Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Research Article

Utilization of Yam Bean Juice as Nutrient Source for Bacterial Cellulose Production by Komagataeibacter nataicola TISTR 975

Author(s): Orn Anong Chaiyachet*, Sucheera Thongmoon and Tharintorn Udomchai

Volume 19, Issue 5, 2023

Published on: 13 October, 2022

Page: [564 - 571] Pages: 8

DOI: 10.2174/1573401318666220908100006

Price: $65

Abstract

Background: Bacterial cellulose has attracted much interest over the years because of its diverse applications stemming from its unique properties. Alternative sources of raw materials for culture medium have become essential to reduce the cost of raw materials and scale up bacterial cellulose production.

Objectives: The present study aims to investigate the cellulose-producing ability and characteristics of bacterial cellulose produced by Komagataeibacter nataicola TISTR 975 using yam bean juice as a nutrient source and optimizing the culture medium conditions to produce bacterial cellulose.

Methods: Bacterial cellulose was produced by K. nataicola TISTR 975 using yam bean juice as the nutrient source in the culture medium. Fermentation was performed in static culture using 10% inoculum, with varying levels of initial total soluble solids content (8, 10, and 12 °Brix), supplemented with ammonium sulfate (0.1, 0.3, and 0.5 (% w/v)), pH 5.0, 1.4% (v/v) ethanol, and incubated at 30 °C for 10 days. The cellulose membrane was measured for cellulose yield. Physicochemical and sensory characteristics of bacterial cellulose were examined.

Results: Initial total soluble solids content at 10 °Brix (equal to the sugar content of approximately 100 g/L) and supplemented with 0.1% (w/v) of ammonium sulfate improved bacterial cellulose yield. Moisture content and water holding capacity (WHC) of bacterial cellulose were high, and L*, a*, and b* values and textural properties were related to perceived sensory characteristics. Sensory evaluation showed the highest score for color and overall acceptability.

Conclusion: Local edible yam bean tubers could be used as an alternative raw material for bacterial cellulose production by K. nataicola TISTR 975 using yam bean juice, and bacterial cellulose produced using yam bean juice as a nutrient source has the sensory attributes consistent with the desirable characteristics of raw material for food and processed food products.

Keywords: Bacterial cellulose, Biocellulose-producing bacteria, Bacterial nanocellulose, Komagataeibacter nataicola, Microbial cellulose, Nata de coco, Yam bean

Graphical Abstract

[1]
Römling U. Molecular biology of cellulose production in bacteria. Res Microbiol 2002; 153(4): 205-12.
[http://dx.doi.org/10.1016/S0923-2508(02)01316-5] [PMID: 12066891]
[2]
Lapuz MM, Gallardo EG, Palo MA. The nata organism cultural requirements characteristics and identity coconut m Acetobacter xylium. Philipp J Sci 1967; 96(2): 91-109.
[3]
Kongruang S. Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 2008; 148(1-3): 245-56.
[http://dx.doi.org/10.1007/s12010-007-8119-6] [PMID: 18418756]
[4]
Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 2009; 76(2): 333-5.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.009]
[5]
Hungund B, Prabhu S, Shetty C, Acharya S, Prabhu V, Gupta SG. Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J Microb Biochem Technol 2013; 5(2): 31-3.
[http://dx.doi.org/10.4172/1948-5948.1000095]
[6]
Kosseva M, Li M, Zhang J, He Y, Tjutju NA. Study on the bacterial cellulose production from fruit juices. Proceedings of International Conference on BioScience and Biotechnology 2017; vol. 2: 36-42.
[http://dx.doi.org/10.17501/biotech.2017.2104]
[7]
García-Sánchez ME, Robledo-Ortiz JR, Jiménez-Palomar I, González-Reynoso O, González-García Y. Production of bacterial cellulose by Komagataeibacter xylinus using mango waste as alternative culture medium. Rev Mex Ing Quim 2019; 19(2): 851-65.
[http://dx.doi.org/10.24275/rmiq/Bio743]
[8]
Nimitkeatkai H, Fong-in S, Potaros T. Characterization of bacterial cellulose (Nata de coco) from lychee. IOP Conf Ser Earth Environ Sci 2020; 515(1): 012063.
[http://dx.doi.org/10.1088/1755-1315/515/1/012063]
[9]
Carreira P, Mendes JAS, Trovatti E, et al. Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 2011; 102(15): 7354-60.
[http://dx.doi.org/10.1016/j.biortech.2011.04.081] [PMID: 21601445]
[10]
Khami S, Khamwichit W, Suwannahong K, Sanongraj W. Characteristics of bacterial cellulose production from agricultural wastes. Adv Mat Res 2014; 931-932: 693-7.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.931-932.693]
[11]
Abol-Fotouh D, Hassan MA, Shokry H, Roig A, Azab MS, Kashyout AEHB. Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci Rep 2020; 10(1): 3491.
[http://dx.doi.org/10.1038/s41598-020-60315-9] [PMID: 32103077]
[12]
Ullah H, Santos HA, Khan T. Applications of bacterial cellulose in food, cosmetics and drug delivery. Cellulose 2016; 23(4): 2291-314.
[http://dx.doi.org/10.1007/s10570-016-0986-y]
[13]
Pacheco G, de Mello CV, Chiari-Andréo BG, et al. Bacterial cellulose skin masks-properties and sensory tests. J Cosmet Dermatol 2018; 17(5): 840-7.
[http://dx.doi.org/10.1111/jocd.12441] [PMID: 28963772]
[14]
Perugini P, Bleve M, Cortinovis F, Colpani A. Biocellulose masks as delivery systems: A novel methodological approach to assure quality and safety. Cosmetics 2018; 5(4): 66.
[http://dx.doi.org/10.3390/cosmetics5040066]
[15]
Perugini P, Bleve M, Redondi R, Cortinovis F, Colpani A. In vivo evaluation of the effectiveness of biocellulose facial masks as active delivery systems to skin. J Cosmet Dermatol 2020; 19(3): 725-35.
[http://dx.doi.org/10.1111/jocd.13051] [PMID: 31301106]
[16]
Almeida T, Silvestre AJD, Vilela C, Freire CSR. Bacterial nanocellulose toward green cosmetics: Recent progresses and challenges. Int J Mol Sci 2021; 22(6): 2836.
[http://dx.doi.org/10.3390/ijms22062836] [PMID: 33799554]
[17]
Almeida IF, Pereira T, Silva NHCS, et al. Bacterial cellulose membranes as drug delivery systems: An in vivo skin compatibility study. Eur J Pharm Biopharm 2014; 86(3): 332-6.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.008] [PMID: 23973717]
[18]
Abeer MM, Mohd Amin MCI, Martin C. A review of bacterial cellulose-based drug delivery systems: Their biochemistry, current approaches and future prospects. J Pharm Pharmacol 2014; 66(8): 1047-61.
[http://dx.doi.org/10.1111/jphp.12234] [PMID: 24628270]
[19]
Badshah M, Ullah H, Khan SA, Park JK, Khan T. Preparation, characterization and in-vitro evaluation of bacterial cellulose matrices for oral drug delivery. Cellulose 2017; 24(11): 5041-52.
[http://dx.doi.org/10.1007/s10570-017-1474-8]
[20]
Silva NHCS, Mota JP, Santos de Almeida T, et al. Topical drug delivery systems based on bacterial nanocellulose: Accelerated stability testing. Int J Mol Sci 2020; 21(4): 1262.
[http://dx.doi.org/10.3390/ijms21041262] [PMID: 32070054]
[21]
Augimeri RV, Varley AJ, Strap JL. Establishing a role for bacterial cellulose in environmental interactions: Lessons learned from diverse biofilm-producing proteobacteria. Front Microbiol 2015; 6: 1282.
[http://dx.doi.org/10.3389/fmicb.2015.01282] [PMID: 26635751]
[22]
Alves AA, Silva WE, Belian MF, Lins LSG, Galembeck A. Bacterial cellulose membranes for environmental water remediation and industrial wastewater treatment. Int J Environ Sci Technol 2020; 17(9): 3997-4008.
[http://dx.doi.org/10.1007/s13762-020-02746-5]
[23]
Basta AH, El-Saied H. Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 2009; 107(6): 2098-107.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04467.x] [PMID: 19709339]
[24]
Fillat A, Martínez J, Valls C, et al. Bacterial cellulose for increasing barrier properties of paper products. Cellulose 2018; 25(10): 6093-105.
[http://dx.doi.org/10.1007/s10570-018-1967-0]
[25]
Zhang M, Wu X, Hu Z, Xiang Z, Song T, Lu F. A highly efficient and durable fluorescent paper produced from bacterial cellulose/Eu complex and cellulosic fibers. Nanomaterials 2019; 9(9): 1322.
[http://dx.doi.org/10.3390/nano9091322] [PMID: 31540169]
[26]
Chan CK, Shin J, Jiang SXK. Development of tailor-shaped bacterial cellulose textile cultivation techniques for zero-waste design. Cloth Text Res J 2018; 36(1): 33-44.
[http://dx.doi.org/10.1177/0887302X17737177]
[27]
Fernandes M, Gama M, Dourado F, Souto AP. Development of novel bacterial cellulose composites for the textile and shoe industry. Microb Biotechnol 2019; 12(4): 650-61.
[http://dx.doi.org/10.1111/1751-7915.13387] [PMID: 31119894]
[28]
Felgueiras C, Azoia NG, Gonçalves C, Gama M, Dourado F. Trends on the cellulose-based textiles: Raw materials and technologies. Front Bioeng Biotechnol 2021; 9: 608826.
[http://dx.doi.org/10.3389/fbioe.2021.608826] [PMID: 33869148]
[29]
Wang J, Zhu Y, Du J. Bacterial cellulose: A natural nanomaterial for biomedical applications. J Mech Med Biol 2011; 11(2): 285-306.
[http://dx.doi.org/10.1142/S0219519411004058]
[30]
Tang W, Jia S, Jia Y, Yin H. Research on medical application of bacterial cellulose as nano-biomaterials. Sheng Wu I Hsueh Kung Cheng Hsueh Tsa Chih 2014; 31(4): 927-9.
[PMID: 25464815]
[31]
Gorgieva S. Trč ek J. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials 2019; 9(10): 1352.
[http://dx.doi.org/10.3390/nano9101352] [PMID: 31547134]
[32]
Qiu K, Netravali AN. A review of fabrication and applications of bacterial cellulose based nanocomposites. Polym Rev 2014; 54(4): 598-626.
[http://dx.doi.org/10.1080/15583724.2014.896018]
[33]
Li Q, Gao R, Wang L, et al. Nanocomposites of bacterial cellulose nanofibrils and zein nanoparticles for food packaging. ACS Appl Nano Mater 2020; 3(3): 2899-910.
[http://dx.doi.org/10.1021/acsanm.0c00159]
[34]
Wasim M, Mushtaq M, Khan SU, Farooq A, Naeem MA, Khan MR, et al. Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J Ind Text 2022; 51(S2): 30.
[http://dx.doi.org/10.1177/1528083720977201]
[35]
Pogorelova N, Rogachev E, Digel I, Chernigova S, Nardin D. Bacterial cellulose nanocomposites: Morphology and mechanical properties. Materials 2020; 13(12): 2849.
[http://dx.doi.org/10.3390/ma13122849] [PMID: 32630464]
[36]
Noman ASM, Hoque MA, Haque MM, Pervin F, Karim MR. Nutritional and anti-nutritional components in Pachyrhizus erosus L. tuber. Food Chem 2007; 102(4): 1112-8.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.055]
[37]
Moongngarm A, Trachoo N, Sirigungwan N. Low Molecular weight carbohydrates, prebiotic content, and prebiotic activity of selected food plants in Thailand. Adv J Food Sci Technol 2011; 3(4): 269-74.
[38]
Montenegro Stamford TC, Montenegro Stamford TL, Pereira Stamford N, De Barros Neto B, De Campos-Takaki GM. Growth of Cunninghamella elegans UCP 542 and production of chitin and chitosan using yam bean medium. Electron J Biotechnol 2007; 10(1): 0.
[http://dx.doi.org/10.2225/vol10-issue1-fulltext-1]
[39]
Fai AEC, Stamford TCM, Stamford-Arnaud TM, et al. Physico-chemical characteristics and functional properties of chitin and chitosan produced by Mucor circinelloides using yam bean as substrate. Molecules 2011; 16(8): 7143-54.
[http://dx.doi.org/10.3390/molecules16087143] [PMID: 21862956]
[40]
Sarangbin S, Watanapokasin Y. Yam bean starch: A novel substrate for citric acid production by the protease-negative mutant strain of Aspergillus niger. Carbohydr Polym 1999; 38(3): 219-24.
[http://dx.doi.org/10.1016/S0144-8617(98)00094-0]
[41]
Son HJ, Heo MS, Kim YG, Lee SJ. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp.A9 in shaking cultures. Biotechnol Appl Biochem 2001; 33(1): 1-5.
[http://dx.doi.org/10.1042/BA20000065] [PMID: 11171030]
[42]
Masaoka S, Ohe T, Sakota N. Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 1993; 75(1): 18-22.
[http://dx.doi.org/10.1016/0922-338X(93)90171-4]
[43]
Tsouko E, Kourmentza C, Ladakis D, et al. Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 2015; 16(12): 14832-49.
[http://dx.doi.org/10.3390/ijms160714832] [PMID: 26140376]
[44]
Okiyama A, Motoki M, Yamanaka S. Bacterial cellulose IV. Application to processed foods. Food Hydrocoll 1993; 6(6): 503-11.
[http://dx.doi.org/10.1016/S0268-005X(09)80074-X]
[45]
Shi Z, Zhang Y, Phillips GO, Yang G. Utilization of bacterial cellulose in food. Food Hydrocoll 2014; 35: 539-45.
[http://dx.doi.org/10.1016/j.foodhyd.2013.07.012]
[46]
Ul-Islam M, Khan T, Park JK. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 2012; 88(2): 596-603.
[http://dx.doi.org/10.1016/j.carbpol.2012.01.006]
[47]
Lyon BG, Lyon CE. Meat quality: Sensory and instrumental evaluations Poultry Meat Processing. (1st ed..). New York, USA: CRC Press 2001; pp. 97-120.
[48]
Lisdiyanti P, Navarro RR, Uchimura T, Komagata K. Reclassification of Gluconacetobacter hansenii strains and proposals of Gluconacetobacter saccharivorans sp. nov. and Gluconacetobacter nataicola sp. nov. Int J Syst Evol Microbiol 2006; 56(9): 2101-11.
[http://dx.doi.org/10.1099/ijs.0.63252-0] [PMID: 16957106]
[49]
Yamada Y, Yukphan P, Vu HTL, Muramatsu Y, Ochaikul D, Nakagawa Y. Subdivision of the genus Gluconacetobacter Yamada, Hoshino and Ishikawa 1998: the proposal of Komagatabacter gen. nov., for strains accommodated to the Gluconacetobacter xylinus group in the α-Proteobacteria. Ann Microbiol 2012; 62(2): 849-59.
[http://dx.doi.org/10.1007/s13213-011-0288-4]
[50]
Zhang H, Ye C, Xu N, et al. Reconstruction of a genome-scale metabolic network of Komagataeibacter nataicola RZS01 for cellulose production. Sci Rep 2017; 7(1): 7911.
[http://dx.doi.org/10.1038/s41598-017-06918-1] [PMID: 28801647]
[51]
Velásquez-Riaño M, Bojacá V. Production of bacterial cellulose from alternative low-cost substrates. Cellulose 2017; 24(7): 2677-98.
[http://dx.doi.org/10.1007/s10570-017-1309-7]
[52]
Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM. Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 2019; 3: 7.
[http://dx.doi.org/10.3389/fsufs.2019.00007]
[53]
Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose: Fermentative production and applications. Food Technol Biotechnol 2009; 47(2): 107-24.
[54]
Aswini K, Gopal NO, Uthandi S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol 2020; 20(1): 46.
[http://dx.doi.org/10.1186/s12896-020-00639-6] [PMID: 32843009]
[55]
Embuscado ME, Marks JS. BeMiller JN. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocoll 1994; 8(5): 407-18.
[http://dx.doi.org/10.1016/S0268-005X(09)80084-2]
[56]
Matsuoka M, Tsuchida T, Matsushita K, Adachi O, Yoshinaga F. A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 1996; 60(4): 575-9.
[http://dx.doi.org/10.1271/bbb.60.575]
[57]
Brown RM Jr, Willison JH, Richardson CL. Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci 1976; 73(12): 4565-9.
[http://dx.doi.org/10.1073/pnas.73.12.4565] [PMID: 1070005]
[58]
Gomes FP, Silva NHCS, Trovatti E, et al. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 2013; 55: 205-11.
[http://dx.doi.org/10.1016/j.biombioe.2013.02.004]
[59]
Park JK, Jung JY, Park YH. Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 2003; 25(24): 2055-9.
[http://dx.doi.org/10.1023/B:BILE.0000007065.63682.18] [PMID: 14969408]
[60]
Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M. Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 2018; 49 (Suppl. 1): 151-9.
[http://dx.doi.org/10.1016/j.bjm.2017.12.012] [PMID: 29703527]
[61]
Tantratian S, Tammarate P, Krusong W, Bhattarakosol P, Phunsri A. Effect of dissolved oxygen on cellulose production by Acetobacter sp. J Sci Res Chula Univ 2005; 30(2): 179-86.
[62]
Jagannath A, Manjunatha SS, Ravi N, Raju PS. The effect of different substrates and processing conditions on the textural characteristics of bacterial cellulose (nata) produced by Acetobacter xylinum. J Food Process Eng 2011; 34(3): 593-608.
[http://dx.doi.org/10.1111/j.1745-4530.2009.00403.x]
[63]
Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F. Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 1998; 5(3): 187-200.
[http://dx.doi.org/10.1023/A:1009272904582]
[64]
Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 2005; 44(22): 3358-93.
[http://dx.doi.org/10.1002/anie.200460587] [PMID: 15861454]
[65]
Pathare PB, Opara UL, Al-Said FAJ. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol 2013; 6(1): 36-60.
[http://dx.doi.org/10.1007/s11947-012-0867-9]
[66]
Civille GV, Szczesniak AS. Guidelines to training a texture profile panel. J Texture Stud 1973; 4(2): 204-23.
[http://dx.doi.org/10.1111/j.1745-4603.1973.tb00665.x]
[67]
Chandra MV, Shamasundar BA. Texture profile analysis and functional properties of gelatin from the skin of three species of freshwater fish. Int J Food Prop 2015; 18(3): 572-84.
[http://dx.doi.org/10.1080/10942912.2013.845787]
[68]
Ackbarali D, Maharaj R. Sensory evaluation as a tool in determining acceptability of innovative products developed by undergraduate students in food science and technology at the University of Trinidad and Tobago. JCT 2014; 3(1): 10-27.
[69]
Wichchukit S, O’Mahony M. The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. J Sci Food Agric 2015; 95(11): 2167-78.
[http://dx.doi.org/10.1002/jsfa.6993] [PMID: 25378223]
[70]
Mihafu FD, Issa JY, Kamiyango MW. Implication of sensory evaluation and quality assessment in food product development: A review. Curr Res Nutr Food Sci 2020; 8(3): 690-702.
[http://dx.doi.org/10.12944/CRNFSJ.8.3.03]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy