Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Practical Manipulation for the Preparation of Mesoporous Silica Nanoparticles for Drug Delivery Vehicles

Author(s): Minki Kim, Heeok Shim, Young-Guk Na, Hong-Ki Lee, Jong-Suep Baek and Cheong-Weon Cho*

Volume 20, Issue 8, 2023

Published on: 26 September, 2022

Page: [1206 - 1215] Pages: 10

DOI: 10.2174/1567201819666220901105102

Price: $65

Abstract

Background: Optimization of MSNs is the most important process for efficient and safe drug delivery systems.

Objective: In this study, the physicochemical properties of MSNs were evaluated using various compositions of individual reagents.

Methods: MSNs were synthesized according to a modified Stöber method. The physicochemical properties of MSNs were evaluated. Spherical uniform particles were observed in the scanning electron microscope (SEM) and transmission electron microscopy (TEM) image and the meso-structure of MSNs was confirmed. The amorphous and specific hexagonal structure of MSNs was confirmed through Xray diffraction (XRD) and SAXRD.

Results: The particle size and surface area according to changes in amounts of reagents ranged from 34.5 ± 2.3 to 216.0 ± 17.1 nm and from 549.79 to 1154.26 m2/g, respectively. A linear relationship was found between the surface area of MSNs and the adsorption rate of methylene blue (MB). MSNs exhibited no apparent cytotoxic effect on Caco-2 cell up to 200 μg/mL. The amounts of tetramethyl ammonium silicate and tetraethyl ortho silicate (TEOS), NaOH, and hexadecyl trimethyl ammonium bromide (CTAB) were adjusted to control the particle size and surface area of MSNs, and it was found that the amounts of synthetic reagents affected the physicochemical properties such as particle size and surface area of MSNs. MSNs with a large surface area adsorbed a large amount of MB.

Conclusion: These results indicated that drug adsorption is related to the surface area of MSNs. MSNs did not show cytotoxicity to Caco-2 cells. MSNs may be a promising nanomaterial that could be applied as a carrier for various drugs.

Keywords: Mesoporous Silica Nanoparticles (MSNs), synthesis, physical properties, adsorption.

« Previous
Graphical Abstract

[1]
Zdravkov, B.; Čermák, J.; Šefara, M.; Janků, J. Pore classification in the characterization of porous materials: A perspective. Open Chem., 2007, 5(2), 385-395.
[http://dx.doi.org/10.2478/s11532-007-0017-9]
[2]
Tarn, D.; Ashley, C.E.; Xue, M.; Carnes, E.C.; Zink, J.I.; Brinker, C.J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res., 2013, 46(3), 792-801.
[http://dx.doi.org/10.1021/ar3000986] [PMID: 23387478]
[3]
Wu, S.H.; Mou, C.Y.; Lin, H.P. Synthesis of mesoporous silica nanoparticles. Chem. Soc. Rev., 2013, 42(9), 3862-3875.
[http://dx.doi.org/10.1039/c3cs35405a] [PMID: 23403864]
[4]
Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics, 2018, 10, 118.
[http://dx.doi.org/10.3390/pharmaceutics10030118]
[5]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[6]
Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother., 2019, 109, 1100-1111.
[http://dx.doi.org/10.1016/j.biopha.2018.10.167] [PMID: 30551360]
[7]
Li, Z.; Barnes, J.C.; Bosoy, A.; Stoddart, J.F.; Zink, J.I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev., 2012, 41(7), 2590-2605.
[http://dx.doi.org/10.1039/c1cs15246g] [PMID: 22216418]
[8]
Lv, X.; Zhang, L.; Xing, F.; Lin, H. Controlled synthesis of monodispersed mesoporous silica nanoparticles: Particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater., 2016, 225, 238-244.
[http://dx.doi.org/10.1016/j.micromeso.2015.12.024]
[9]
Kim, J.W.; Kim, L.U.; Kim, C.K. Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules, 2007, 8(1), 215-222.
[http://dx.doi.org/10.1021/bm060560b] [PMID: 17206810]
[10]
Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed., 2006, 45(20), 3216-3251.
[http://dx.doi.org/10.1002/anie.200503075] [PMID: 16676373]
[11]
Kumar, R.; Chen, H.T.; Escoto, J.L.V.; Lin, V.S.Y.; Pruski, M.; Pruski, M. Template removal and thermal stability of organically functionalized mesoporous silica nanoparticles. Chem. Mater., 2006, 18(18), 4319-4327.
[http://dx.doi.org/10.1021/cm060598v]
[12]
Cauda, V.; Mühlstein, L.; Onida, B.; Bein, T. Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica. Microporous Mesoporous Mater., 2009, 118(1-3), 435-442.
[http://dx.doi.org/10.1016/j.micromeso.2008.09.022]
[13]
Croissant, J.G.; Fatieiev, Y.; Almalik, A.; Khashab, N.M. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv. Healthc. Mater., 2018, 71700831
[14]
Mehmood, A.; Ghafar, H.; Yaqoob, S.; Gohar, U.F.; Ahmad, B. Mesoporous silica nanoparticles: A review. J. Dev. Drugs, 2017, 6(2), 1-14.
[http://dx.doi.org/10.4172/2329-6631.1000174]
[15]
Yamada, H.; Urata, C.; Higashitamori, S.; Aoyama, Y.; Yamauchi, Y.; Kuroda, K. Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: Control of mesostructure, particle size, and dispersion. ACS Appl. Mater. Interfaces, 2014, 6(5), 3491-3500.
[http://dx.doi.org/10.1021/am405633r] [PMID: 24471488]
[16]
Chen, Q.; Han, L.; Gao, C.; Che, S. Synthesis of monodispersed mesoporous silica spheres (MMSSs) with controlled particle size using gemini surfactant. Microporous Mesoporous Mater., 2010, 128(1-3), 203-212.
[http://dx.doi.org/10.1016/j.micromeso.2009.08.024]
[17]
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26(1), 62-69.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[18]
Liu, R.; Liao, P.; Liu, J.; Feng, P. Responsive polymer-coated mesoporous silica as a pH-sensitive nanocarrier for controlled release. Langmuir, 2011, 27(6), 3095-3099.
[http://dx.doi.org/10.1021/la104973j] [PMID: 21314163]
[19]
Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 1938, 60(2), 309-319.
[http://dx.doi.org/10.1021/ja01269a023]
[20]
Möller, K.; Kobler, J.; Bein, T. Colloidal suspensions of nanometer-sized mesoporous silica. Adv. Funct. Mater., 2007, 17(4), 605-612.
[http://dx.doi.org/10.1002/adfm.200600578]
[21]
Harrison Wanyika Gatebe, E.; Kioni, P.; Tang, Z.Y.; Gao, Y. Synthesis and characterization of ordered mesoporous silica nanoparticles with tunable physical properties by varying molar composition of reagents. Afr. J. Pharm. Pharmacol., 2011, 5(21), 2402-2410.
[http://dx.doi.org/10.5897/AJPP11.592]
[22]
El-Toni, A.; Ibrahim, M.; Labis, J.; Khan, A.; Alhoshan, M. Optimization of synthesis parameters for mesoporous shell formation on magnetic nanocores and their application as nanocarriers for docetaxel cancer drug. Int. J. Mol. Sci., 2013, 14(6), 11496-11509.
[http://dx.doi.org/10.3390/ijms140611496] [PMID: 23722659]
[23]
Vautier-Giongo, C.; Pastore, H.O. Micellization of CTAB in the presence of silicate anions and the exchange between bromide and silicate at the micelle surface: A step to understand the formation of mesoporous molecular sieves at extremely low surfactant and silicate concentrations. J. Colloid Interface Sci., 2006, 299(2), 874-882.
[http://dx.doi.org/10.1016/j.jcis.2006.02.040] [PMID: 16563412]
[24]
Wu, C.; Chen, B. Wang; Quan; Peng; Pan; Xu, Y.; Wu, C.; Wu, C. In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation. Int. J. Nanomed, 2012, 7, 199-209.
[http://dx.doi.org/10.2147/IJN.S26763] [PMID: 22275835]
[25]
Vazquez, N.I.; Gonzalez, Z.; Ferrari, B.; Castro, Y. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Bol. Soc. Esp. Ceram. Vidr., 2017, 56(3), 139-145.
[http://dx.doi.org/10.1016/j.bsecv.2017.03.002]
[26]
Purnawira, B.; Purwaningsih, H.; Ervianto, Y.; Pratiwi, V.M.; Susanti, D.; Rochiem, R.; Purniawan, A. Synthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conf. Ser.: Mater. Sci. Eng., 2019, 541(1), p. 012018.
[http://dx.doi.org/10.1088/1757-899X/541/1/012018]
[27]
Zainal, N.A.; Shukor, S.R.A.; Wab, H.A.A.; Razak, K.A. Study on the effect of synthesis parameters of silica nanoparticles entrapped with rifampicin. Chem. Eng. Trans., 2013, 32, 2245-2250.
[28]
Zhou, Y.; Li, X.; Chen, Z. Rapid synthesis of well-ordered mesoporous silica from sodium silicate. Powder Technol., 2012, 226, 239-245.
[http://dx.doi.org/10.1016/j.powtec.2012.04.054]
[29]
Chiang, Y.D.; Lian, H.Y.; Leo, S.Y.; Wang, S.G.; Yamauchi, Y.; Wu, K.C.W. Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method. J. Phys. Chem. C, 2011, 115(27), 13158-13165.
[http://dx.doi.org/10.1021/jp201017e]
[30]
Slowing, I.; Viveroescoto, J.; Wu, C.; Lin, V. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[31]
Coleman, N.R.B.; Attard, G.S. Ordered mesoporous silicas prepared from both micellar solutions and liquid crystal phases. Microporous Mesoporous Mater., 2001, 44-45, 73-80.
[http://dx.doi.org/10.1016/S1387-1811(01)00170-6]
[32]
Beck, J.S.; Vartuli, J.C.; Roth, W.J.; Leonowicz, M.E.; Kresge, C.T.; Schmitt, K.D.; Chu, C.T.W.; Olson, D.H.; Sheppard, E.W.; McCullen, S.B.; Higgins, J.B.; Schlenker, J.L. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 114(27), 10834-10843.
[http://dx.doi.org/10.1021/ja00053a020]
[33]
Kim, M.K.; Ki, D.H.; Na, Y.G.; Lee, H.S.; Baek, J.S.; Lee, J.Y.; Lee, H.K.; Cho, C.W. Optimization of mesoporous silica nanoparticles through statistical design of experiment and the application for the anticancer drug. Pharmaceutics, 2021, 13(2), 184.
[http://dx.doi.org/10.3390/pharmaceutics13020184] [PMID: 33572523]
[34]
Schulz-Ekloff, G.; Rathouský, J.; Zukal, A. Controlling of morphology and characterization of pore structure of ordered mesoporous silicas. Microporous Mesoporous Mater., 1999, 27(2-3), 273-285.
[http://dx.doi.org/10.1016/S1387-1811(98)00261-3]
[35]
Chen, J.; Wang, W.; Xu, Y.; Zhang, X. Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J. Agric. Food Chem., 2011, 59(1), 307-311.
[http://dx.doi.org/10.1021/jf103640t] [PMID: 21141897]
[36]
Chueachot, R.; Wongkhueng, S.; Khankam, K.; Lakrathok, A.; Kaewnon, T.; Naowanon, W.T.; Amnuaypanich, S.; Nakhowong, R. Adsorption efficiency of methylene blue from aqueous solution with amine-functionalized mesoporous silica nanospheres by co-condensation bi-phasic synthesis: Adsorption condition and equilibrium studies. Mater. Today Proc., 2018, 5(6), 14079-14085.
[http://dx.doi.org/10.1016/j.matpr.2018.02.066]
[37]
Palmqvist, A.E.C. Synthesis of ordered mesoporous materials using surfactant liquid crystals or micellar solutions. Curr. Opin. Colloid Interface Sci., 2003, 8(2), 145-155.
[http://dx.doi.org/10.1016/S1359-0294(03)00020-7]
[38]
Bouchoucha, M.; Cote, M.F.; Gaudreault, R.C.; Fortin, M.A.; Kleitz, F. Size-controlled functionalized mesoporous silica nanoparticles for tunable drug release and enhanced anti-tumoral activity. Chem. Mater., 2016, 28, 4243-4258.
[http://dx.doi.org/10.1021/acs.chemmater.6b00877]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy