.1016/j.cis.2021.102405] [PMID: 33819726]
[3]
Lakhawat SS, Singh DD, Kumar S, Kumar V. Bioplastic feasibility: Plastic waste disaster management. Crit Rev 2020; 7(5): 260-4.
[http://dx.doi.org/10.31838/jcr.07.05.46]
[4]
Arnon-Rips H, Cohen Y, Saidi L, Porat R, Poverenov E. Covalent linkage of bioactive volatiles to a polysaccharide support as a potential approach for preparing active edible coatings and delivery systems for food products. Food Chem 2021; 338: 127822.
[http://dx.doi.org/10.1016/j.foodchem.2020.127822] [PMID: 32810813]
[5]
Visick KL, Schembri MA, Yildiz F, Ghigo JM. Biofilms 2015: Multidisciplinary approaches shed light into microbial life on surfaces. J Bacteriol 2016; 198(19): 2553-63.
[http://dx.doi.org/10.1128/JB.00156-16] [PMID: 26977109]
[6]
Carrascosa C, Raheem D, Ramos F, Saraiva A, Raposo A. Microbial biofilms in the food industry—A comprehensive review. Int J Environ Res Public Health 2021; 18(4): 2014.
[http://dx.doi.org/10.3390/ijerph18042014] [PMID: 33669645]
[7]
Lee Wong AC. Biofilms in food processing environments. J Dairy Sci 1998; 81(10): 2765-70.
[http://dx.doi.org/10.3168/jds.S0022-0302(98)75834-5] [PMID: 9812282]
[8]
Puscaselu R, Gutt G, Amariei S. Rethinking the future of food packaging: biobased edible films for powdered food and drinks. Molecules 2019; 24(17): 3136.
[http://dx.doi.org/10.3390/molecules24173136] [PMID: 31466392]
[9]
Gheorghita Puscaselu R, Besliu I, Gutt G. Edible biopolymers-based materials for food applications—The eco alternative to conventional synthetic packaging. Polymers 2021; 13(21): 3779.
[http://dx.doi.org/10.3390/polym13213779] [PMID: 34771336]
[10]
Arciola CR, Campoccia D, Ravaioli S, Montanaro L. Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Front Cell Infect Microbiol 2015; 5: 7.
[http://dx.doi.org/10.3389/fcimb.2015.00007] [PMID: 25713785]
[11]
Kocira A, Kozłowicz K, Panasiewicz K, Staniak M, Szpunar-Krok E, Hortyńska P. Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality-A review. Agronomy 2021; 11(5): 813.
[http://dx.doi.org/10.3390/agronomy11050813]
[12]
Mohamed SAA, El-Sakhawy M, El-Sakhawy MAM. Polysaccharides, protein and lipid -based natural edible films in food packaging: A review. Carbohydr Polym 2020; 238: 116178.
[http://dx.doi.org/10.1016/j.carbpol.2020.116178] [PMID: 32299560]
[13]
Mohammed ASA, Naveed M, Jost N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (A review of current applications and upcoming potentialities). J Polym Environ 2021; 29(8): 2359-71.
[http://dx.doi.org/10.1007/s10924-021-02052-2] [PMID: 33526994]
[14]
Lovegrove A, Edwards CH, De Noni I, et al. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr 2017; 57(2): 237-53.
[http://dx.doi.org/10.1080/10408398.2014.939263] [PMID: 25921546]
[15]
Nasrollahzadeh M, Sajjadi M, Nezafat Z, Shafiei N. Polysaccharide biopolymer chemistry.In: Biopolymer-Based Metal Nanoparticle Chemistry for Sustainable Applications. Elsevier 2021; pp. 45-105.
[http://dx.doi.org/10.1016/B978-0-12-822108-2.00019-3]
[16]
Domene-López D, García-Quesada JC, Martin-Gullon I, Montalbán MG. Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers 2019; 11(7): 1084.
[http://dx.doi.org/10.3390/polym11071084] [PMID: 31247882]
[17]
Xing M, Cao Q, Wang Y, et al. Advances in research on the bioactivity of alginate oligosaccharides. Mar Drugs 2020; 18(3): 144.
[http://dx.doi.org/10.3390/md18030144] [PMID: 32121067]
[18]
Hashemi GH, Mostaghimi M, Ghiasi F, Tavakoli S, Naseri M, Hosseini SMH. The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. Int J Biol Macromol 2020; 160: 245-51.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.136] [PMID: 32442566]
[19]
Prajapati VD, Maheriya PM, Jani GK, Solanki HK. Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr Polym 2014; 105: 97-112.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.067] [PMID: 24708958]
[20]
Thombare N, Jha U, Mishra S, Siddiqui MZ. Guar gum as a promising starting material for diverse applications: A review. Int J Biol Macromol 2016; 88: 361-72.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.001] [PMID: 27044346]
[21]
Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and pectin-based composite materials: Beyond food texture. Molecules 2018; 23(4): 942.
[http://dx.doi.org/10.3390/molecules23040942] [PMID: 29670040]
[22]
Fan Y, Yang J, Duan A, Li X. Pectin/sodium alginate/xanthan gum edible composite films as the fresh-cut package. Int J Biol Macromol 2021; 181: 1003-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.111] [PMID: 33892026]
[23]
Porta R, Mariniello L, Di Pierro P, Sorrentino A, Giosafatto CVL. Transglutaminase crosslinked pectin- and chitosan-based edible films: A review. Crit Rev Food Sci Nutr 2011; 51(3): 223-38.
[http://dx.doi.org/10.1080/10408390903548891] [PMID: 21390943]
[24]
Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. Biofilms in the food industry: Health aspects and control methods. Front Microbiol 2018; 9: 898.
[http://dx.doi.org/10.3389/fmicb.2018.00898] [PMID: 29867809]
[25]
Vieira MGA, da Silva MA, dos Santos LO, Beppu MM. Natural-based plasticizers and biopolymer films: A review. Eur Polym J 2011; 47(3): 254-63.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.12.011]
[26]
Chen J, Li K, Wang Y, Huang J, Nie X, Jiang J. Synthesis and properties of a novel environmental epoxidized glycidyl ester of ricinoleic acetic ester plasticizer for poly(vinyl chloride). Polymers 2017; 9(12): 640.
[http://dx.doi.org/10.3390/polym9120640] [PMID: 30965956]
[27]
Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 2018; 344: 179-99.
[http://dx.doi.org/10.1016/j.jhazmat.2017.10.014] [PMID: 29035713]
[28]
Avérous L. Biodegradable multiphase systems based on plasticized starch: A review. J Macromol Sci Part C Polym Rev 2004; 44(3): 231-74.
[http://dx.doi.org/10.1081/MC-200029326]
[29]
Coughlan K, Shaw NB, Kerry JF, Kerry JP. Combined effects of proteins and polysaccharides on physical properties of whey protein concentrate-based edible films. J Food Sci 2004; 69(6): E271-5.
[http://dx.doi.org/10.1111/j.1365-2621.2004.tb10997.x]
[30]
Pereda M, Amica G, Marcovich NE. Development and characterization of edible chitosan/olive oil emulsion films. Carbohydr Polym 2012; 87(2): 1318-25.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.019]
[31]
Nandane AS, Jain R. Study of mechanical properties of soy protein based edible film as affected by its composition and process parameters by using RSM. J Food Sci Technol 2014; 52(6): 3645-50.
[http://dx.doi.org/10.1007/s13197-014-1417-4] [PMID: 26028747]
[32]
Yanti NA, Ahmad SW, Ramadhan LOAN, et al. Properties and application of edible modified bacterial cellulose film based sago liquid waste as food packaging. Polymers 2021; 13(20): 3570.
[http://dx.doi.org/10.3390/polym13203570] [PMID: 34685329]
[33]
Stojanović G, Pojić M, Kojić S, Mišan A, Vasiljević D. Mechanical properties of edible biofilm as a substrate for printed electronics. Appl Phys Mater Sci Process 2019; 125(8): 576.
[http://dx.doi.org/10.1007/s00339-019-2881-5]
[34]
Cortés-Rodríguez M, Villegas-Yépez C, Gil González JH, Rodríguez PE, Ortega-Toro R. Development and evaluation of edible films based on cassava starch, whey protein, and bees wax. Heliyon 2020; 6(9): e04884.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04884] [PMID: 32984596]
[35]
Karbowiak T, Debeaufort F, Voilley A. Importance of surface tension characterization for food, pharmaceutical and packaging products: A review. Crit Rev Food Sci Nutr 2006; 46(5): 391-407.
[http://dx.doi.org/10.1080/10408390591000884] [PMID: 16891211]
[36]
Moeini A, Germann N, Malinconico M, Santagata G. Formulation of secondary compounds as additives of biopolymer-based food packaging: A review. Trends Food Sci Technol 2021; 114: 342-54.
[http://dx.doi.org/10.1016/j.tifs.2021.05.040]
[37]
Jia P, Xia H, Tang K, Zhou Y. Plasticizers derived from biomass resources: A short review. Polymers 2018; 10(12): 1303.
[http://dx.doi.org/10.3390/polym10121303] [PMID: 30961228]
[38]
Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J. Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (Arenga pinnata) starch for food packaging. J Food Sci Technol 2016; 53(1): 326-36.
[http://dx.doi.org/10.1007/s13197-015-2009-7] [PMID: 26787952]
[39]
Pushpadass HA, Marx DB, Hanna MA. Effects of extrusion temperature and plasticizers on the physical and functional properties of starch films. Stärke 2008; 60(10): 527-38.
[http://dx.doi.org/10.1002/star.200800713]
[40]
Kumar S, Mukherjee A, Dutta J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci Technol 2020; 97: 196-209.
[http://dx.doi.org/10.1016/j.tifs.2020.01.002]
[41]
Suhag R, Kumar N, Petkoska AT, Upadhyay A. Film formation and deposition methods of edible coating on food products: A review. Food Res Int 2020; 136: 109582.
[http://dx.doi.org/10.1016/j.foodres.2020.109582] [PMID: 32846613]
[42]
Tarique J, Sapuan SM, Khalina A. Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Sci Rep 2021; 11(1): 13900.
[http://dx.doi.org/10.1038/s41598-021-93094-y] [PMID: 34230523]
[43]
National Center for Biotechnology Information (NCBI). Glycerol. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/ Glycerol
[44]
Tong Q, Xiao Q, Lim LT. Effects of glycerol, sorbitol, xylitol and fructose plasticisers on mechanical and moisture barrier properties of pullulan-alginate-carboxymethylcellulose blend films. Int J Food Sci Technol 2013; 48(4): 870-8.
[http://dx.doi.org/10.1111/ijfs.12039]
[45]
Zhang H, Grinstaff MW. Recent advances in glycerol polymers: Chemistry and biomedical applications. Macromol Rapid Commun 2014; 35(22): 1906-24.
[http://dx.doi.org/10.1002/marc.201400389] [PMID: 25308354]
[46]
National Center for Biotechnology Information (NCBI). Sorbitol. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/ Sorbitol
[47]
Tian H, Liu D, Yao Y, Ma S, Zhang X, Xiang A. Effect of sorbitol plasticizer on the structure and properties of melt processed polyvinyl alcohol films. J Food Sci 2017; 82(12): 2926-32.
[http://dx.doi.org/10.1111/1750-3841.13950] [PMID: 29165805]
[48]
National Center for Biotechnology Information (NCBI). Xylitol. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/ Xylitol
[49]
National Center for Biotechnology Information (NCBI). Mannitol. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/ Mannitol
[50]
Navarro-Tarazaga ML, Sothornvit R, Pérez-Gago MB. Effect of plasticizer type and amount on hydroxypropyl methylcellulose-beeswax edible film properties and postharvest quality of coated plums (cv. Angeleno). J Agric Food Chem 2008; 56(20): 9502-9.
[http://dx.doi.org/10.1021/jf801708k] [PMID: 18823125]
[51]
National Center for Biotechnology Information (NCBI). Polyethylene glycol monooleate. Available from: https://pubchem.ncbi. nlm.nih.gov/compound/Polyethylene-glycol-monooleate
[52]
Momeni S, Rezvani Ghomi E, Shakiba M, et al. The effect of poly (ethylene glycol) emulation on the degradation of PLA/starch composites. Polymers 2021; 13(7): 1019.
[http://dx.doi.org/10.3390/polym13071019] [PMID: 33806074]
[53]
Jacob SE, Scheman A, McGowan MA. Propylene glycol. Dermatitis 2018; 29(1): 3-5.
[http://dx.doi.org/10.1097/DER.0000000000000315] [PMID: 29059092]
[54]
National Center for Biotechnology Information (NCBI). Propylene glycol. Available from: https://pubchem.ncbi.nlm.nih.gov/ compound/Propylene-glycol
[55]
Zhang W, Chen J, Chen Q, Wu H, Mu W. Sugar alcohols derived from lactose: Lactitol, galactitol, and sorbitol. Appl Microbiol Biotechnol 2020; 104(22): 9487-95.
[http://dx.doi.org/10.1007/s00253-020-10929-w] [PMID: 32989517]
[56]
van der Sman RGM, van den Hoek IAF, Renzetti S. Sugar replacement with zwitterionic plasticizers like amino acids. Food Hydrocoll 2020; 109: 106113.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106113]
[57]
Pontillo ARN, Koutsoukos S, Welton T, Detsi A. Investigation of the influence of natural deep eutectic solvents (NaDES) in the properties of chitosan-stabilised films. Materials Advances 2021; 2(12): 3954-64.
[http://dx.doi.org/10.1039/D0MA01008A]
[58]
Gupta V, Thakur R, Das AB. Effect of natural deep eutectic solvents on thermal stability, syneresis, and viscoelastic properties of high amylose starch. Int J Biol Macromol 2021; 187: 575-83.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.07.099] [PMID: 34302868]
[59]
Esposito M, Di Pierro P, Regalado-Gonzales C, Mariniello L, Giosafatto CVL, Porta R. Polyamines as new cationic plasticizers for pectin-based edible films. Carbohydr Polym 2016; 153: 222-8.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.087] [PMID: 27561490]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy