Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Identification of PSMB9 and CXCL13 as Immune-related Diagnostic Markers for Rheumatoid Arthritis by Machine Learning

Author(s): Zhuo Li, Yue Chen, Maimaiti Zulipikaer, Chi Xu, Jun Fu, Tao Deng, Li-Bo Hao* and Ji-Ying Chen*

Volume 28, Issue 34, 2022

Published on: 13 September, 2022

Page: [2842 - 2854] Pages: 13

DOI: 10.2174/1381612828666220831085608

Price: $65

Abstract

Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes significant physical and psychological damage. Although researchers have gained a better understanding of the mechanisms of RA, there are still difficulties in diagnosing and treating RA. We applied a data mining approach based on machine learning algorithms to explore new RA biomarkers and local immune cell status.

Methods: We extracted six RA synovial microarray datasets from the GEO database and used bioinformatics to obtain differentially expressed genes (DEGs) and associated functional enrichment pathways. In addition, we identified potential RA diagnostic markers by machine learning strategies and validated their diagnostic ability for early RA and established RA, respectively. Next, CIBERSORT and ssGSEA analyses explored alterations in synovium-infiltrating immune cell subpopulations and immune cell functions in the RA synovium. Moreover, we examined the correlation between biomarkers and immune cells to understand their immune-related molecular mechanisms in the pathogenesis of RA.

Results: We obtained 373 DEGs (232 upregulated and 141 downregulated genes) between RA and healthy controls. Enrichment analysis revealed a robust correlation between RA and immune response. Comprehensive analysis indicated PSMB9, CXCL13, and LRRC15 were possible potential markers. PSMB9 (AUC: 0.908, 95% CI: 0.853-0.954) and CXCL13 (AUC: 0.890, 95% CI: 0.836-0.937) also showed great diagnostic ability in validation dataset. Infiltrations of 16 kinds of the immune cell were changed, with macrophages being the predominant infiltrating cell type. Most proinflammatory pathways in immune cell function were activated in RA. The correlation analysis found the strongest positive correlation between CXCL13 and plasma cells, PSMB9, and macrophage M1.

Conclusion: There is a robust correlation between RA and local immune response. The immune-related CXCL13 and PSMB9 were identified as potential diagnostic markers for RA based on a machine learning approach. Further in-depth exploration of the target genes and associated immune cells can deepen the understanding of RA pathophysiological processes and provide new insights into diagnosing and treating RA.

Keywords: Rheumatoid arthritis, diagnostic markers, immune cells, machine learning, bioinformatics.

« Previous
[1]
Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet 2016; 388(10055): 2023-38.
[http://dx.doi.org/10.1016/S0140-6736(16)30173-8] [PMID: 27156434]
[2]
Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 2010; 62(9): 2569-81.
[http://dx.doi.org/10.1002/art.27584] [PMID: 20872595]
[3]
Pinheiro FAG, Souza DCC, Sato EI. A study of multiple causes of death in rheumatoid arthritis. J Rheumatol 2015; 42(12): 2221-8.
[http://dx.doi.org/10.3899/jrheum.150166] [PMID: 26472415]
[4]
Scott DL, Coulton BL, Symmons DPM, Popert AJ. Long-term outcome of treating rheumatoid arthritis: Results after 20 years. Lancet 1987; 329(8542): 1108-11.
[http://dx.doi.org/10.1016/S0140-6736(87)91672-2] [PMID: 2883443]
[5]
Kuroda T, Tanabe N, Kobayashi D, et al. Treatment with biologic agents improves the prognosis of patients with rheumatoid arthritis and amyloidosis. J Rheumatol 2012; 39(7): 1348-54.
[http://dx.doi.org/10.3899/jrheum.111453] [PMID: 22589255]
[6]
Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity 2017; 46(2): 183-96.
[http://dx.doi.org/10.1016/j.immuni.2017.02.006] [PMID: 28228278]
[7]
Karami J, Aslani S, Jamshidi A, Garshasbi M, Mahmoudi M. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene 2019; 702: 8-16.
[http://dx.doi.org/10.1016/j.gene.2019.03.033] [PMID: 30904715]
[8]
Yap HY, Tee S, Wong M, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: Implications in clinical treatment and biomarker development. Cells 2018; 7(10): 161.
[http://dx.doi.org/10.3390/cells7100161] [PMID: 30304822]
[9]
Bugatti S, Vitolo B, Caporali R, Montecucco C, Manzo A. B cells in rheumatoid arthritis: From pathogenic players to disease biomarkers. BioMed Res Int 2014; 2014: 1-14.
[http://dx.doi.org/10.1155/2014/681678] [PMID: 24877127]
[10]
Cope AP, Schulze-Koops H, Aringer M. The central role of T cells in rheumatoid arthritis. Clin Exp Rheumatol 2007; 25(5) (Suppl. 46): S4-S11.
[PMID: 17977483]
[11]
Podojil JR, Miller SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev 2009; 229(1): 337-55.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00773.x] [PMID: 19426232]
[12]
Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol 2007; 25(1): 171-92.
[http://dx.doi.org/10.1146/annurev.immunol.25.022106.141548] [PMID: 17129182]
[13]
Bondeson J, Wainwright SD, Lauder S, Amos N, Hughes CE. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther 2006; 8(6): R187.
[http://dx.doi.org/10.1186/ar2099] [PMID: 17177994]
[14]
Maruotti N, Cantatore FP, Crivellato E, Vacca A, Ribatti D. Macrophages in rheumatoid arthritis. Histol Histopathol 2007; 22(5): 581-6.
[PMID: 17330813]
[15]
Kim SS, Ye C, Kumar P, et al. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol Ther 2010; 18(5): 993-1001.
[http://dx.doi.org/10.1038/mt.2010.27] [PMID: 20216529]
[16]
Onuora S. Experimental arthritis: Anti-TNF kills the macrophage response. Nat Rev Rheumatol 2018; 14(2): 64.
[PMID: 29362465]
[17]
Pham CTN. Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011; 3(6): 607-19.
[http://dx.doi.org/10.1002/wnan.157] [PMID: 21837725]
[18]
Hilkens CMU, Isaacs JD. Tolerogenic dendritic cell therapy for rheumatoid arthritis: Where are we now? Clin Exp Immunol 2013; 172(2): 148-57.
[http://dx.doi.org/10.1111/cei.12038] [PMID: 23574312]
[19]
Rivellese F, Nerviani A, Rossi FW, et al. Mast cells in rheumatoid arthritis: Friends or foes? Autoimmun Rev 2017; 16(6): 557-63.
[http://dx.doi.org/10.1016/j.autrev.2017.04.001] [PMID: 28411167]
[20]
Yu MB, Langridge WHR. The function of myeloid dendritic cells in rheumatoid arthritis. Rheumatol Int 2017; 37(7): 1043-51.
[http://dx.doi.org/10.1007/s00296-017-3671-z] [PMID: 28236220]
[21]
Liu Y, Cui S, Sun J, Yan X, Han D. Identification of potential biomarkers for psoriasis by dna methylation and gene expression datasets. Front Genet 2021; 12722803.
[http://dx.doi.org/10.3389/fgene.2021.722803] [PMID: 34512732]
[22]
Lu J, Wang Z, Maimaiti M, Hui W, Abudourexiti A, Gao F. Identification of diagnostic signatures in ulcerative colitis patients via bioinformatic analysis integrated with machine learning. Hum Cell 2022; 35(1): 179-88.
[PMID: 34731452]
[23]
Zhang J, Yu R, Guo X, et al. Identification of TYR, TYRP1, DCT and LARP7 as related biomarkers and immune infiltration characteristics of vitiligo via comprehensive strategies. Bioengineered 2021; 12(1): 2214-27.
[http://dx.doi.org/10.1080/21655979.2021.1933743] [PMID: 34107850]
[24]
Zhou S, Lu H, Xiong M. Identifying immune cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by bioinformatics analysis. Front Immunol 2021; 13 12:726747.
[http://dx.doi.org/10.3389/fimmu.2021.726747] [PMID: 34484236]
[25]
Yu R, Zhang J, Zhuo Y, et al. Identification of diagnostic signatures and immune cell infiltration characteristics in rheumatoid arthritis by integrating bioinformatic analysis and machine-learning strategies. Front Immunol 2021; 12: 724934.
[http://dx.doi.org/10.3389/fimmu.2021.724934] [PMID: 34691030]
[26]
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 2013; 41: D991-5.
[PMID: 23193258]
[27]
Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 2002; 30(1): 207-10.
[http://dx.doi.org/10.1093/nar/30.1.207] [PMID: 11752295]
[28]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[29]
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[30]
Nota B. Gogadget: An R package for interpretation and visualization of go enrichment results. Mol Inform 2017; 36(5-6): 1600132.
[http://dx.doi.org/10.1002/minf.201600132] [PMID: 28000438]
[31]
Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Series B Stat Methodol 2011; 73(3): 273-82.
[http://dx.doi.org/10.1111/j.1467-9868.2011.00771.x]
[32]
Suykens JAK, Vandewalle J. Least squares support vector machine classifiers. Neural Proc Lett 1999; 9: 293-300.
[33]
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010; 33(1): 1-22.
[http://dx.doi.org/10.18637/jss.v033.i01] [PMID: 20808728]
[34]
Huang ML, Hung YH, Lee WM, Li RK, Jiang BR. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. ScientificWorldJournal 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/795624] [PMID: 25295306]
[35]
Barbie DA, Tamayo P, Boehm JS, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009; 462(7269): 108-12.
[http://dx.doi.org/10.1038/nature08460] [PMID: 19847166]
[36]
Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 2015; 12(5): 453-7.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[37]
Ammari M, Presumey J, Ponsolles C, et al. Delivery of miR-146a to Ly6C high Monocytes inhibits pathogenic bone erosion in inflammatory arthritis. Theranostics 2018; 8(21): 5972-85.
[http://dx.doi.org/10.7150/thno.29313] [PMID: 30613275]
[38]
Misharin AV, Cuda CM, Saber R, et al. Nonclassical Ly6C(-) monocytes drive the development of inflammatory arthritis in mice. Cell Rep 2014; 9(2): 591-604.
[http://dx.doi.org/10.1016/j.celrep.2014.09.032] [PMID: 25373902]
[39]
Zhang F, Wei K, Slowikowski K, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol 2019; 20(7): 928-42.
[http://dx.doi.org/10.1038/s41590-019-0378-1] [PMID: 31061532]
[40]
Azizi G, Jadidi-Niaragh F, Mirshafiey A. Th17 Cells in Immunopathogenesis and treatment of rheumatoid arthritis. Int J Rheum Dis 2013; 16(3): 243-53.
[http://dx.doi.org/10.1111/1756-185X.12132] [PMID: 23981743]
[41]
Prevosto C, Goodall JC, Hill Gaston JS. Cytokine secretion by pathogen recognition receptor-stimulated dendritic cells in rheumatoid arthritis and ankylosing spondylitis. J Rheumatol 2012; 39(10): 1918-28.
[http://dx.doi.org/10.3899/jrheum.120208] [PMID: 22896020]
[42]
Yamada H, Nakashima Y, Okazaki K, et al. Th1 but not Th17 cells predominate in the joints of patients with rheumatoid arthritis. Ann Rheum Dis 2007; 67(9): 1299-304.
[http://dx.doi.org/10.1136/ard.2007.080341] [PMID: 18063670]
[43]
Estrada-Capetillo L, Hernández-Castro B, Monsiváis-Urenda A, et al. Induction of Th17 lymphocytes and Treg cells by monocyte-derived dendritic cells in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Dev Immunol 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/584303] [PMID: 24288552]
[44]
Moret FM, Hack CE, van der Wurff-Jacobs KMG, Radstake TRDJ, Lafeber FPJG, van Roon JAG. Thymic stromal lymphopoietin, a novel proinflammatory mediator in rheumatoid arthritis that potently activates CD1c+ myeloid dendritic cells to attract and stimulate T cells. Arthritis Rheumatol 2014; 66(5): 1176-84.
[http://dx.doi.org/10.1002/art.38338] [PMID: 24782181]
[45]
Wang T, Sun X, Zhao J, et al. Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood. Ann Rheum Dis 2015; 74(6): 1293-301.
[http://dx.doi.org/10.1136/annrheumdis-2013-204228] [PMID: 24521740]
[46]
Kobayashi S, Murata K, Shibuya H, et al. A distinct human CD4+ T cell subset that secretes CXCL13 in rheumatoid synovium. Arthritis Rheum 2013; 65(12): 3063-72.
[http://dx.doi.org/10.1002/art.38173] [PMID: 24022618]
[47]
Manzo A, Vitolo B, Humby F, et al. Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint. Arthritis Rheum 2008; 58(11): 3377-87.
[http://dx.doi.org/10.1002/art.23966] [PMID: 18975336]
[48]
Greisen SR, Schelde KK, Rasmussen TK, et al. CXCL13 predicts disease activity in early rheumatoid arthritis and could be an indicator of the therapeutic ‘window of opportunity’. Arthritis Res Ther 2014; 16(5): 434.
[http://dx.doi.org/10.1186/s13075-014-0434-z] [PMID: 25249397]
[49]
Jones JD, Hamilton B, Challener GJ, et al. Serum C-X-C motif chemokine 13 is elevated in early and established rheumatoid arthritis and correlates with rheumatoid factor levels. Arthritis Res Ther 2014; 16(2): R103.
[http://dx.doi.org/10.1186/ar4552] [PMID: 24766912]
[50]
Rosengren S, Wei N, Kalunian KC, Kavanaugh A, Boyle DL. CXCL13: a novel biomarker of B-cell return following rituximab treatment and synovitis in patients with rheumatoid arthritis. Rheumatology 2011; 50(3): 603-10.
[http://dx.doi.org/10.1093/rheumatology/keq337] [PMID: 21098574]
[51]
Greisen SR, Mikkelsen C, Hetland ML, et al. CXCL13 predicts long term radiographic status in early rheumatoid arthritis. Rheumatology 2021; 61(6): 2590-5.
[52]
Kloetzel PM. Antigen processing by the proteasome. Nat Rev Mol Cell Biol 2001; 2(3): 179-88.
[http://dx.doi.org/10.1038/35056572] [PMID: 11265247]
[53]
Vigneron N, Abi Habib J, Van den Eynde BJ. Learning from the proteasome how to fine-tune cancer immunotherapy. Trends Cancer 2017; 3(10): 726-41.
[http://dx.doi.org/10.1016/j.trecan.2017.07.007] [PMID: 28958390]
[54]
Yu L, Li Q, Lin J, et al. Association between polymorphisms of PSMB8, PSMB9 and TAP2 genes with rheumatoid arthritis in ethnic Han Chinese from Yunnan. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 2013; 30(2): 222-6.
[PMID: 23568741]
[55]
Cheng Q, Chen X, Wu H, Du Y. Three hematologic/immune system-specific expressed genes are considered as the potential biomarkers for the diagnosis of early rheumatoid arthritis through bioinformatics analysis. J Transl Med 2021; 19(1): 18.
[http://dx.doi.org/10.1186/s12967-020-02689-y] [PMID: 33407587]
[56]
Xu J, Zhang MY, Jiao W, et al. Identification of candidate genes related to synovial macrophages in rheumatoid arthritis by bioinformatics analysis. Int J Gen Med 2021; 14: 7687-97.
[http://dx.doi.org/10.2147/IJGM.S333512] [PMID: 34764682]
[57]
Li Z, Fu J, Cao Y, et al. Drug discovery in rheumatoid arthritis with joint effusion identified by text mining and biomedical databases. Ann Palliat Med 2021; 10(5): 5218-30.
[http://dx.doi.org/10.21037/apm-20-2631b] [PMID: 33977746]
[58]
Elhawary NA, Bogari N, Jiffri EH, Rashad M, Fatani A, Tayeb M. Transporter TAP1-637G and immunoproteasome PSMB9-60H variants influence the risk of developing vitiligo in the Saudi population. Dis Markers 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/260732] [PMID: 25548428]
[59]
Nakamura K, Jinnin M, Kudo H, et al. The role of PSMB9 upregulated by interferon signature in the pathophysiology of cutaneous lesions of dermatomyositis and systemic lupus erythematosus. Br J Dermatol 2016; 174(5): 1030-41.
[http://dx.doi.org/10.1111/bjd.14385] [PMID: 26713607]
[60]
Sun C, Jia G, Wang X, Wang Y, Liu Y. Immunoproteasome is up-regulated in rotenone-induced Parkinson’s disease rat model. Neurosci Lett 2020; 738135360.
[http://dx.doi.org/10.1016/j.neulet.2020.135360] [PMID: 32905834]
[61]
Kalaora S, Lee JS, Barnea E, et al. Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat Commun 2020; 11(1): 896.
[http://dx.doi.org/10.1038/s41467-020-14639-9] [PMID: 32060274]
[62]
Shoji T, Kikuchi E, Kikuchi J, et al. Evaluating the immunoproteasome as a potential therapeutic target in cisplatin-resistant small cell and non-small cell lung cancer. Cancer Chemother Pharmacol 2020; 85(5): 843-53.
[http://dx.doi.org/10.1007/s00280-020-04061-9] [PMID: 32232513]
[63]
Thompson JC, Davis C, Deshpande C, et al. Gene signature of antigen processing and presentation machinery predicts response to checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma. J Immunother Cancer 2020; 8(2): e000974.
[http://dx.doi.org/10.1136/jitc-2020-000974] [PMID: 33028693]
[64]
Chen YJ, Chang WA, Hsu YL, Chen CH, Kuo PL. Deduction of novel genes potentially involved in osteoblasts of rheumatoid arthritis using next-generation sequencing and bioinformatic approaches. Int J Mol Sci 2017; 18(11): 2396.
[http://dx.doi.org/10.3390/ijms18112396] [PMID: 29137139]
[65]
Singh P, Wang M, Mukherjee P, et al. Transcriptomic and epigenomic analyses uncovered Lrrc15 as a contributing factor to cartilage damage in osteoarthritis. Sci Rep 2021; 11(1): 21107.
[http://dx.doi.org/10.1038/s41598-021-00269-8] [PMID: 34702854]
[66]
Ross EA, Devitt A, Johnson JR. Macrophages: The good, the bad, and the gluttony. Front Immunol 2021; 12: 708186.
[http://dx.doi.org/10.3389/fimmu.2021.708186] [PMID: 34456917]
[67]
Klimatcheva E, Pandina T, Reilly C, et al. CXCL13 antibody for the treatment of autoimmune disorders. BMC Immunol 2015; 16(1): 6.
[http://dx.doi.org/10.1186/s12865-015-0068-1] [PMID: 25879435]
[68]
Quero L, Tiaden AN, Hanser E, et al. miR-221-3p Drives the Shift of M2-Macrophages to a Pro-Inflammatory Function by Suppressing JAK3/STAT3 Activation. Front Immunol 2020; 10: 3087.
[http://dx.doi.org/10.3389/fimmu.2019.03087] [PMID: 32047494]
[69]
Lu J, Wu J, Xia X, Peng H, Wang S. Follicular helper T cells: Potential therapeutic targets in rheumatoid arthritis. Cell Mol Life Sci 2021; 78(12): 5095-106.
[http://dx.doi.org/10.1007/s00018-021-03839-1] [PMID: 33880615]
[70]
Komatsu N, Win S, Yan M, et al. Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Invest 2021; 131(10): e150274.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy