Generic placeholder image

Cardiovascular & Hematological Disorders-Drug Targets

Editor-in-Chief

ISSN (Print): 1871-529X
ISSN (Online): 2212-4063

Research Article

Antihyperglycemic Effect of Aqueous Extract of Tetraclinis articulata in Streptozotocin-Induced Diabetic Rats and Acute Toxicity Analysis

Author(s): Ismail Bouadid, Mourad Akdad and Mohamed Eddouks*

Volume 22, Issue 3, 2022

Published on: 30 September, 2022

Page: [168 - 178] Pages: 11

DOI: 10.2174/1871529X22666220908104724

Price: $65

Abstract

Aims: The study aimed to evaluate the glucose-lowering effect of Tetraclinis articulata.

Background: Tetraclinis articulata is commonly used for the treatment of diabetes characterized by chronic hyperglycemia.

Objective: This work aimed to evaluate the effect of Tetraclinis articulata (T. articulata) Aqueous Extract (TAAE) on glycemia and lipid profile in normal and Streptozotocin (STZ)-induced diabetic rats. Additionally, its acute toxicity, phytochemical composition, and antioxidant capacity were assessed.

Methods: To highlight the effect of TAAE on plasma glucose levels and lipid metabolism, blood glucose levels were measured at 1, 2, 4, and 6 hours of treatment for the acute test and on days 2, 4 and 7 over the daily oral administration for the subchronic test at two selected doses (10 mg/kg and 20 mg/kg). Furthermore, Triglycerides (TGs), Total Cholesterol (TC), and High-Density Lipoprotein cholesterol (HDL-c) were measured after the treatment. The rats' liver, extensor digitorum longus (EDL), and soleus muscle were isolated from diabetic rats treated with TAAE at a dose of 20 mg/kg at the end of the experiment to measure glycogen content using a standard method. The acute toxicity of TAAE was examined according to the OECD guideline. In addition, body weight, signs of toxicity, and/or mortality were observed for 14 days. Besides, a preliminary phytochemical screening, quantification of phenolic, flavonoid, and tannin contents as well as the antioxidant activity, were evaluated.

Results: The results showed that TAAE at the doses of 10 and 20 mg/kg possesses a potent antihyperglycemic effect in STZ-treated diabetic rats and an acute hypoglycemic effect in normal rats, as well as the extract provoked a decrease of blood glucose levels after glucose loading in the glucose tolerance test in a dose-dependent manner. TAAE at a dose of 20 mg/kg revealed a significant improvement in the lipid profile. However, treatment with TAAE at a dose of 20 mg/kg did not significantly modify the glycogen content. In the same way, the acute toxicity analysis revealed no death or signs of toxicity in rats, and the LD50 value was more than 2 g/kg. In addition, preliminary phytochemical screening revealed that TAAE revealed the presence of polyphenols, flavonoids, tannins, carbohydrates, saponins, quinones, sterols and terpenoids. Furthermore, TAAE exhibited a potent antioxidant activity, which may be due to the richness in polyphenol content (756.21 ± 6.72 mg GAE/1 g of extract).

Conclusion: The current study demonstrates for the first time that aqueous Tetraclinis articulata extract has a potent glucose-lowering effect.

Keywords: T. articulata, medicinal plant, streptozotocin, antidiabetic, acute toxicity, phytochemistry, antioxidant activity

Graphical Abstract

[1]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37 (Suppl. 1): S81-90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[2]
Wan L, Chen C, Xiao Z, et al. In vitro and in vivo anti-diabetic activity of Swertia kouitchensis extract. J Ethnopharmacol 2013; 147(3): 622-30.
[http://dx.doi.org/10.1016/j.jep.2013.03.052] [PMID: 23567032]
[3]
Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: A mini review. Curr Diabetes Rev 2016; 13(1): 3-10.
[http://dx.doi.org/10.2174/1573399812666151016101622] [PMID: 26472574]
[4]
Bhatnagar D. Lipid-lowering drugs in the management of hyperlipidaemia. Pharmacol Ther 1998; 79(3): 205-30.
[http://dx.doi.org/10.1016/S0163-7258(98)00018-7] [PMID: 9776377]
[5]
May LD, Lefkowitch JH, Kram MT, Rubin DE. Mixed hepatocellular-cholestatic liver injury after pioglitazone therapy. Ann Intern Med 2002; 136(6): 449-52.
[http://dx.doi.org/10.7326/0003-4819-136-6-200203190-00008] [PMID: 11900497]
[6]
Achak N, Romane A, Alifriqui M, Markouk M. Chemical composition, organic and mineral contents of leaves of Tetraclinis articulata (Vahl) Masters. From the Tensift- Al Haouz, Marrakech region (Morocco). J Essent Oil-Bear P 2009; 12(2): 198-204.
[7]
Barrero AF, Herrador MM, Arteaga P, et al. Chemical composition of the essential oils of leaves and wood of Tetraclinis articulata (Vahl) masters. J Essent Oil Res 2005; 17(2): 166-8.
[http://dx.doi.org/10.1080/10412905.2005.9698865]
[8]
Polunin O, Huxley A. Flowers of the Mediterraneen bassin. Trans GG Aymonin Paris: Fernand Nathan 1967.
[9]
Nicolas MJ, Esteve MA, Palazon JA, Lopez Hernandez JJ. Modelo sobre las preferencias de habitat a escala local de Tetraclinis articulata (Vahl) Masters en unapoblaciondellímite septentrional de su area de distribucion. An Biol 2004; 26: 157-67.
[10]
El Jemli M, Kamal R, Marmouzi I, et al. Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L. J Tradit Complement Med 2017; 7(3): 281-7.
[http://dx.doi.org/10.1016/j.jtcme.2016.06.006] [PMID: 28725621]
[11]
Rached W, Zeghada FZ, Bennaceur M, et al. Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves. Ind Crops Prod 2018; 112: 460-6.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.037]
[12]
Chikhoune A, Hazzit M, Kerbouche L, Baaliouamer A, Aissat K. Tetraclinis articulata (Vahl) Masters essential oils: Chemical composition and biological activities. J Essent Oil Res 2013; 25(4): 300-7.
[http://dx.doi.org/10.1080/10412905.2013.774625]
[13]
Bahri F, Romane A, Höferl M, Wanner J, Schmidt E, Jirovetz L. Chemical composition and antimicrobial activity of essential oil of Algerian Tetraclinis articulata (Vahl) Masters. J Essent Oil Res 2016; 28(1): 42-8.
[http://dx.doi.org/10.1080/10412905.2015.1076739]
[14]
Djouahri A, Boualem S, Boudarene L, Baaliouamer A. Geographic’s variation impact on chemical composition, antioxidant and anti-inflammatory activities of essential oils from wood and leaves of Tetraclinis articulata (Vahl) Masters. Ind Crops Prod 2015; 63: 138-46.
[http://dx.doi.org/10.1016/j.indcrop.2014.10.018]
[15]
Jlizi S, Lahmar A, Zardi-Bergaoui A, et al. Chemical composition and cytotoxic activity of the fractionated trunk bark essential oil from Tetraclinis articulata (Vahl) mast. growing in Tunisia. Molecules 2021; 26(4): 1110.
[http://dx.doi.org/10.3390/molecules26041110] [PMID: 33669825]
[16]
Rabib H, Elagdi C, Hsaine M, Fougrach H, Koussa T, Badri W. Antioxidant and antibacterial activities of the essential oil of moroccan Tetraclinis articulata (Vahl) masters. J Biochem Res Int 2020; 2020: 9638548.
[17]
Jouad H, Haloui M, Rhiouani H, El Hilaly J, Eddouks M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane). J Ethnopharmacol 2001; 77(2-3): 175-82.
[http://dx.doi.org/10.1016/S0378-8741(01)00289-6] [PMID: 11535361]
[18]
Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W. Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol 1997; 58(1): 45-54.
[http://dx.doi.org/10.1016/S0378-8741(97)00077-9] [PMID: 9324004]
[19]
Ajebli M, Eddouks M. Buxus sempervirens L improves streptozotocin induced diabetes mellitus in rats. J Cardiovasc Haematol Disord 2017; 17: 142-52.
[20]
Ajebli M, Eddouks M. Pharmacological and phytochemical study of mentha suaveolensehrh in normal and streptozotocin-induced diabetic rats. Nat J Prod 2018; 8(3): 213-27.
[21]
Bouhlali EDT, Alem C, Zegzouti YF. Antioxidant and anti-hemolytic activities of phenolic constituents of moroccan date fruit (Phoenix dactylifera L.) syrups. Indian J Biotechnol 2015; 12(1): 45-52.
[22]
Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 2003; 81(3): 321-6.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[23]
Broadhurst RB, Jones WT. Analysis of condensed tannins using acidified vanillin. J Sci Food Agric 1978; 29(9): 788-94.
[http://dx.doi.org/10.1002/jsfa.2740290908]
[24]
Louli V, Ragoussis N, Magoulas K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol 2004; 92(2): 201-8.
[http://dx.doi.org/10.1016/j.biortech.2003.06.002] [PMID: 14693454]
[25]
Hebi M, Farid O, Ajebli M, Eddouks M. Potent antihyperglycemic and hypoglycemic effect of Tamarix articulata Vahl. in normal and streptozotocin-induced diabetic rats. Biomed Pharmacother 2017; 87: 230-9.
[http://dx.doi.org/10.1016/j.biopha.2016.12.111] [PMID: 28061406]
[26]
Ajebli M, Eddouks M. Flavonoid-enriched extract from desert plant Warionia saharae improves glucose and cholesterol levels in diabetic rats. Cardiovasc Hematol Agents Med Chem 2019; 17(1): 28-39.
[http://dx.doi.org/10.2174/1871525717666190121143934] [PMID: 30666919]
[27]
Carroll NV, Longley RW, Roe JH. The determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem 1956; 220(2): 583-93.
[http://dx.doi.org/10.1016/S0021-9258(18)65284-6] [PMID: 13331917]
[28]
Organization for Economic Cooperation and Development. Oral Toxicity Study in Rodents. OECD guideline for the testing of chemicals. OECD 2001; 423: 1-8.
[29]
Nishad DK, Mittal G, Chaurasia OP, et al. Acute and sub acute toxicity and efficacy studies of Hippophae rhamnoides based herbal antioxidant supplement. Indian J Pharmacol 2012; 44(4): 504-8.
[http://dx.doi.org/10.4103/0253-7613.99329] [PMID: 23087514]
[30]
Salehi B, Ata A Sharopov, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules 2019; 9(10): 551.
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[31]
Prabhakar P, Doble M. A target based therapeutic approach towards diabetes mellitus using medicinal plants. Curr Diabetes Rev 2008; 4(4): 291-308.
[http://dx.doi.org/10.2174/157339908786241124] [PMID: 18991598]
[32]
Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel) 2020; 9(9): 252.
[http://dx.doi.org/10.3390/biology9090252]
[33]
Kolterman OG, Gray RS, Shapiro G, Scarlett JA, Griffin J, Olefsky JM. The acute and chronic effects of sulfonylurea therapy in type II diabetic subjects. Diabetes 1984; 33(4): 346-54.
[http://dx.doi.org/10.2337/diab.33.4.346] [PMID: 6423429]
[34]
Simonson DC, Ferrannini E, Bevilacqua S, et al. Mechanism of improvement in glucose metabolism after chronic glyburide therapy. Diabetes 1984; 33(9): 838-45.
[http://dx.doi.org/10.2337/diab.33.9.838] [PMID: 6432610]
[35]
Grover JK, Vats V, Yadav S. Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism. Mol Cell Biochem 2002; 241(1/2): 53-9.
[http://dx.doi.org/10.1023/A:1020870526014] [PMID: 12482025]
[36]
Maiti R, Jana D, Das UK, Ghosh D. Antidiabetic effect of aqueous extract of seed of Tamarindus indica in streptozotocin-induced diabetic rats. J Ethnopharmacol 2004; 92(1): 85-91.
[http://dx.doi.org/10.1016/j.jep.2004.02.002] [PMID: 15099853]
[37]
Ortiz-Andrade RR, García-Jiménez S, Castillo-España P, Ramírez-Ávila G, Villalobos-Molina R, Estrada-Soto S. α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: An anti-hyperglycemic agent. J Ethnopharmacol 2007; 109(1): 48-53.
[http://dx.doi.org/10.1016/j.jep.2006.07.002] [PMID: 16920301]
[38]
de la Garza AL, Etxeberria U, Lostao MP, et al. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats. J Agric Food Chem 2013; 61(49): 12012-9.
[http://dx.doi.org/10.1021/jf4021569] [PMID: 24261475]
[39]
Filippatos T, Tsimihodimos V, Pappa E, Elisaf M. Pathophysiology of diabetic dyslipidaemia. J Curr Vasc Pharmacol 2017; 15(6): 566-75.
[PMID: 28155609]
[40]
O’Brien T, Nguyen TT, Zimmerman BR. Hyperlipidemia and diabetes mellitus. Mayo Clin Proc 1998; 73(10): 969-76.
[http://dx.doi.org/10.4065/73.10.969] [PMID: 9787748]
[41]
Kenneth R, Feingold MD. Dyslipidemia in diabetes. Endotexte: South Dartmouth (MA): MDTextcom Inc 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK305900/
[42]
Oloyede HOB, Bello TO, Ajiboye TO, Salawu MO. Antidiabetic and antidyslipidemic activities of aqueous leaf extract of Dioscoreophyllum cumminsii (Stapf) Diels in alloxan-induced diabetic rats. J Ethnopharmacol 2015; 166: 313-22.
[http://dx.doi.org/10.1016/j.jep.2015.02.049] [PMID: 25749145]
[43]
Jung UJ, Lee MK, Park YB, Kang MA, Choi MS. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol 2006; 38(7): 1134-45.
[http://dx.doi.org/10.1016/j.biocel.2005.12.002] [PMID: 16427799]
[44]
Asmat U, Abad K, Ismail K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm J 2016; 24(5): 547-53.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[45]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[46]
Bajaj S, Khan A. Antioxidants and diabetes. Indian J Endocrinol Metab 2012; 16(8) (Suppl. 2): 267.
[http://dx.doi.org/10.4103/2230-8210.104057] [PMID: 23565396]
[47]
Parasuraman S. Toxicological screening. J Pharmacol Pharmacother 2011; 2(2): 74-9.
[http://dx.doi.org/10.4103/0976-500X.81895] [PMID: 21772764]
[48]
Hilaly JE, Israili ZH, Lyoussi B. Acute and chronic toxicological studies of Ajuga iva in experimental animals. J Ethnopharmacol 2004; 91(1): 43-50.
[http://dx.doi.org/10.1016/j.jep.2003.11.009] [PMID: 15036466]
[49]
Sacks D, Baxter B, Campbell BCV, et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 2018; 13(6): 612-32.
[PMID: 29786478]
[50]
Corbi G, Conti V, Komici K, et al. Phenolic plant extracts induce Sirt1 activity and increase antioxidant levels in the rabbit’s heart and liver. Oxid Med Cell Longev 2018; 2018: 2731289.
[http://dx.doi.org/10.1155/2018/2731289] [PMID: 30116475]
[51]
Malfa GA, Tomasello B, Acquaviva R, et al. The antioxidant activities of Betula etnensis rafin. ethanolic extract exert protective and anti-diabetic effects on streptozotocin-induced diabetes in rats. Antioxidants 2020; 9(9): 847.
[http://dx.doi.org/10.3390/antiox9090847] [PMID: 32927638]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy