Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

The Genus Ageratina (Asteraceae) in America: An Insight into its Chemistry and Pharmacological Potential

Author(s): Isabel Rivero-Cruz, José Alberto Gutiérrez-González, Araceli Pérez-Vásquez, José Luis Villaseñor and Rachel Mata*

Volume 26, Issue 9, 2023

Published on: 31 October, 2022

Page: [1629 - 1659] Pages: 31

DOI: 10.2174/1386207325666220908093541

Price: $65

Abstract

Background: Ageratina is an American genus of the tribe Eupatorieae (Asteraceae), comprising about 320 species. In Mexico, some species of this genus are highly valued for their medicinal properties, particularly A. pichinchensis, A. petiolaris, and A. grandifolia. Furthermore, herbal preparations of A. pichinchensis are available for treating several mycoses.

Aims and Objective: The present review is aimed to summarize the chemical and pharmacological properties of 37 species of the Ageratina genus up to April, 2022.

Methods: Data were recorded using online scientific databases, including Scopus, PubMed, Google Scholar, Taylor and Francis Imprints, National Center for Biotechnology Information, Science Direct, JSTOR, and SciFinder. The information was gathered from research articles, relevant books on herbal medicinal plants and the history of medicinal plants from Mexico, theses, reports, and web pages.

Results: The specialized metabolites present in the Ageratina genus belong to different chemical classes, including flavonoids, benzyl benzoates, benzofurans, chromenes, and terpenoids. The chromenes, benzofurans, and benzyl benzoates are the metabolites most widespread in the genus. So far, the species more thoroughly investigated is A. adenophora. Ageratina has received little attention from the pharmacological point of view. The studies are limited to 10 species. Biological studies have been conducted on extracts and/or compounds isolated from plants collected mainly from China and Mexico. The results revealed that the extracts and metabolites possess several biological activities, including antiviral, antioxidant, antimicrobial, anti-inflammatory, antinociceptive, antifeedant, larvicidal, acaricidal, antidiabetic, antiprotozoal, and wound-healing properties. In the case of A. pichinchensis, A. petiolaris, and A. grandifolia, the pharmacological studies provided evidence for their use for treating gastrointestinal complaints and diabetes. Furthermore, herbal preparations of A. pichinchensis are now widely used for alleviating onychomycosis. A. adenophora, is the most investigated species, chemically and biologically; however, some hepatotoxicity effect has been recorded.

Conclusion: This review recapitulates information on the Ageratina genus, highlighting the phytochemistry and biological activities of the species investigated. It is important to point out that the pharmacological potential of this large genus remains largely unexplored.

Keywords: Ageratina, pharmacological properties, phytochemistry, toxicology, botany

Next »
Graphical Abstract

[1]
King, R.M.; Robinson, H.E. The genera of the Eupatorieae (Asteraceae). In: Monographs in Systematic Botany from the Missouri Botanical Garden; Missouri Botanical Garden: St. Louis, 1987; pp. 1-581.
[http://dx.doi.org/10.5962/bhl.title.156613]
[2]
Villaseñor, J.L. Diversity and distribution of the Asteraceae family in Mexico. Bot. Sci., 2018, 96(2), 332-358.
[http://dx.doi.org/10.17129/botsci.1872]
[3]
Romo, J.; Ríos, T.; Quijano, L. Ligustrin, a guaianolide isolated from Europatorium ligustrinum DC. Tetrahedron, 1968, 24(19), 6087-6091.
[http://dx.doi.org/10.1016/S0040-4020(01)96341-0]
[4]
Quijano, L.; Malanco, F.; Ríos, T. The structures of eupalin and eupatolin. Two new flavonol rhamnosides isolated from Eupatorium ligustrinum D.C. Tetrahedron, 1970, 26(12), 2851-2859.
[http://dx.doi.org/10.1016/S0040-4020(01)92863-7]
[5]
Melek, F.R.; Gage, D.A.; Mabry, T.J. Isolation of provincialin from Ageratina cronquistii. J. Nat. Prod., 1985, 48(2), 331-332.
[http://dx.doi.org/10.1021/np50038a028]
[6]
Fang, N.; Mabry, T.J. Flavonoid aglycones from Ageratina tomentella. J. Nat. Prod., 1986, 49(4), 738-739.
[http://dx.doi.org/10.1021/np50046a052]
[7]
Fang, N.; Yu, S.; Mabry, T.J. Flavonoids from Ageratina calophylla. Phytochemistry, 1986, 25(11), 2684-2686.
[http://dx.doi.org/10.1016/S0031-9422(00)84545-8]
[8]
Fang, N.; Mabry, T.J. Sesquiterpenes from Ageratina tomentella. Phytochemistry, 1988, 27(1), 283-285.
[http://dx.doi.org/10.1016/0031-9422(88)80635-6]
[9]
Yu, S.; Fang, N.; Mabry, T.J. Flavonoids from Ageratina saltillensis. J. Nat. Prod., 1986, 49(6), 1178-1179.
[http://dx.doi.org/10.1021/np50048a063]
[10]
Espitia de Pérez, C.; Salgado de Pinilla, G. Metoxiflavonas de Ageratina glyptophlebia (Compositae). Rev. Colomb. Quim., 1990, 19(1), 101-105.
[http://dx.doi.org/10.15446/rev.colomb.quim]
[11]
Taylor, D.R.; Wright, J.A. Chromenes from Eupatorium riparium. Phytochemistry, 1971, 10(7), 1665-1667.
[http://dx.doi.org/10.1016/0031-9422(71)85045-8]
[12]
Bohlmann, F.; Banerjee, S.; Wolfrum, C.; Jakupovic, J.; King, R.M.; Robinson, H. Sesquiterpene lactones, geranylnerol and tremetone derivatives from Ageratina species. Phytochemistry, 1985, 24(6), 1319-1321.
[http://dx.doi.org/10.1016/S0031-9422(00)81124-3]
[13]
Bohlmann, F.; Zitzkowski, P.; Suwita, A.; Fiedler, L. Cis-colavenic acid and other ingredients from representatives of the tribus Eupatorieae. Phytochemistry, 1978, 17(12), 2101-2105.
[http://dx.doi.org/10.1016/S0031-9422(00)89289-4]
[14]
Proksch, P.; Witte, L.; Wray, V. Chromene glycosides from Ageratina altissima. Phytochemistry, 1988, 27(11), 3690-3691.
[http://dx.doi.org/10.1016/0031-9422(88)80802-1]
[15]
Fang, N.; Yu, S.; Mabry, T.J. Chromenes from Ageratina arsenii and revised structures of two epimeric chromene dimers. Phytochemistry, 1988, 27(6), 1902-1905.
[http://dx.doi.org/10.1016/0031-9422(88)80478-3]
[16]
González, A.G.; Barrera, J.B.; Yañes, A.C.; Díaz, J.G.; Pérez, E.M.R. Chromenes and benzofurans from Ageratina glechonophylla. Phytochemistry, 1989, 28(9), 2520-2522.
[http://dx.doi.org/10.1016/S0031-9422(00)98024-5]
[17]
Tamayo-Castillo, G.; Jakupovic, J.; Bohlmann, F.; Rojas, A.; Castro, V.; King, R.M. Germacranolides and other constituents from Ageratina species. Phytochemistry, 1988, 27(9), 2893-2897.
[http://dx.doi.org/10.1016/0031-9422(88)80683-6]
[18]
Tamayo-Castillo, G.; Jakupovic, J.; Bohlmann, F.; Castro, V.; King, R.M. Ent-clerodane derivatives and other constituents from representatives of the subgenus Ageratina. Phytochemistry, 1989, 28(1), 139-141.
[http://dx.doi.org/10.1016/0031-9422(89)85025-3]
[19]
Torrenegra, R.; Pedrozo, J.A.; Robles, J.; Fuentes, O. ε-palmitolactone from Ageratina viscosa. Phytochemistry, 1990, 29(1), 305-306.
[http://dx.doi.org/10.1016/0031-9422(90)89056-F]
[20]
Solís-Quispe, L.; Pino, J.A.; Falco, A.S.; Tomaylla-Cruz, C.; Quispe-Tonccochi, E.G.; Solís-Quispe, J.A. Chemical composition of the essential oil from Ageratina pentlandiana (DC.) R.M. King & H. Rob. leaves grown in the Peruvian Andes. J. Essent. Oil Res., 2019, 31(5), 409-413.
[http://dx.doi.org/10.1080/10412905.2019.1593891]
[21]
Silva-Sánchez, B.; Gómez-Hurtado, M.A.; Beiza-Granados, L.; Del Río, R.E.; Rodríguez-García, G. Chemical and spectroscopic characterization of flavonoids from Ageratina brevipes. Ciencia Nicolaita, 2017, 70, 94-104.
[http://dx.doi.org/10.35830/cn.vi70.361]
[22]
Yang, S.L.; King, R.A.; Roberts, M.F. The flavonoids of Ageratina deltoidea. Biochem. Syst. Ecol., 1990, 18(7-8), 485-486.
[http://dx.doi.org/10.1016/0305-1978(90)90118-Y]
[23]
Wei, Y.; Zhang, K.; Zhang, G.; Ito, Y. Isolation of five bioactive components from Eupatorium adenophorum Spreng using stepwise elution by high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol., 2011, 34(20), 2505-2515.
[http://dx.doi.org/10.1080/10826076.2011.591030] [PMID: 22328809]
[24]
Romero-Cerecero, O.; Zamilpa, A.; González-Cortazar, M.; Alonso-Cortés, D.; Jiménez-Ferrer, E.; Nicasio-Torres, P.; Aguilar-Santamaría, L.; Tortoriello, J. Pharmacological and chemical study to identify wound-healing active compounds in Ageratina pichinchensis. Planta Med., 2013, 79(8), 622-627.
[http://dx.doi.org/10.1055/s-0032-1328462] [PMID: 23599006]
[25]
Bustos-Brito, C.; Sánchez-Castellanos, M.; Esquivel, B.; Calderón, J.S.; Calzada, F.; Yépez-Mulia, L.; Joseph-Nathan, P.; Cuevas, G.; Quijano, L. ent-Kaurene Glycosides from Ageratina cylindrica. J. Nat. Prod., 2015, 78(11), 2580-2587.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00488] [PMID: 26517282]
[26]
Li, M.; Gao, X.; Lan, M.; Liao, X.; Su, F.; Fan, L.; Zhao, Y.; Hao, X.; Wu, G.; Ding, X. Inhibitory activities of flavonoids from Eupatorium adenophorum against acetylcholinesterase. Pestic. Biochem. Physiol., 2020, 170, 104701.
[http://dx.doi.org/10.1016/j.pestbp.2020.104701] [PMID: 32980054]
[27]
Eiroa, J.L.; Triana, J.; Pérez, F.J.; Castillo, Q.A.; Brouard, I.; Quintana, J.; Estévez, F.; León, F. Secondary metabolites from two Hispaniola Ageratina species and their cytotoxic activity. Med. Chem. Res., 2018, 27(7), 1792-1799.
[http://dx.doi.org/10.1007/s00044-018-2192-y]
[28]
Gutiérrez-González, J.A.; Pérez-Vásquez, A.; Torres-Colín, R.; Rangel-Grimaldo, M.; Rebollar-Ramos, D.; Mata, R. α-Glucosidase Inhibitors from Ageratina grandifolia. J. Nat. Prod., 2021, 84(5), 1573-1578.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00105]
[29]
Arciniegas, A.; Pérez-Castorena, A.L.; Meléndez-Aguirre, M.; Ávila, J.G.; García-Bores, A.M.; Villaseñor, J.L.; Romo de Vivar, A. Chemical composition and antimicrobial activity of Ageratina deltoidea. Chem. Biodivers., 2018, 15(3), e1700529.
[http://dx.doi.org/10.1002/cbdv.201700529] [PMID: 29427474]
[30]
Herz, W.; Gibaja, S. 5-hydroxy-6,7,4′-trimethoxyflavone from Ageratina gilbertii. Phytochemistry, 1972, 11(8), 2625.
[http://dx.doi.org/10.1016/S0031-9422(00)88559-3]
[31]
Torres-Barajas, L.; Rojas-Vera, J.; Buitrago-Díaz, A.; Morales-Méndez, A. Natural products and semisynthetic derivatives obtained from Ageratina jahnii and Ageratina pichinchensis (Asteraceae) species. Revista Ciencia e Ingeniería, 2019, 40(1), 77-86.
[32]
Barrio, G.; Spengler, I.; García, T.; Roque, A.; Álvarez, Á.L.; Calderón, J.S.; Parra, F. Antiviral activity of Ageratina havanensis and major chemical compounds from the most active fraction. Rev. Bras. Farmacogn., 2011, 21(5), 915-920.
[http://dx.doi.org/10.1590/S0102-695X2011005000159]
[33]
Trina, H.G.; Claudia Qintino, D.R.; Liudis, L.P.; Gloria, D.B.; Annele, R.; Caridad, E.P.; Lourdes Campaner, D.S.; Iraida, S.; Wagner, V.; Vilegas, W. Comparison of the qualitative chemical composition of extracts from Ageratina havanensis collected in two different phenological stages by FIA-ESI-IT-MSn and UPLC/ESI-MSn: Antiviral activity. Nat. Prod. Commun., 2017, 12(1), 31-34.
[PMID: 30549819]
[34]
Bohlmann, F.; Jakupovic, J.; Lonitz, M. Naturally ocurring terpene derivatives, 76, On constituents of the Eupatorium group. Chem. Ber., 1977, 110(1), 301-314.
[http://dx.doi.org/10.1002/cber.19771100132]
[35]
Bustos-Brito, C.; Andrade-Cetto, A.; Giraldo-Aguirre, J.D.; Moreno-Vargas, A.D.; Quijano, L. Acute hypoglycemic effect and phytochemical composition of Ageratina petiolaris. J. Ethnopharmacol., 2016, 185, 341-346.
[http://dx.doi.org/10.1016/j.jep.2016.03.048] [PMID: 27013093]
[36]
Zhou, Z.Y.; Liu, W.X.; Pei, G.; Ren, H.; Wang, J.; Xu, Q.L.; Xie, H.H.; Wan, F.H.; Tan, J.W. Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J. Agric. Food Chem., 2013, 61(48), 11792-11799.
[http://dx.doi.org/10.1021/jf400876j] [PMID: 24180556]
[37]
Lee, S.T.; Davis, T.Z.; Gardner, D.R.; Stegelmeier, B.L.; Evans, T.J. Quantitative method for the measurement of three benzofuran ketones in rayless goldenrod (Isocoma pluriflora) and white snakeroot (Ageratina altissima) by high-performance liquid chromatography (HPLC). J. Agric. Food Chem., 2009, 57(12), 5639-5643.
[http://dx.doi.org/10.1021/jf900781j] [PMID: 19480385]
[38]
Lee, S.T.; Davis, T.Z.; Gardner, D.R.; Colegate, S.M.; Cook, D.; Green, B.T.; Meyerholtz, K.A.; Wilson, C.R.; Stegelmeier, B.L.; Evans, T.J. Tremetone and structurally related compounds in white snakeroot (Ageratina altissima): A plant associated with trembles and milk sickness. J. Agric. Food Chem., 2010, 58(15), 8560-8565.
[http://dx.doi.org/10.1021/jf1012456] [PMID: 20681643]
[39]
Ríos, M.Y.; Aguilar-Guadarrama, A.B.; Navarro, V. Two new benzofuranes from Eupatorium aschenbornianum and their antimicrobial activity. Planta Med., 2003, 69(10), 967-970.
[http://dx.doi.org/10.1055/s-2003-45113] [PMID: 14648407]
[40]
Aguilar-Guadarrama, B.; Navarro, V.; León-Rivera, I.; Ríos, M.Y. Active compounds against tinea pedis dermatophytes from Ageratina pichinchensis var. bustamenta. Nat. Prod. Res., 2009, 23(16), 1559-1565.
[http://dx.doi.org/10.1080/14786410902843301] [PMID: 19844829]
[41]
Zheng, G.; Luo, S.; Li, S.; Hua, J.; Li, W.; Li, S. Specialized metabolites from Ageratina adenophora and their inhibitory activities against pathogenic fungi. Phytochemistry, 2018, 148, 57-62.
[http://dx.doi.org/10.1016/j.phytochem.2018.01.013] [PMID: 29421511]
[42]
Luo, B.; Dong, L.M.; Xu, Q.L.; Zhang, X.; Zhang, Q.; Liu, W.B.; Tan, J.W. A new monoterpene and a new sesquiterpene from the roots of Ageratina adenophora. Phytochem. Lett., 2018, 24, 67-70.
[http://dx.doi.org/10.1016/j.phytol.2018.01.012]
[43]
Anthonsen, T.; Larsen, O.; Nielsen, P.H. New chromenes from Eupatorium species. Acta Chem. Scand., 1969, 23(10), 3605-3607.
[http://dx.doi.org/10.3891/acta.chem.scand.23-3605]
[44]
Bohlmann, F.; Fiedler, L. Neue nerolidol-derivate aus Ageratina aschenbroniana. Phytochemistry, 1978, 17(3), 566-567.
[http://dx.doi.org/10.1016/S0031-9422(00)89373-5]
[45]
Banerjee, S.; Jakupovic, J.; Bohlmann, F.; King, R.M.; Robinson, H. Chromenes from Ageratina riparia. Phytochemistry, 1985, 24(11), 2681-2683.
[http://dx.doi.org/10.1016/S0031-9422(00)80693-7]
[46]
Triana, J.; Bahsas, A.; Delgado, P.; Jaimes, R.; Trejo, C.O. Ent-Norlabdanes and other constituents of four Venezuelan species previously classified in the genus Eupatorium. J. Nat. Prod., 1995, 58(5), 744-747.
[http://dx.doi.org/10.1021/np50119a014]
[47]
Sánchez-Mendoza, M.E.; Rodríguez-Silverio, J.; Rivero-Cruz, J.F.; Rocha-González, H.I.; Pineda-Farías, J.B.; Arrieta, J. Antinociceptive effect and gastroprotective mechanisms of 3,5-diprenyl-4-hydroxyacetophenone from Ageratina pichinchensis. Fitoterapia, 2013, 87, 11-19.
[http://dx.doi.org/10.1016/j.fitote.2013.03.015] [PMID: 23529015]
[48]
Arreaga-González, H.M.; Pardo-Novoa, J.C.; del Río, R.E.; Rodríguez-García, G.; Torres-Valencia, J.M.; Manríquez-Torres, J.J.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P.; Gómez-Hurtado, M.A. Methodology for the absolute configuration determination of epoxythymols using the constituents of Ageratina glabrata. J. Nat. Prod., 2018, 81(1), 63-71.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00637] [PMID: 29278331]
[49]
Bustos-Brito, C.; Vázquez-Heredia, V.; Calzada, F.; Yépez-Mulia, L.; Calderón, J.; Hernández-Ortega, S.; Esquivel, B.; García-Hernández, N.; Quijano, L. Antidiarrheal thymol derivatives from Ageratina glabrata. Structure and absolute configuration of 10-benzoyloxy-8,9-epoxy-6-hydroxythymol isobutyrate. Molecules, 2016, 21(9), 1132.
[http://dx.doi.org/10.3390/molecules21091132] [PMID: 27626392]
[50]
Bustos-Brito, C.; Esquivel, B.; Calzada, F.; Yepez-Mulia, L.; Calderón, J.S.; Porras-Ramírez, J.; Quijano, L. Further thymol derivatives from Ageratina cylindrica. Chem. Biodivers., 2016, 13(10), 1281-1289.
[http://dx.doi.org/10.1002/cbdv.201600038] [PMID: 27448114]
[51]
Bustos-Brito, C.; Sánchez-Castellanos, M.; Esquivel, B.; Calderón, J.S.; Calzada, F.; Yepez-Mulia, L.; Hernández-Barragán, A.; Joseph-Nathan, P.; Cuevas, G.; Quijano, L. Structure, absolute configuration, and antidiarrheal activity of a thymol derivative from Ageratina cylindrica. J. Nat. Prod., 2014, 77(2), 358-363.
[http://dx.doi.org/10.1021/np400964w] [PMID: 24502360]
[52]
García P, G.; García S, E.; Martínez G, I.; Scior, T.R.F.; Salvador, J.L.; Martínez P, M.M.; Río, R.E. Analgesic effect of leaf extract from Ageratina glabrata in the hot plate test. Rev. Bras. Farmacogn., 2011, 21(5), 928-935.
[http://dx.doi.org/10.1590/S0102-695X2011005000158]
[53]
Dong, L.M.; Zhang, M.; Xu, Q.L.; Zhang, Q.; Luo, B.; Luo, Q.W.; Liu, W.B.; Tan, J.W. Two new thymol derivatives from the roots of Ageratina adenophora. Molecules, 2017, 22(4), 592.
[http://dx.doi.org/10.3390/molecules22040592] [PMID: 28397757]
[54]
González, A.G.; Hernández, C.Y.; Barrera, J.B. Thymol derivatives and a chromene from Ageratina glechonophylla. Phytochemistry, 1992, 31(2), 714-716.
[http://dx.doi.org/10.1016/0031-9422(92)90072-X]
[55]
Bohlmann, F.; Gupta, R.K. Six cadinene derivatives from Ageratina adenophora. Phytochemistry, 1981, 20(6), 1432-1433.
[http://dx.doi.org/10.1016/0031-9422(81)80060-X]
[56]
Weyerstahl, P.; Marschall, H.; Seelmann, I.; Kaul, V.K. Constituents of the flower essential oil of Ageratina adenophora (Spreng.) K. et R. from India. Flavour Fragrance J., 1997, 12(6), 387-396.
[http://dx.doi.org/10.1002/(SICI)1099-1026(199711/12)12:6<387:AID-FFJ677>3.0.CO;2-F]
[57]
Wang, M.Z.; Zhang, Y.Y.; Li, S.L.; Cai, X.H.; Luo, X.D. Cadinene derivatives from Eupatorium adenophorum. Helv. Chim. Acta, 2006, 89(12), 3104-3108.
[http://dx.doi.org/10.1002/hlca.200690278]
[58]
Zhao, X.; Zheng, G.W.; Niu, X.M.; Li, W.Q.; Wang, F.S.; Li, S.H. Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination (dagger). J. Agric. Food Chem., 2009, 57(2), 478-482.
[http://dx.doi.org/10.1021/jf803023x] [PMID: 19154161]
[59]
Kundu, A.; Saha, S.; Walia, S.; Shakil, N.A.; Kumar, J.; Annapurna, K. Cadinene sesquiterpenes from Eupatorium adenophorum and their antifungal activity. J. Environ. Sci. Health B, 2013, 48(6), 516-522.
[http://dx.doi.org/10.1080/03601234.2013.761921] [PMID: 23452218]
[60]
Nong, X.; Li, S.H.; Chen, F.Z.; Wang, J.H.; Xie, Y.; Fang, C.L.; Liu, T.F.; He, R.; Gu, X.B.; Peng, X.R.; Yang, G.Y. Isolation and identification of acaricidal compounds in Eupatorium adenophorum petroleum ether extract and determination of their acaricidal activity against Psoroptes cuniculi. Vet. Parasitol., 2014, 203(1-2), 197-202.
[http://dx.doi.org/10.1016/j.vetpar.2014.01.029] [PMID: 24569033]
[61]
Liu, B.; Cao, L.; Zhang, L.; Yuan, X.; Zhao, B. Hepatotoxicity of Eupatorium adenophorum extracts and the identification of major hepatotoxic components. Nat. Prod. Res., 2017, 31(23), 2788-2792.
[http://dx.doi.org/10.1080/14786419.2017.1292509] [PMID: 28278655]
[62]
Ding, Z.K.; Guo, Y.S.; Ding, J.K. Chemical constituents from the flower of Eupatorium adenophorum. Yunnan Zhi Wu Yan Jiu, 1999, 21, 505-510.
[63]
He, L.; Hou, J.; Gan, M.; Shi, J.; Chantrapromma, S.; Fun, H.K.; Williams, I.D.; Sung, H.H.Y. Cadinane sesquiterpenes from the leaves of Eupatorium adenophorum. J. Nat. Prod., 2008, 71(8), 1485-1488.
[http://dx.doi.org/10.1021/np800242w] [PMID: 18620454]
[64]
André, R.; Catarro, J.; Freitas, D.; Pacheco, R.; Oliveira, M.C.; Serralheiro, M.L.; Falé, P.L. Action of euptox A from Ageratina adenophora juice on human cell lines: A top-down study using FTIR spectroscopy and protein profiling. Toxicol. In Vitro, 2019, 57, 217-225.
[http://dx.doi.org/10.1016/j.tiv.2019.03.012] [PMID: 30862539]
[65]
Fang, N.; Yu, S.; Mabry, T.J.; Abboud, K.A.; Simonsen, S.H. Terpenoids from Ageratina saltillensis. Phytochemistry, 1988, 27(10), 3187-3196.
[http://dx.doi.org/10.1016/0031-9422(88)80024-4]
[66]
Martínez-Vázquez, M.; Calderón, J.S.; Joseph-Nathan, P. The revised structure of the cytotoxic heliangolide euparhombin. J. Nat. Prod., 1991, 54(6), 1642-1644.
[http://dx.doi.org/10.1021/np50078a024]
[67]
Fuentes-Figueroa, M.A.; Tlapale-Lara, N.; Hernández-Carlos, B.; Joseph-Nathan, P.; Burgueño-Tapia, E. A new germacranolide from Ageratina vernalis. Nat. Prod. Res., 2020, 1-9.
[http://dx.doi.org/10.1080/14786419.2020.1827400] [PMID: 32998543]
[68]
González, A.G.; Arteaga, J.M.; Fraga, B.M.; Hernández, M.G. Diterpenos, triterpenos y flavonas de Eupatorium jahnii. An. Quim., 1978, 75, 128-130.
[69]
García-Sánchez, E.; Ramírez-López, C.B.; Talavera-Alemán, A.; León-Hernández, A.; Martínez-Muñoz, R.E.; Martínez-Pacheco, M.M.; Gómez-Hurtado, M.A.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P.; del Río, R.E. Absolute configuration of (13R)- and (13S)-labdane diterpenes coexisting in Ageratina jocotepecana. J. Nat. Prod., 2014, 77(4), 1005-1012.
[http://dx.doi.org/10.1021/np500022w] [PMID: 24702233]
[70]
Torrenegra, R.; Robles, J.; Pedrozo, J.; Pescador, B. A new diglycoside of diterpene from Ageratina vacciniaefolia. Molecules, 1999, 4(12), M94.
[http://dx.doi.org/10.3390/M94]
[71]
Huertas, A.; Vega, D.; Rodríguez, J.A.; Rojas, C.; Torrenegra, R.; Rodríguez, O. Glucosilate kaurenoic acid sesquihydrate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2007, 63(12), o4880.
[http://dx.doi.org/10.1107/S1600536807059727]
[72]
Pardo-Novoa, J.C.; Arreaga-González, H.M.; Galván-Gómez, S.; Rodríguez-García, G.; del Río, R.E.; Cerda-García-Rojas, C.M.; Joseph-Nathan, P.; Gómez-Hurtado, M.A. Biomimetic transformation of p-menthene glucosides into p-cymenes and carvotanacetone. J. Nat. Prod., 2019, 82(3), 485-491.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00855] [PMID: 30776238]
[73]
Xu, Q.L.; Zhang, M.; Zhou, Z.Y.; Liu, W.X.; Wan, F.H.; Wang, H.F.; Tan, J.W. Two new carene-type monoterpenes from aerial parts of Ageratina adenophora. Phytochem. Lett., 2014, 9, 123-126.
[http://dx.doi.org/10.1016/j.phytol.2014.05.004]
[74]
Nong, X.; Yang, Y.; Yang, G.; Chen, F.; Tang, M.; Wang, G. Toxicity of stigmasterol isolated from crofton weed, Eupatorium adenophorum Spreng. Against a rabbit ear mite, Psoroptes cuniculi. Pak. J. Zool., 2017, 49(4), 1197-1200.
[http://dx.doi.org/10.17582/journal.pjz/2017.49.4.1197.1200]
[75]
Wei, Y.; Gao, Y.; Zhang, K.; Ito, Y. Isolation of caffeic acid from Eupatorium adenophorum Spreng by High-Speed Countercurrent Chromatography and synthesis of caffeic acid-intercalated layered double hydroxide. J. Liq. Chromatogr. Relat. Technol., 2010, 33(6), 837-845.
[http://dx.doi.org/10.1080/10826071003684471] [PMID: 20454592]
[76]
Zheng, G.; jia, Y.; Zhao, X.; Zhang, F.; Luo, S.; Li, S.; Li, W. o-Coumaric acid from invasive Eupatorium adenophorum is a potent phytotoxin. Chemoecology, 2012, 22(2), 131-138.
[http://dx.doi.org/10.1007/s00049-012-0105-y]
[77]
Liu, B.; Dong, B.; Yuan, X.; Kuang, Q.; Zhao, Q.; Yang, M.; Liu, J.; Zhao, B. Enrichment and separation of chlorogenic acid from the extract of Eupatorium adenophorum Spreng by macroporous resin. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1008, 58-64.
[http://dx.doi.org/10.1016/j.jchromb.2015.10.026] [PMID: 26625338]
[78]
Zhang, M.; Liu, W.X.; Zheng, M.F.; Xu, Q.L.; Wan, F.H.; Wang, J.; Lei, T.; Zhou, Z.Y.; Tan, J.W. Bioactive quinic acid derivatives from Ageratina adenophora. Molecules, 2013, 18(11), 14096-14104.
[http://dx.doi.org/10.3390/molecules181114096] [PMID: 24241153]
[79]
Ahluwalia, V.; Sisodia, R.; Walia, S.; Sati, O.P.; Kumar, J.; Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest Sci., 2014, 87(2), 341-349.
[http://dx.doi.org/10.1007/s10340-013-0542-6]
[80]
Padalia, R.C.; Bisht, D.S.; Joshi, S.C.; Mathela, C.S. Chemical composition of the essential oil from Eupatorium adenophorum Spreng. J. Essent. Oil Res., 2009, 21(6), 522-524.
[http://dx.doi.org/10.1080/10412905.2009.9700234]
[81]
Palá-Paúl, J.; Pérez-Alonso, M.J.; Velasco-Negueruela, A.; Sanz, J. Analysis by gas chromatography-mass spectrometry of the volatile components of Ageratina adenophora Spreng., growing in the Canary Islands. J. Chromatogr. A, 2002, 947(2), 327-331.
[http://dx.doi.org/10.1016/S0021-9673(02)00016-X] [PMID: 11883666]
[82]
Carrillo-Hormaza, L.; Mora, C.; Álvarez, R.; Alzate, F.; Osorio, E. Chemical composition and antibacterial activity against Enterobacter cloacae of essential oils from Asteraceae species growing in the Páramos of Colombia. Ind. Crops Prod., 2015, 77, 108-115.
[http://dx.doi.org/10.1016/j.indcrop.2015.08.047]
[83]
Ramírez-López, C.B.; García-Sánchez, E.; Martínez-Muñoz, R.E.M.M.; Del Río, R.E.; Martínez-Pacheco, M.M. Chemical composition of the essential oil from Ageratina jocotepecana and its repellent effect on Drywood termite Incisitermes marginipennis. B. Latinoam. Caribe de Pl., 2016, 15(1), 53-60.
[84]
Valarezo, E.; Aguilera-Sarmiento, R.; Meneses, M.A.; Morocho, V. Study of essential oils from leaves of Asteraceae family species Ageratina dendroides and Gynoxys verrucosa. J. Essent. Oil-Bear. Plants, 2021, 24(3), 400-407.
[http://dx.doi.org/10.1080/0972060X.2021.1948919]
[85]
Neupane, N.P.; Karn, A.K.; Mukeri, I.H.; Pathak, P.; Kumar, P.; Singh, S.; Qureshi, I.A.; Jha, T.; Verma, A. Molecular dynamics analysis of phytochemicals from Ageratina adenophora against COVID-19 main protease (Mpro) and human angiotensin-converting enzyme 2 (ACE2). Biocatal. Agric. Biotechnol., 2021, 32, 101924.
[http://dx.doi.org/10.1016/j.bcab.2021.101924] [PMID: 33527003]
[86]
Mandal, S.K.; Boominathan, R.; Parimaladevi, B.; Dewanjee, S.; Mandal, S.C. Analgesic activity of methanol extract of Eupatorium adenophorum Spreng. leaves. Indian J. Exp. Biol., 2005, 43(7), 662-663.
[PMID: 16053275]
[87]
Romero-Cerecero, O.; Zamilpa-Álvarez, A.; Ramos-Mora, A.; Alonso-Cortés, D.; Jiménez-Ferrer, J.; Huerta-Reyes, M.; Tortoriello, J. Effect on the wound healing process and in vitro cell proliferation by the medicinal Mexican plant Ageratina pichinchensis. Planta Med., 2011, 77(10), 979-983.
[http://dx.doi.org/10.1055/s-0030-1250743] [PMID: 21267810]
[88]
González-Burgos, E.; Gómez-Serranillos, M.P. Natural products for vulvovaginal Candidiasis treatment: Evidence from clinical trials. Curr. Top. Med. Chem., 2018, 18(15), 1324-1332.
[http://dx.doi.org/10.2174/1568026618666181002111341] [PMID: 30277156]
[89]
Manandhar, S.; Luitel, S.; Dahal, R.K. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J. Trop. Med., 2019, 2019, 1-5.
[http://dx.doi.org/10.1155/2019/1895340] [PMID: 31065287]
[90]
Chaiwaree, S.; Pongpaibul, Y.; Thammasit, P. Anti-dermatophyte activity of the aqueous extracts of Thai medicinal plants. Braz. J. Biol., 2022, 82(82), e254291.
[http://dx.doi.org/10.1590/1519-6984.254291] [PMID: 35043843]
[91]
Kurade, N.P.; Jaitak, V.; Kaul, V.K.; Sharma, O.P. Chemical composition and antibacterial activity of essential oils of Lantana camara, Ageratum houstonianum and Eupatorium adenophorum. Pharm. Biol., 2010, 48(5), 539-544.
[http://dx.doi.org/10.3109/13880200903193336] [PMID: 20645797]
[92]
Castañeda, J.S.; Suta-Velásquez, M.; Mateus, J.; Pardo-Rodríguez, D.; Puerta, C.J.; Cuéllar, A.; Robles, J.; Cuervo, C. Preliminary chemical characterization of ethanolic extracts from Colombian plants with promising anti - Trypanosoma cruzi activity. Exp. Parasitol., 2021, 223, 108079.
[http://dx.doi.org/10.1016/j.exppara.2021.108079] [PMID: 33524381]
[93]
Estep, A.S.; Becnel, J.J.; Lee, S.T. Toxicity of compounds isolated from white snakeroot (Ageratina altissima) to adult and larval yellow fever mosquitoes (Aedes aegypti). Nat. Prod. Commun., 2016, 11(11), 1934578X1601101.
[http://dx.doi.org/10.1177/1934578X1601101113] [PMID: 30475505]
[94]
Mayanglambam, S.; Raghavendra, A.; Rajashekar, Y. Use of Ageratina adenophora (Spreng.) essential oil as insecticidal and antifeedant agents against diamondback moth, Plutella xylostella (L.). J. Plant Dis. Prot., 2022, 129(2), 439-448.
[http://dx.doi.org/10.1007/s41348-022-00573-z]
[95]
Liu, Y.; Luo, S.H.; Hua, J.; Li, D.S.; Ling, Y.; Luo, Q.; Li, S.H. Characterization of defensive cadinenes and a novel sesquiterpene synthase responsible for their biosynthesis from the invasive Eupatorium adenophorum. New Phytol., 2021, 229(3), 1740-1754.
[http://dx.doi.org/10.1111/nph.16925] [PMID: 32929734]
[96]
Nong, X.; Fang, C.L.; Wang, J.H.; Gu, X.B.; Yang, D.Y.; Liu, T.F.; Fu, Y.; Zhang, R.H.; Zheng, W.P.; Peng, X.R.; Wang, S.X.; Yang, G.Y. Acaricidal activity of extract from Eupatorium adenophorum against the Psoroptes cuniculi and Sarcoptes scabiei in vitro. Vet. Parasitol, 2012, 187(1-2), 345-349.
[http://dx.doi.org/10.1016/j.vetpar.2011.12.015]
[97]
Liao, F.; Hu, Y.; Tan, H.; Wu, L.; Wang, Y.; Huang, Y.; Mo, Q.; Wei, Y. Acaricidal activity of 9-oxo-10,11-dehydroageraphorone extracted from Eupatorium adenophorum in vitro. Exp. Parasitol., 2014, 140, 8-11.
[http://dx.doi.org/10.1016/j.exppara.2014.02.009] [PMID: 24631419]
[98]
Sun, W.; Zeng, C.; Yue, D.; Liu, S.; Ren, Z.; Zuo, Z.; Deng, J.; Peng, G.; Hu, Y. Ageratina adenophora causes spleen toxicity by inducing oxidative stress and pyroptosis in mice. R. Soc. Open Sci., 2019, 6(7), 190127.
[http://dx.doi.org/10.1098/rsos.190127] [PMID: 31417717]
[99]
Romero-Cerecero, O.; Zamilpa, A.; Díaz-García, E.R.; Tortoriello, J. Pharmacological effect of Ageratina pichinchensis on wound healing in diabetic rats and genotoxicity evaluation. J. Ethnopharmacol., 2014, 156, 222-227.
[http://dx.doi.org/10.1016/j.jep.2014.09.002] [PMID: 25218321]
[100]
Romero-Cerecero, O.; Zamilpa-Álvarez, A.; Jiménez-Ferrer, E.; Tortoriello, J. Exploratory study on the effectiveness of a standardized extract from Ageratina pichinchensis in patients with chronic venous leg ulcers. Planta Med., 2012, 78(4), 304-310.
[http://dx.doi.org/10.1055/s-0031-1280448] [PMID: 22174074]
[101]
Romero-Cerecero, O.; Zamilpa, A.; Tortoriello, J. Effectiveness and tolerability of a standardized extract from Ageratina pichinchensis in patients with diabetic foot ulcer: A randomized, controlled pilot study. Planta Med., 2015, 81(4), 272-278.
[http://dx.doi.org/10.1055/s-0034-1396315] [PMID: 25714724]
[102]
Freitas, A.L.; Santos, C.A.; Souza, C.A.S.; Nunes, M.A.P.; Antoniolli, Â.R.; da Silva, W.B.; da Silva, F.A. The use of medicinal plants in venous ulcers: A systematic review with meta-analysis. Int. Wound J., 2017, 14(6), 1019-1024.
[http://dx.doi.org/10.1111/iwj.12751] [PMID: 28488305]
[103]
Romero-Cerecero, O.; Islas-Garduño, A.L.; Zamilpa, A.; Tortoriello, J. Effectiveness of an encecalin standardized extract of Ageratina pichinchensis on the treatment of onychomycosis in patients with diabetes mellitus. Phytother. Res., 2020, 34(7), 1678-1686.
[http://dx.doi.org/10.1002/ptr.6644] [PMID: 32086985]
[104]
Mata-Torres, G.; Andrade-Cetto, A.; Espinoza-Hernández, F.A.; Cárdenas-Vázquez, R. Hepatic glucose output inhibition by Mexican plants used in the treatment of type 2 diabetes. Front. Pharmacol., 2020, 11, 215.
[http://dx.doi.org/10.3389/fphar.2020.00215] [PMID: 32194426]
[105]
Oelrichs, P.B.; Calanasan, C.A.; Macleod, J.K.; Seawright, A.A.; Ng, J.C. Isolation of a compound from Eupatorium adenophorum (Spreng.) [Ageratina adenophora (Spreng.)] causing hepatotoxicity in mice. Nat. Toxins, 1995, 3(5), 350-354.
[http://dx.doi.org/10.1002/nt.2620030505] [PMID: 8581319]
[106]
Sun, W.; Zeng, C.; Liu, S.; Fu, J.; Hu, L.; Shi, Z.; Yue, D.; Ren, Z.; Zhong, Z.; Zuo, Z.; Cao, S.; Peng, G.; Deng, J.; Hu, Y. Ageratina adenophora induces mice hepatotoxicity via ROS-NLRP3-mediated pyroptosis. Sci. Rep., 2018, 8(1), 16032.
[http://dx.doi.org/10.1038/s41598-018-34492-7] [PMID: 30375483]
[107]
Ren, Z.; Gao, P.; Okyere, S.K.; Cui, Y.; Wen, J.; Jing, B.; Deng, J.; Hu, Y. Ageratina adenophora inhibits spleen immune function in rats via the Loss of the FRC Network and Th1-Th2 Cell Ratio Elevation. Toxins (Basel), 2021, 13(5), 309.
[http://dx.doi.org/10.3390/toxins13050309] [PMID: 33926136]
[108]
He, Y.; Chen, W.; Hu, Y.; Luo, B.; Wu, L.; Qiao, Y.; Mo, Q.; Xu, R.; Zhou, Y.; Ren, Z.; Zuo, Z.; Deng, J.; Peng, G.; He, W.; Wei, Y.E. adenophorum induces cell cycle and apoptosis of renal cells through mitochondrial pathway and caspase activation in saanen goat. PLoS One, 2015, 10(9), e0138504.
[http://dx.doi.org/10.1371/journal.pone.0138504] [PMID: 26382060]
[109]
He, Y.; Mo, Q.; Luo, B.; Qiao, Y.; Xu, R.; Zuo, Z.; Deng, J.; Nong, X.; Peng, G.; He, W.; Wei, Y.; Hu, Y. Induction of apoptosis and autophagy via mitochondria- and PI3K/Akt/mTOR-mediated pathways by E. adenophorum in hepatocytes of saanen goat. Oncotarget, 2016, 7(34), 54537-54548.
[http://dx.doi.org/10.18632/oncotarget.10402] [PMID: 27391155]
[110]
Fu, J.; Hu, L.; Shi, Z.; Sun, W.; Yue, D.; Wang, Y.; Ma, X.; Ren, Z.; Zuo, Z.; Peng, G.; Zhong, Z.; Deng, J.; Cao, S.; Hu, Y. Two metabolites isolated from endophytic fungus Coniochaeta sp. F-8 in Ageratina adenophora exhibit antioxidative activity and cytotoxicity. Nat. Prod. Res., 2021, 35(17), 2840-2848.
[http://dx.doi.org/10.1080/14786419.2019.1675060] [PMID: 31638432]
[111]
Sánchez-Ramos, M.; Bahena, S.; Romero-Estrada, A.; Bernabé-Antonio, A.; Cruz-Sosa, F.; Gonzálesssz-Christen, J.; Acevedo-Fernández, J.; Perea-Arango, I.; Alvarez, L. Establishment and phytochemical analysis of a callus culture from Ageratina pichinchensis (Asteraceae) and its anti-inflammatory activity. Molecules, 2018, 23(6), 1258.
[http://dx.doi.org/10.3390/molecules23061258] [PMID: 29799442]
[112]
Zou, F.C.; Duan, G.; Xie, Y.J.; Zhou, Y.; Dong, G.D.; Lin, R.Q.; Zhu, X.Q. Molluscicidal activity of the plant Eupatorium adenophorum against Oncomelania hupensis, the intermediate host snail of Schistosoma japonicum. Ann. Trop. Med. Parasitol., 2009, 103(6), 549-553.
[http://dx.doi.org/10.1179/136485909X451780] [PMID: 19695160]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy