Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Mini-Review Article

The Molecular and Functional Changes of Neural Stem Cells in Alzheimer’s Disease: Can They be Reinvigorated to Conduct Neurogenesis

Author(s): Ejlal Abu-El-Rub*, Ramada R. Khasawneh, Fatimah A. Almahasneh, Basma Milad Aloud and Hana M. Zegallai

Volume 18, Issue 5, 2023

Published on: 12 October, 2022

Page: [580 - 594] Pages: 15

DOI: 10.2174/1574888X17666220831105257

Price: $65

Abstract

Alzheimer’s disease (AD) is considered one of the most complicated neurodegenerative disorders, and it is associated with progressive memory loss and remarkable neurocognitive dysfunction that negatively impacts the ability to perform daily living activities. AD accounts for an estimated 60-80% of dementia cases. AD's previously known pathological basis is the deposition of amyloid β (Aβ) aggregates and the formation of neurofibrillary tangles by tau hyperphosphorylation in the cell bodies of neurons that are located in the hippocampus, neocortex, and certain other regions of the cerebral hemispheres and limbic system. The lack of neurotransmitter acetylcholine and the activation of oxidative stress cascade may also contribute to the pathogenesis of AD. These pathological events can lead to irreversible loss of neuronal networks and the emergence of memory impairment and cognitive dysfunction that can engender an abnormal change in the personality. AD cannot be cured, and to some extent, the prescribed medications can only manage the symptoms associated with this disease. Several studies have reported that the regenerative abilities of neural stem/progenitor cells (NSCs) remarkably decline in AD, which disturbs the balancing power to control its progression. Exogenous infusion or endogenous activation of NSCs may be the ultimate solution to restore the neuronal networks in the brain of AD patients and regenerate the damaged areas responsible for memory and cognition. In this mini-review, we will touch upon the fate of NSCs in AD and the utilization of neurogenesis using modified NSCs to restore cognitive functions in AD.

Keywords: Alzheimer’s disease, Neural stem cells, Pathogenesis, Neurogenesis, Neuroinflammation, Repair

Graphical Abstract

[1]
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener 2019; 14(1): 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[2]
Kilic A, Beyazsakal L, Işık M, et al. Mannich reaction derived novel boron complexes with amine-bis(phenolate) ligands: Synthesis, spectroscopy and in vitro/in silico biological studies. J Organomet Chem 2020; 927: 121542.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121542]
[3]
Güleç Ö, Türkeş C, Arslan M, et al. Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol Divers 2022. Epub Ahead of Print]
[http://dx.doi.org/10.1007/s11030-022-10422-8] [PMID: 35397086]
[4]
Kalaycı M, Türkeş C, Arslan M, Demir Y, Beydemir Ş. Novel benzoic acid derivatives: Synthesis and biological evaluation as multitarget acetylcholinesterase and carbonic anhydrase inhibitors. Arch Pharm 2021; 354(3): 2000282.
[http://dx.doi.org/10.1002/ardp.202000282] [PMID: 33155700]
[5]
Selkoe DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 1994; 17(1): 489-517.
[http://dx.doi.org/10.1146/annurev.ne.17.030194.002421] [PMID: 8210185]
[6]
Akocak S, Taslimi P, Lolak N, et al. Synthesis, characterization, and inhibition study of novel substituted phenylureido sulfaguanidine derivatives as α‐glycosidase and cholinesterase inhibitors. Chem Biodivers 2021; 18(4): e2000958.
[http://dx.doi.org/10.1002/cbdv.202000958] [PMID: 33620128]
[7]
Işık M, Demir Y, Durgun M, Türkeş C, Necip A, Beydemir Ş. Molecular docking and investigation of 4-(benzylideneamino)- and 4-(benzylamino)-benzenesulfonamide derivatives as potent AChE inhibitors. Chem Pap 2020; 74(5): 1395-405.
[http://dx.doi.org/10.1007/s11696-019-00988-3]
[8]
Shega JW, Ellner L, Lau DT, Maxwell TL. Cholinesterase inhibitor and N-methyl-D-aspartic acid receptor antagonist use in older adults with end-stage dementia: A survey of hospice medical directors. J Palliat Med 2009; 12(9): 779-83.
[http://dx.doi.org/10.1089/jpm.2009.0059] [PMID: 19622011]
[9]
Alvarez BA, García VJM. Neurogenesis in adult subventricular zone. J Neurosci 2002; 22(3): 629-34.
[http://dx.doi.org/10.1523/JNEUROSCI.22-03-00629.2002] [PMID: 11826091]
[10]
Teng YD. Functional multipotency of stem cells: Biological traits gleaned from neural progeny studies. Semin Cell Dev Biol 2019; 95: 74-83.
[http://dx.doi.org/10.1016/j.semcdb.2019.02.002] [PMID: 30822497]
[11]
Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and function of adult neurogenesis: From genes to cognition. Physiol Rev 2014; 94(4): 991-1026.
[http://dx.doi.org/10.1152/physrev.00004.2014] [PMID: 25287858]
[12]
Kempermann G, Gage FH, Aigner L, et al. Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell 2018; 23(1): 25-30.
[13]
Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 1998; 18(9): 3206-12.
[http://dx.doi.org/10.1523/JNEUROSCI.18-09-03206.1998] [PMID: 9547229]
[14]
Van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 2005; 25(38): 8680-5.
[http://dx.doi.org/10.1523/JNEUROSCI.1731-05.2005] [PMID: 16177036]
[15]
Barage SH, Sonawane KD. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015; 52: 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[16]
Miao J, Shi R, Li L, et al. Pathological tau from Alzheimer’s brain induces site-specific hyperphosphorylation and SDS- and reducing agent-resistant aggregation of tau in vivo. Front Aging Neurosci 2019; 11: 34.
[http://dx.doi.org/10.3389/fnagi.2019.00034] [PMID: 30890929]
[17]
Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997; 23(1): 134-47.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[18]
Francis PT. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr 2005; 10(11) (Suppl. 18): 6-9.
[http://dx.doi.org/10.1017/s1092852900014164] [PMID: 16273023]
[19]
Askin S, Tahtaci H, Türkeş C, et al. Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorg Chem 2021; 113: 105009.
[http://dx.doi.org/10.1016/j.bioorg.2021.105009] [PMID: 34052739]
[20]
Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct Target Ther 2019; 4(1): 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[21]
Chen GF, Xu TH, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin 2017; 38(9): 1205-35.
[22]
Murphy MP, LeVine H III. Alzheimer’s disease and the amyloid-beta peptide. J Alzheimers Dis 2010; 19(1): 311-23.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[23]
Ullah R, Park TJ, Huang X, Kim MO. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer’s pathology: Insights and therapeutic approaches from periphery. Ageing Res Rev 2021; 71: 101451.
[http://dx.doi.org/10.1016/j.arr.2021.101451] [PMID: 34450351]
[24]
Chen W, Gamache E, Rosenman DJ, et al. Familial Alzheimer’s mutations within APPTM increase Aβ42 production by enhancing accessibility of ε-cleavage site. Nat Commun 2014; 5(1): 3037-7.
[http://dx.doi.org/10.1038/ncomms4037] [PMID: 24390130]
[25]
Cacquevel M, Aeschbach L, Houacine J, et al. Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS One 2012; 7(4): e35133.
[http://dx.doi.org/10.1371/journal.pone.0035133] [PMID: 22529981]
[26]
Hector A, Brouillette J. Hyperactivity induced by soluble amyloid-β oligomers in the early stages of alzheimer’s disease. Front Mol Neurosci 2021; 13: 600084.
[http://dx.doi.org/10.3389/fnmol.2020.600084] [PMID: 33488358]
[27]
Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J Neurochem 1997; 68(1): 255-64.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68010255.x] [PMID: 8978733]
[28]
Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 2015; 3(10): 136-6.
[PMID: 26207229]
[29]
Fan L, Mao C, Hu X, et al. New insights into the pathogenesis of Alzheimer’s disease. Front Neurol 2020; 10: 1312-2.
[http://dx.doi.org/10.3389/fneur.2019.01312] [PMID: 31998208]
[30]
Majd S, Power JHT, Koblar SA, Grantham HJM. The impact of tau hyperphosphorylation at Ser 262 on memory and learning after global brain ischaemia in a rat model of reversible cardiac arrest. IBRO Rep 2017; 2: 1-13.
[http://dx.doi.org/10.1016/j.ibror.2016.12.002] [PMID: 30135928]
[31]
Perl DP. Neuropathology of Alzheimer’s disease. Mt Sinai J Med 2010; 77(1): 32-42.
[http://dx.doi.org/10.1002/msj.20157] [PMID: 20101720]
[32]
Xu W, Lakshman N, Morshead CM. Building a central nervous system: The neural stem cell lineage revealed. Neurogenesis 2017; 4(1): e1300037.
[http://dx.doi.org/10.1080/23262133.2017.1300037] [PMID: 28516107]
[33]
Briscoe J, Novitch BG. Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philos Trans R Soc Lond B Biol Sci 2008; 363(1489): 57-70.
[http://dx.doi.org/10.1098/rstb.2006.2012] [PMID: 17282991]
[34]
Tiberi L, Vanderhaeghen P, Van Den Ameele J. Cortical neurogenesis and morphogens: Diversity of cues, sources and functions. Curr Opin Cell Biol 2012; 24(2): 269-76.
[http://dx.doi.org/10.1016/j.ceb.2012.01.010] [PMID: 22342580]
[35]
Sadler TW. Embryology of neural tube development. Am J Med Genet C Semin Med Genet 2005; 135C(1): 2-8.
[http://dx.doi.org/10.1002/ajmg.c.30049] [PMID: 15806586]
[36]
Hu J, Wang X. Alzheimer’s disease: From pathogenesis to mesenchymal stem cell therapy – Bridging the missing link. Front Cell Neurosci 2022; 15: 811852.
[http://dx.doi.org/10.3389/fncel.2021.811852] [PMID: 35197824]
[37]
Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 2013; 14(6): 329-40.
[http://dx.doi.org/10.1038/nrm3591] [PMID: 23698583]
[38]
Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem cells of the aging brain. Front Aging Neurosci 2020; 12: 247-7.
[http://dx.doi.org/10.3389/fnagi.2020.00247] [PMID: 32848716]
[39]
Tobin MK, Musaraca K, Disouky A, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 2019; 24(6): 974-982.e3.
[http://dx.doi.org/10.1016/j.stem.2019.05.003] [PMID: 31130513]
[40]
Ohm TG. The dentate gyrus in Alzheimer’s disease Prog BrainRes 2007; 723-40.
[http://dx.doi.org/10.1016/S0079-6123(07)63039-8]] [PMID: 17765747]
[41]
Otsuki L, Brand AH. Dorsal-ventral differences in neural stem cell quiescence are induced by p57KIP2/Dacapo. Dev Cell 2019; 49(2): 293-300.e3.
[42]
Yang J, Zhao H, Ma Y, et al. Early pathogenic event of Alzheimer’s disease documented in iPSCs from patients with PSEN1 mutations. Oncotarget 2017; 8(5): 7900-13.
[http://dx.doi.org/10.18632/oncotarget.13776] [PMID: 27926491]
[43]
Koch P, Tamboli IY, Mertens J, et al. Presenilin-1 L166P mutant human pluripotent stem cell-derived neurons exhibit partial loss of γ-secretase activity in endogenous amyloid-β generation. Am J Pathol 2012; 180(6): 2404-16.
[http://dx.doi.org/10.1016/j.ajpath.2012.02.012] [PMID: 22510327]
[44]
Jones VC, Atkinson DR, Verkhratsky A, Mohamet L. Aberrant iPSC-derived human astrocytes in Alzheimer’s disease. Cell Death Dis 2017; 8(3): e2696-6.
[http://dx.doi.org/10.1038/cddis.2017.89] [PMID: 28333144]
[45]
Sproul AA, Jacob S, Pre D, et al. Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS One 2014; 9(1): e84547.
[http://dx.doi.org/10.1371/journal.pone.0084547] [PMID: 24416243]
[46]
Meyer K, Feldman HM, Lu T, et al. REST and neural gene network dysregulation in iPSC models of Alzheimer’s disease. Cell Rep 2019; 26(5): 1112-1127.e9.
[http://dx.doi.org/10.1016/j.celrep.2019.01.023] [PMID: 30699343]
[47]
Masserdotti G, Gillotin S, Sutor B, et al. Transcriptional mechanisms of proneural factors and rest in regulating neuronal reprogramming of astrocytes. Cell Stem Cell 2015; 17(1): 74-88.
[http://dx.doi.org/10.1016/j.stem.2015.05.014] [PMID: 26119235]
[48]
Lee IS, Jung K, Kim IS, Park KI. Amyloid-β oligomers regulate the properties of human neural stem cells through GSK-3β signaling. Exp Mol Med 2013; 45(11): e60.
[http://dx.doi.org/10.1038/emm.2013.125] [PMID: 24232259]
[49]
Gao J, Liao Y, Qiu M, Shen W. Wnt/β-catenin signaling in neural stem cell homeostasis and neurological diseases. Neuroscientist 2021; 27(1): 58-72.
[http://dx.doi.org/10.1177/1073858420914509] [PMID: 32242761]
[50]
Jia L, Piña CJ, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain 2019; 12(1): 104.
[http://dx.doi.org/10.1186/s13041-019-0525-5] [PMID: 31801553]
[51]
Damjanovic AK, Yang Y, Glaser R, et al. Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol 2007; 179(6): 4249-54.
[http://dx.doi.org/10.4049/jimmunol.179.6.4249] [PMID: 17785865]
[52]
Donnini S, Solito R, Cetti E, et al. Aß peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis. FASEB J 2010; 24(7): 2385-95.
[http://dx.doi.org/10.1096/fj.09-146456] [PMID: 20207941]
[53]
Ribeiro MF, Genebra T, Rego AC, Rodrigues CMP, Solá S. Amyloid β peptide compromises neural stem cell fate by irreversibly disturbing mitochondrial oxidative state and blocking mitochondrial biogenesis and dynamics. Mol Neurobiol 2019; 56(6): 3922-36.
[http://dx.doi.org/10.1007/s12035-018-1342-z] [PMID: 30225776]
[54]
Lee J, Park HH, Koh SH, et al. Neural stem cell death mechanisms induced by amyloid beta. Dement Neurocogn Disord 2017; 16(4): 121-7.
[http://dx.doi.org/10.12779/dnd.2017.16.4.121]
[55]
Tarczyluk MA, Nagel DA, Rhein Parri H, et al. Amyloid β 1-42 induces hypometabolism in human stem cell-derived neuron and astrocyte networks. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Meta 2015; 35: 1348-57.
[56]
Parihar MS, Brewer GJ. Amyloid-β as a modulator of synaptic plasticity. J Alzheimers Dis 2010; 22(3): 741-63.
[http://dx.doi.org/10.3233/JAD-2010-101020] [PMID: 20847424]
[57]
Santos MF, Roxo C, Solá S. Oxidative-signaling in neural stem cell-mediated plasticity: Implications for neurodegenerative diseases. Antioxidants 2021; 10(7): 1088.
[http://dx.doi.org/10.3390/antiox10071088] [PMID: 34356321]
[58]
Waldau B, Shetty AK. Behavior of neural stem cells in the Alzheimer brain. Cell Mol Life Sci 2008; 65(15): 2372-84.
[http://dx.doi.org/10.1007/s00018-008-8053-y] [PMID: 18500448]
[59]
Eriksson PS, Perfilieva E, Björk ET, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313-7.
[http://dx.doi.org/10.1038/3305] [PMID: 9809557]
[60]
Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124(3): 319-35.
[http://dx.doi.org/10.1002/cne.901240303] [PMID: 5861717]
[61]
Sung PS, Lin PY, Liu CH, Su HC, Tsai KJ. Neuroinflammation and neurogenesis in Alzheimer’s disease and potential therapeutic approaches. Int J Mol Sci 2020; 21(3): 701.
[http://dx.doi.org/10.3390/ijms21030701] [PMID: 31973106]
[62]
Navarro NP, Yeo RW, Brunet A. Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 2020; 27(2): 202-23.
[http://dx.doi.org/10.1016/j.stem.2020.07.002] [PMID: 32726579]
[63]
Díaz MM, Armenteros T, Gradari S, et al. Noggin rescues age-related stem cell loss in the brain of senescent mice with neurodegenerative pathology. Proc Natl Acad Sci USA 2018; 115(45): 11625-30.
[http://dx.doi.org/10.1073/pnas.1813205115] [PMID: 30352848]
[64]
Crews L, Adame A, Patrick C, et al. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci 2010; 30(37): 12252-62.
[http://dx.doi.org/10.1523/JNEUROSCI.1305-10.2010] [PMID: 20844121]
[65]
Mrak RE. Microglia in Alzheimer brain: A neuropathological perspective. Int J Alzheimers Dis 2012; 2012: 165021.
[66]
Morley JE, Farr SA, Kumar VB, Armbrecht HJ. The SAMP8 mouse: A model to develop therapeutic interventions for Alzheimer’s disease. Curr Pharm Des 2012; 18(8): 1123-30.
[http://dx.doi.org/10.2174/138161212799315795] [PMID: 22288401]
[67]
Choi SH, Li Y. Elevated levels of BMP6 impair neurogenesis in Alzheimer’s disease. J Neurosci 2011; 31(2): 371-2.
[http://dx.doi.org/10.1523/JNEUROSCI.5226-10.2011] [PMID: 21228148]
[68]
Scopa C, Marrocco F, Latina V, et al. Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ 2020; 27: 934-48.
[69]
Vasic V, Barth K, Schmidt MHH. Neurodegeneration and neuro-regeneration—Alzheimer’s disease and stem cell therapy. Int J Mol Sci 2019; 20(17): 4272.
[http://dx.doi.org/10.3390/ijms20174272] [PMID: 31480448]
[70]
Quan ZZ, Qing H, Zhang HA, et al. Neural stem cell transplantation alleviates functional cognitive deficits in a mouse model of tauopathy. Neural Regen Res 2022; 17(1): 152-62.
[http://dx.doi.org/10.4103/1673-5374.314324] [PMID: 34100451]
[71]
Takeo K, Watanabe N, Tomita T, et al. Contribution of the γ-secretase subunits to the formation of catalytic pore of presenilin 1 protein. J Biol Chem 2012; 287: 25834-43.
[72]
De Gioia R, Biella F, Citterio G, et al. Neural stem cell transplantation for neurodegenerative diseases. Int J Mol Sci 2020; 21(9): 3103.
[http://dx.doi.org/10.3390/ijms21093103] [PMID: 32354178]
[73]
Kariminia A, Holtan SG, Ivison S, et al. Heterogeneity of chronic graft-versus-host disease biomarkers: Association with CXCL10 and CXCR3+ NK cells. Blood 2016; 127(24): 3082-91.
[http://dx.doi.org/10.1182/blood-2015-09-668251] [PMID: 27020088]
[74]
Kaminska A, Radoszkiewicz K, Rybkowska P, Wedzinska A, Sarnowska A. Interaction of Neural Stem Cells (NSCs) and Mesenchymal Stem Cells (MSCs) as a promising approach in brain study and nerve regeneration. Cells 2022; 11(9): 1464.
[http://dx.doi.org/10.3390/cells11091464] [PMID: 35563770]
[75]
Ottoboni L, Von Wunster B, Martino G. Therapeutic plasticity of neural stem cells. Front Neurol 2020; 11: 148-8.
[http://dx.doi.org/10.3389/fneur.2020.00148] [PMID: 32265815]
[76]
Boyd J, Gordon T. Glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp Neurol 2003; 183(2): 610-9.
[http://dx.doi.org/10.1016/S0014-4886(03)00183-3] [PMID: 14552902]
[77]
Purvis EM, O’Donnell JC, Chen HI, Cullen DK. Tissue engineering and biomaterial strategies to elicit endogenous neuronal replacement in the brain. Front Neurol 2020; 11: 344-4.
[http://dx.doi.org/10.3389/fneur.2020.00344] [PMID: 32411087]
[78]
Gómez ND, Valle AB, Pallas BN, et al. Interleukin-15 regulates proliferation and self-renewal of adult neural stem cells. Mol Biol Cell 2011; 22: 1960-70.
[http://dx.doi.org/10.1091/mbc.e11-01-0053]
[79]
Masoudi AS, Ahlawat J, Guillama BG, Narayan M. Application of nanotechnology in stem-cell-based therapy of neurodegenerative diseases. Appl Sci 2020; 10(14): 4852.
[http://dx.doi.org/10.3390/app10144852]
[80]
Skop NB, Calderon F, Cho CH, Gandhi CD, Levison SW. Improvements in biomaterial matrices for neural precursor cell transplantation. Mol Cell Ther 2014; 2(1): 19-9.
[http://dx.doi.org/10.1186/2052-8426-2-19] [PMID: 26056586]
[81]
Lee JH. Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering. Biomater Res 2018; 22(1): 27.
[http://dx.doi.org/10.1186/s40824-018-0138-6] [PMID: 30275970]
[82]
Sun H, Zhang L, Cheng W, et al. Injectable hydrogels in repairing central nervous system injuries. Adv Mater Sci Eng 2021; 2021: 7381980.
[http://dx.doi.org/10.1155/2021/7381980]
[83]
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer 2008; 49(8): 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[84]
Ho TC, Chang CC, Chan HP, et al. Hydrogels: Properties and applications in biomedicine. Molecules 2022; 27(9): 2902.
[http://dx.doi.org/10.3390/molecules27092902] [PMID: 35566251]
[85]
Khan J, Rudrapal M, Bhat EA, et al. Perspective insights to bio-nanomaterials for the treatment of neurological disorders. Front Bioeng Biotechnol 2021; 9: 724158-8.
[http://dx.doi.org/10.3389/fbioe.2021.724158] [PMID: 34712651]
[86]
Ojeda HDD, Canales AAA, Matias GJ, Gomez PU, Mateos DJC. Potential of chitosan and its derivatives for biomedical applications in the central nervous system. Front Bioeng Biotechnol 2020; 8: 389.
[http://dx.doi.org/10.3389/fbioe.2020.00389] [PMID: 32432095]
[87]
Wang X, He J, Wang Y, et al. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus 2012; 2: 278-91.
[http://dx.doi.org/10.1098/rsfs.2012.0016]
[88]
Gomes ED, Ghosh B, Lima R, et al. Combination of a gellan gum-based hydrogel with cell therapy for the treatment of cervical spinal cord injury. Front Bioeng Biotechnol 2020; 8: 984.
[http://dx.doi.org/10.3389/fbioe.2020.00984] [PMID: 32984278]
[89]
Kornev VA, Grebenik EA, Solovieva AB, Dmitriev RI, Timashev PS. Hydrogel-assisted neuroregeneration approaches towards brain injury therapy: A state-of-the-art review. Comput Struct Biotechnol J 2018; 16: 488-502.
[http://dx.doi.org/10.1016/j.csbj.2018.10.011] [PMID: 30455858]
[90]
La Manna S, Di Natale C, Onesto V, Marasco D. Self-assembling peptides: From design to biomedical applications. Int J Mol Sci 2021; 22(23): 12662.
[http://dx.doi.org/10.3390/ijms222312662] [PMID: 34884467]
[91]
Tavakol S, Saber R, Hoveizi E, et al. Self-assembling peptide nanofiber containing long motif of laminin induces neural differentiation, tubulin polymerization, and neurogenesis: In vitro, ex vivo, and in vivo studies. Mol Neurobiol 2016; 53(8): 5288-99.
[http://dx.doi.org/10.1007/s12035-015-9448-z] [PMID: 26427854]
[92]
Cui GH, Shao SJ, Yang JJ, et al. Designer self-assemble peptides maximize the therapeutic benefits of neural stem cell transplantation for Alzheimer’s disease via enhancing neuron differentiation and paracrine action. Mol Neurobiol 2016; 53: 1108-23.
[93]
Cano A, Ettcheto M, Chang JH, et al. Dual-drug loaded nanoparticles of Epigallocatechin-3-Gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer’s disease mice model. J Control Release Off J Control Release Soc 2019; 301: 62-75.
[94]
Ge W, Ren C, Xing L, et al. Ginkgo biloba extract improves cognitive function and increases neurogenesis by reducing Aβ pathology in 5×FAD mice. Am J Transl Res 2021; 13(3): 1471-82.
[PMID: 33841671]
[95]
Mishra S, Kelly KK, Rumian NL, et al. Retinoic acid is required for neural stem and progenitor cell proliferation in the adult hippocampus. Stem Cell Rep 2018; 10: 1705-20.
[http://dx.doi.org/10.1016/j.stemcr.2018.04.024]
[96]
Sun J, Zhou X, Wu J, et al. Ligustilide enhances hippocampal neural stem cells activation to restore cognitive function in the context of postoperative cognitive dysfunction. Eur J Neurosci 2021; 54(3): 5000-15.
[http://dx.doi.org/10.1111/ejn.15363] [PMID: 34192824]
[97]
Dong S, Zeng Q, Mitchell ES, et al. Curcumin enhances neurogenesis and cognition in aged rats: Implications for transcriptional interactions related to growth and synaptic plasticity. PLoS One 2012; 7: e31211-1.
[98]
Gao Q, Liao LY, Lau BWM, Sánchez VDI. Exogenous neural stem cell transplantation for cerebral ischemia. Neural Regen Res 2019; 14(7): 1129-37.
[http://dx.doi.org/10.4103/1673-5374.251188] [PMID: 30804235]
[99]
Ager RR, Davis JL, Agazaryan A, et al. Human neural stem cells improve cognition and promote synaptic growth in two complementary transgenic models of Alzheimer’s disease and neuronal loss. Hippocampus 2015; 25: 813-26.
[100]
Lu MH, Ji WL, Chen H, et al. Intranasal transplantation of human neural stem cells ameliorates Alzheimer’s disease-like pathology in a mouse model. Front Aging Neurosci 2021; 13: 650103.
[http://dx.doi.org/10.3389/fnagi.2021.650103] [PMID: 33776747]
[101]
Blurton JM, Kitazawa M, Martinez CH, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 2009; 106(32): 13594-9.
[http://dx.doi.org/10.1073/pnas.0901402106] [PMID: 19633196]
[102]
Gilbert EAB, Lakshman N, Lau KSK, Morshead CM. Regulating endogenous neural stem cell activation to promote spinal cord injury repair. Cells 2022; 11(5): 846.
[http://dx.doi.org/10.3390/cells11050846] [PMID: 35269466]
[103]
Lee NK, Park SE, Kwon SJ, et al. Agouti related peptide secreted via human mesenchymal stem cells upregulates proteasome activity in an Alzheimer’s disease model. Sci Rep 2017; 7(1): 39340.
[http://dx.doi.org/10.1038/srep39340] [PMID: 28051110]
[104]
Xie ZH, Liu Z, Zhang XR, et al. Wharton’s Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model. Clin Exp Med 2016; 16(1): 89-98.
[http://dx.doi.org/10.1007/s10238-015-0375-0] [PMID: 26188488]
[105]
Kim DH, Lee D, Chang EH, et al. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer’s disease model. Stem Cells Dev 2015; 24: 2378-90.
[106]
Park SE, Lee J, Chang EH, et al. Activin A secreted by human mesenchymal stem cells induces neuronal development and neurite outgrowth in an in vitro model of Alzheimer’s disease: Neurogenesis induced by MSCs via activin A. Arch Pharm Res 2016; 39(8): 1171-9.
[http://dx.doi.org/10.1007/s12272-016-0799-4] [PMID: 27515053]
[107]
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal stem cells for neurological disorders. Adv Sci 2021; 8(7): 2002944.
[http://dx.doi.org/10.1002/advs.202002944] [PMID: 33854883]
[108]
Hernández AE, García E. Mesenchymal stem cell therapy for Alzheimer’s disease. Stem Cells Int 2021; 2021: 7834421.
[http://dx.doi.org/10.1155/2021/7834421] [PMID: 34512767]
[109]
Chen YA, Lu CH, Ke CC, Liu RS. Mesenchymal stem cell-derived extracellular vesicle-based therapy for Alzheimer’s disease: Progress and opportunity. Membranes 2021; 11(10): 796.
[http://dx.doi.org/10.3390/membranes11100796] [PMID: 34677562]
[110]
Barak M, Fedorova V, Pospisilova V, et al. Human iPSC-derived neural models for studying Alzheimer’s disease: From neural stem cells to cerebral organoids. Stem Cell Rev Rep 2022; 18(2): 792-820.
[http://dx.doi.org/10.1007/s12015-021-10254-3] [PMID: 35107767]
[111]
Armijo E, Edwards G, Flores A, et al. Induced pluripotent stem cell-derived neural precursors improve memory, synaptic and pathological abnormalities in a mouse model of Alzheimer’s disease. Cells 2021; 10(7): 1802.
[http://dx.doi.org/10.3390/cells10071802] [PMID: 34359972]
[112]
Moreno JEP, Flor GM, Terreros RJ, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 2019; 25(4): 554-60.
[http://dx.doi.org/10.1038/s41591-019-0375-9] [PMID: 30911133]
[113]
Gakhar KN, Hundeshagen P, Mandl C, et al. Activity requires soluble amyloid precursor protein α to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci 2008; 28(5): 871-82.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06398.x] [PMID: 18717733]
[114]
Gadadhar A, Marr R, Lazarov O. Presenilin-1 regulates neural progenitor cell differentiation in the adult brain. J Neurosci 2011; 31(7): 2615-23.
[http://dx.doi.org/10.1523/JNEUROSCI.4767-10.2011] [PMID: 21325529]
[115]
Belmadani A, Tran PB, Ren D, Miller RJ. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 2006; 26(12): 3182-91.
[http://dx.doi.org/10.1523/JNEUROSCI.0156-06.2006] [PMID: 16554469]
[116]
Iosif RE, Ekdahl CT, Ahlenius H, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 2006; 26(38): 9703-12.
[http://dx.doi.org/10.1523/JNEUROSCI.2723-06.2006] [PMID: 16988041]
[117]
Kaneko N, Kudo K, Mabuchi T, et al. Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 2006; 31(12): 2619-26.
[http://dx.doi.org/10.1038/sj.npp.1301137] [PMID: 16823390]
[118]
Zhang W, Gu GJ, Zhang Q, et al. NSCs promote hippocampal neurogenesis, metabolic changes and synaptogenesis in APP/PS1 transgenic mice. Hippocampus 2017; 27(12): 1250-63.
[http://dx.doi.org/10.1002/hipo.22794] [PMID: 28833933]
[119]
Moghadam FH, Alaie H, Karbalaie K, Tanhaei S, Nasr Esfahani MH, Baharvand H. Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 2009; 78(2-3): 59-68.
[http://dx.doi.org/10.1016/j.diff.2009.06.005] [PMID: 19616885]
[120]
Heo C, Chang KA, Choi HS, et al. Effects of the monomeric, oligomeric, and fibrillar Aβ42 peptides on the proliferation and differentiation of adult neural stem cells from subventricular zone. J Neurochem 2007; 102(2): 493-500.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04499.x] [PMID: 17403034]
[121]
Uchida Y, Nakano S, Gomi F, Takahashi H. Differential regulation of basic helix-loop-helix factors Mash1 and Olig2 by beta-amyloid accelerates both differentiation and death of cultured neural stem/progenitor cells. J Biol Chem 2007; 282(27): 19700-9.
[http://dx.doi.org/10.1074/jbc.M703099200] [PMID: 17488716]
[122]
Park D, Yang YH, Bae DK, et al. Improvement of cognitive function and physical activity of aging mice by human neural stem cells over-expressing choline acetyltransferase. Neurobiol Aging 2013; 34(11): 2639-46.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.04.026] [PMID: 23731954]
[123]
Bissonnette CJ, Lyass L, Bhattacharyya BJ, Belmadani A, Miller RJ, Kessler JA. The controlled generation of functional basal forebrain cholinergic neurons from human embryonic stem cells. Stem Cells 2011; 29(5): 802-11.
[http://dx.doi.org/10.1002/stem.626] [PMID: 21381151]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy