Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Gender Matters. Sex-related Differences in Immunotherapy Outcome in Patients with Non-small Cell Lung Cancer

In Press, (this is not the final "Version of Record"). Available online 21 June, 2024
Author(s): Enrico Caliman, Maria Cristina Petrella, Virginia Rossi, Francesca Mazzoni, Anna Maria Grosso, Sara Fancelli, Luca Paglialunga, Camilla Eva Comin, Giandomenico Roviello, Serena Pillozzi and Lorenzo Antonuzzo*
Published on: 21 June, 2024

DOI: 10.2174/1568009622666220831142452

Abstract

Background: Emerging evidence identified sex as a variable regulating immune system functions and modulating response to immunotherapy in cancer patients.

Objective: This retrospective study analysed sex-related differences in immunotherapy outcomes in a real-world population of non-small cell lung cancer (NSCLC) patients treated with immune checkpoint inhibitors (ICIs).

Methods: We retrospectively investigated clinical data of 99 patients with advanced NSCLC and treated with single-agent nivolumab and pembrolizumab at Medical Oncology Unit, Careggi University Hospital, Florence (Italy), between April 2014 to August 2019. Main clinical characteristics and clinical outcomes were analysed.

Results: Our study showed that the efficacy of ICI treatment differed according to gender. A trend for better median progression-free survival (mPFS) was reported in males (mPFS 5.0 months, 95% Confidence Interval [CI] 4.0-11.0) than females (mPFS 4.5 months, 95% CI 2.0-9.0) (p=0.133), while no significant difference for overall survival (OS) between the two sex groups was observed (p=0.622). In the nivolumab cohort, we showed a statistically significant difference for a longer PFS in men compared to women (log-rank p=0.054), HR for PFS in females versus males was 1.81 (95% CI 0.97- 3.37, p=0.062). Disease control rate (DCR) was achieved in 55.7% and 45.7% of men and women, respectively, while disease progression was registered in 44.3% of males and 54.3% of females (p=0.386).

Conclusion: Gender is a variable that should be taken into account in the choice of immunotherapy. Future prospective randomized trials testing tailored sex-based immunotherapy strategies are required to validate our findings before integrating into clinical practice.

Keywords: non-small cell lung cancer, gender, immunotherapy, gender-medicine, sex differences, immune-checkpoint inhibitors

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Fidler, M.M.; Bray, F.; Soerjomataram, I. The global cancer burden and human development: A review. Scand. J. Public Health, 2018, 46(1), 27-36.
[http://dx.doi.org/10.1177/1403494817715400] [PMID: 28669281]
[3]
Malvezzi, M.; Carioli, G.; Bertuccio, P.; Boffetta, P.; Levi, F.; La Vecchia, C.; Negri, E. European cancer mortality predictions for the year 2017, with focus on lung cancer. Ann. Oncol., 2017, 28(5), 1117-1123.
[http://dx.doi.org/10.1093/annonc/mdx033] [PMID: 28327906]
[4]
Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J., 2016, 48(3), 889-902.
[http://dx.doi.org/10.1183/13993003.00359-2016] [PMID: 27174888]
[5]
Corrales, L.; Rosell, R.; Cardona, A.F.; Martín, C.; Zatarain-Barrón, Z.L.; Arrieta, O. Lung cancer in never smokers: The role of different risk factors other than tobacco smoking. Crit. Rev. Oncol. Hematol., 2020, 148(102895), 102895.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102895] [PMID: 32062313]
[6]
Dresler, C.M.; Fratelli, C.; Babb, J.; Everley, L.; Evans, A.A.; Clapper, M.L. Gender differences in genetic susceptibility for lung cancer. Lung Cancer, 2000, 30(3), 153-160.
[http://dx.doi.org/10.1016/S0169-5002(00)00163-X] [PMID: 11137199]
[7]
MacRosty, C.R.; Rivera, M.P. Lung cancer in women: A modern epidemic. Clin. Chest Med., 2020, 41(1), 53-65.
[http://dx.doi.org/10.1016/j.ccm.2019.10.005] [PMID: 32008629]
[8]
Stapelfeld, C.; Dammann, C.; Maser, E. Sex-specificity in lung cancer risk. Int. J. Cancer, 2020, 146(9), 2376-2382.
[http://dx.doi.org/10.1002/ijc.32716] [PMID: 31583690]
[9]
Gasperino, J.; Rom, W.N. Gender and lung cancer. Clin. Lung Cancer, 2004, 5(6), 353-359.
[http://dx.doi.org/10.3816/CLC.2004.n.013] [PMID: 15217534]
[10]
Donington, J.S.; Colson, Y.L. Sex and gender differences in non-small cell lung cancer. Semin. Thorac. Cardiovasc. Surg., 2011, 23(2), 137-145.
[http://dx.doi.org/10.1053/j.semtcvs.2011.07.001] [PMID: 22041044]
[11]
Bouchardy, C.; Fioretta, G.; De Perrot, M.; Obradovic, M.; Spiliopoulos, A. Determinants of long term survival after surgery for cancer of the lung: A population-based study. Cancer, 1999, 86(11), 2229-2237.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19991201)86:11<2229::AID-CNCR9>3.0.CO;2-K] [PMID: 10590362]
[12]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[13]
Kim, S.Y.; Halmos, B. Choosing the best first-line therapy: NSCLC with no actionable oncogenic driver. Lung Cancer Manag., 2020, 9(3), LMT36.
[http://dx.doi.org/10.2217/lmt-2020-0003] [PMID: 32774467]
[14]
Doroshow, D.B.; Sanmamed, M.F.; Hastings, K.; Politi, K.; Rimm, D.L.; Chen, L.; Melero, I.; Schalper, K.A.; Herbst, R.S. Immunotherapy in non-small cell lung cancer: Facts and hopes. Clin. Cancer Res., 2019, 25(15), 4592-4602.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1538] [PMID: 30824587]
[15]
Brahmer, J.; Reckamp, K.L.; Baas, P.; Crinò, L.; Eberhardt, W.E.; Poddubskaya, E.; Antonia, S.; Pluzanski, A.; Vokes, E.E.; Holgado, E.; Waterhouse, D.; Ready, N.; Gainor, J.; Arén Frontera, O.; Havel, L.; Steins, M.; Garassino, M.C.; Aerts, J.G.; Domine, M.; Paz-Ares, L.; Reck, M.; Baudelet, C.; Harbison, C.T.; Lestini, B.; Spigel, D.R. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(2), 123-135.
[http://dx.doi.org/10.1056/NEJMoa1504627] [PMID: 26028407]
[16]
Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; Barlesi, F.; Kohlhäufl, M.; Arrieta, O.; Burgio, M.A.; Fayette, J.; Lena, H.; Poddubskaya, E.; Gerber, D.E.; Gettinger, S.N.; Rudin, C.M.; Rizvi, N.; Crinò, L.; Blumenschein, G.R., Jr; Antonia, S.J.; Dorange, C.; Harbison, C.T.; Graf Finckenstein, F.; Brahmer, J.R. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med., 2015, 373(17), 1627-1639.
[http://dx.doi.org/10.1056/NEJMoa1507643] [PMID: 26412456]
[17]
Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.H.; Arvis, C.D.; Ahn, M.J.; Majem, M.; Fidler, M.J.; de Castro, G., Jr; Garrido, M.; Lubiniecki, G.M.; Shentu, Y.; Im, E.; Dolled-Filhart, M.; Garon, E.B. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet, 2016, 387(10027), 1540-1550.
[http://dx.doi.org/10.1016/S0140-6736(15)01281-7] [PMID: 26712084]
[18]
Mok, T.S.K.; Wu, Y.L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G., Jr; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; Kubota, K.; Lubiniecki, G.M.; Zhang, J.; Kush, D.; Lopes, G. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet, 2019, 393(10183), 1819-1830.
[http://dx.doi.org/10.1016/S0140-6736(18)32409-7] [PMID: 30955977]
[19]
Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol., 2016, 16(10), 626-638.
[http://dx.doi.org/10.1038/nri.2016.90] [PMID: 27546235]
[20]
Libert, C.; Dejager, L.; Pinheiro, I. The X chromosome in immune functions: When a chromosome makes the difference. Nat. Rev. Immunol., 2010, 10(8), 594-604.
[http://dx.doi.org/10.1038/nri2815] [PMID: 20651746]
[21]
Wu, Y.; Ju, Q.; Jia, K.; Yu, J.; Shi, H.; Wu, H.; Jiang, M. Correlation between sex and efficacy of immune checkpoint inhibitors (PD-1 and CTLA-4 inhibitors). Int. J. Cancer, 2018, 143(1), 45-51.
[http://dx.doi.org/10.1002/ijc.31301] [PMID: 29424425]
[22]
Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol., 2018, 19(6), 737-746.
[http://dx.doi.org/10.1016/S1470-2045(18)30261-4] [PMID: 29778737]
[23]
Clocchiatti, A.; Cora, E.; Zhang, Y.; Dotto, G.P. Sexual dimorphism in cancer. Nat. Rev. Cancer, 2016, 16(5), 330-339.
[http://dx.doi.org/10.1038/nrc.2016.30] [PMID: 27079803]
[24]
Polanczyk, M.J.; Hopke, C.; Vandenbark, A.A.; Offner, H. Estrogen-mediated immunomodulation involves reduced activation of effector T cells, potentiation of Treg cells, and enhanced expression of the PD-1 costimulatory pathway. J. Neurosci. Res., 2006, 84(2), 370-378.
[http://dx.doi.org/10.1002/jnr.20881] [PMID: 16676326]
[25]
Lin, P-Y.; Sun, L.; Thibodeaux, S.R.; Ludwig, S.M.; Vadlamudi, R.K.; Hurez, V.J.; Bahar, R.; Kious, M.J.; Livi, C.B.; Wall, S.R.; Chen, L.; Zhang, B.; Shin, T.; Curiel, T.J. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J. Immunol., 2010, 185(5), 2747-2753.
[http://dx.doi.org/10.4049/jimmunol.1000496] [PMID: 20686128]
[26]
Dinesh, R.K.; Hahn, B.H.; Singh, R.P. PD-1, gender, and autoimmunity. Autoimmun. Rev., 2010, 9(8), 583-587.
[http://dx.doi.org/10.1016/j.autrev.2010.04.003] [PMID: 20433954]
[27]
Litchfield, K.; Reading, J.L.; Puttick, C.; Thakkar, K.; Abbosh, C.; Bentham, R.; Watkins, T.B.K.; Rosenthal, R.; Biswas, D.; Rowan, A.; Lim, E.; Al Bakir, M.; Turati, V.; Guerra-Assunção, J.A.; Conde, L.; Furness, A.J.S.; Saini, S.K.; Hadrup, S.R.; Herrero, J.; Lee, S.H.; Van Loo, P.; Enver, T.; Larkin, J.; Hellmann, M.D.; Turajlic, S.; Quezada, S.A.; McGranahan, N.; Swanton, C. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell, 2021, 184(3), 596-614.e14.
[http://dx.doi.org/10.1016/j.cell.2021.01.002] [PMID: 33508232]
[28]
Bagchi, S.; Yuan, R.; Engleman, E.G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol., 2021, 16, 223-249.
[http://dx.doi.org/10.1146/annurev-pathol-042020-042741] [PMID: 33197221]
[29]
Abdel-Rahman, O. Correlation between PD-L1 expression and outcome of NSCLC patients treated with anti-PD-1/PD-L1 agents: A meta-analysis. Crit. Rev. Oncol. Hematol., 2016, 101, 75-85.
[http://dx.doi.org/10.1016/j.critrevonc.2016.03.007] [PMID: 26969107]
[30]
Gibney, G.T.; Weiner, L.M.; Atkins, M.B. Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol., 2016, 17(12), e542-e551.
[http://dx.doi.org/10.1016/S1470-2045(16)30406-5] [PMID: 27924752]
[31]
Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017, 541(7637), 321-330.
[http://dx.doi.org/10.1038/nature21349] [PMID: 28102259]
[32]
Botticelli, A.; Onesti, C.E.; Zizzari, I.; Cerbelli, B.; Sciattella, P.; Occhipinti, M.; Roberto, M.; Di Pietro, F.; Bonifacino, A.; Ghidini, M.; Vici, P.; Pizzuti, L.; Napoletano, C.; Strigari, L.; D’Amati, G.; Mazzuca, F.; Nuti, M.; Marchetti, P. The sexist behaviour of immune checkpoint inhibitors in cancer therapy? Oncotarget, 2017, 8(59), 99336-99346.
[http://dx.doi.org/10.18632/oncotarget.22242] [PMID: 29245905]
[33]
Conforti, F.; Pala, L.; Pagan, E.; Corti, C.; Bagnardi, V.; Queirolo, P.; Catania, C.; De Pas, T.; Giaccone, G. Sex-based differences in response to anti-PD-1 or PD-L1 treatment in patients with non-small-cell lung cancer expressing high PD-L1 levels. A systematic review and meta-analysis of randomized clinical trials. ESMO Open, 2021, 6(5), 100251.
[http://dx.doi.org/10.1016/j.esmoop.2021.100251] [PMID: 34455288]
[34]
Conforti, F.; Pala, L.; Bagnardi, V.; Viale, G.; De Pas, T.; Pagan, E.; Pennacchioli, E.; Cocorocchio, E.; Ferrucci, P.F.; De Marinis, F.; Gelber, R.D.; Goldhirsch, A. Sex-based heterogeneity in response to lung cancer immunotherapy: A systematic review and meta-analysis. J. Natl. Cancer Inst., 2019, 111(8), 772-781.
[http://dx.doi.org/10.1093/jnci/djz094] [PMID: 31106827]
[35]
Kim, A.M.; Tingen, C.M.; Woodruff, T.K. Sex bias in trials and treatment must end. Nature, 2010, 465(7299), 688-689.
[http://dx.doi.org/10.1038/465688a] [PMID: 20535184]
[36]
Petrelli, F.; Maltese, M.; Tomasello, G.; Conti, B.; Borgonovo, K.; Cabiddu, M.; Ghilardi, M.; Ghidini, M.; Passalacqua, R.; Barni, S.; Brighenti, M. Clinical and molecular predictors of pd-l1 expression in non-small-cell lung cancer: Systematic review and meta-analysis. Clin. Lung Cancer, 2018, 19(4), 315-322.
[http://dx.doi.org/10.1016/j.cllc.2018.02.006] [PMID: 29530732]
[37]
Polanczyk, M.J.; Hopke, C.; Vandenbark, A.A.; Offner, H. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). Int. Immunol., 2007, 19(3), 337-343.
[http://dx.doi.org/10.1093/intimm/dxl151] [PMID: 17267414]
[38]
Conforti, F.; Pala, L.; Pagan, E.; Bagnardi, V.; De Pas, T.; Queirolo, P.; Pennacchioli, E.; Catania, C.; Cocorocchio, E.; Ferrucci, P.F.; Saponara, M.; Orsolini, G.; Zagami, P.; Nicoló, E.; De Marinis, F.; Tortora, G.; Bria, E.; Minucci, S.; Joffe, H.; Veronesi, P.; Wargo, J.; Rosenthal, R.; Swanton, C.; Mantovani, A.; Gelber, R.D.; Viale, G.; Goldhirsch, A.; Giaccone, G. Sex-based dimorphism of anticancer immune response and molecular mechanisms of immune evasion. Clin. Cancer Res., 2021, 27(15), 4311-4324.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0136] [PMID: 34016641]
[39]
Xiao, D.; Pan, H.; Li, F.; Wu, K.; Zhang, X.; He, J. Analysis of ultra-deep targeted sequencing reveals mutation burden is associated with gender and clinical outcome in lung adenocarcinoma. Oncotarget, 2016, 7(16), 22857-22864.
[http://dx.doi.org/10.18632/oncotarget.8213] [PMID: 27009843]
[40]
Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; Miller, M.L.; Rekhtman, N.; Moreira, A.L.; Ibrahim, F.; Bruggeman, C.; Gasmi, B.; Zappasodi, R.; Maeda, Y.; Sander, C.; Garon, E.B.; Merghoub, T.; Wolchok, J.D.; Schumacher, T.N.; Chan, T.A. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015, 348(6230), 124-128.
[http://dx.doi.org/10.1126/science.aaa1348] [PMID: 25765070]
[41]
Abdel-Rahman, O. Smoking and EGFR status may predict outcomes of advanced NSCLC treated with PD-(L)1 inhibitors beyond first line: A meta-analysis. Clin. Respir. J., 2018, 12(5), 1809-1819.
[http://dx.doi.org/10.1111/crj.12742] [PMID: 29115057]

© 2025 Bentham Science Publishers | Privacy Policy