Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Review Article

The Role of RNA m6A Modification in Cancer Glycolytic Reprogramming

Author(s): Yuanqi Li, Hao Huang, Shaoxian Wu, You Zhou*, Tao Huang* and Jingting Jiang*

Volume 23, Issue 1, 2023

Published on: 16 September, 2022

Page: [51 - 59] Pages: 9

DOI: 10.2174/1566523222666220830150446

Price: $65

Abstract

As one of the main characteristics of neoplasia, metabolic reprogramming provides nutrition and energy to enhance cell proliferation and maintain environment homeostasis. Glycolysis is one of the most important components of cancer metabolism and the Warburg effect contributes to the competitive advantages of cancer cells in the threatened microenvironment. Studies show strong links between N6-methyladenosine (m6A) modification and metabolic recombination of cancer cells. As the most abundant modification in eukaryotic RNA, m6A methylation plays important roles in regulating RNA processing, including splicing, stability, transportation, translation and degradation. The aberration of m6A modification can be observed in a variety of diseases such as diabetes, neurological diseases and cancers. This review describes the mechanisms of m6A on cancer glycolysis and their applications in cancer therapy and prognosis evaluation, aiming to emphasize the importance of targeting m6A in modulating cancer metabolism.

Keywords: N6-methyladenosine, glycolysis, RNA modification, cancer, GLUT.

Graphical Abstract

[1]
Elia I, Haigis MC. Metabolites and the tumour microenvironment: From cellular mechanisms to systemic metabolism. Nat Metab 2021; 3(1): 21-32.
[http://dx.doi.org/10.1038/s42255-020-00317-z]
[2]
Xia L, Oyang L, Lin J, et al. The cancer metabolic reprogramming and immune response. Mol Cancer 2021; 20(1): 28.
[http://dx.doi.org/10.1186/s12943-021-01316-8]
[3]
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell 2008; 134(5): 703-7.
[http://dx.doi.org/10.1016/j.cell.2008.08.021]
[4]
Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11(5): 325-37.
[http://dx.doi.org/10.1038/nrc3038]
[5]
Lunt SY, Vander Heiden MG. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27(1): 441-64.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154237]
[6]
Nolt B, Tu F, Wang X, et al. Lactate and immunosuppression in sepsis. Shock 2018; 49(2): 120-5.
[http://dx.doi.org/10.1097/SHK.0000000000000958]
[7]
Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med 2013; 34(2-3): 121-38.
[http://dx.doi.org/10.1016/j.mam.2012.07.001]
[8]
Adekola K, Rosen ST, Shanmugam M. Glucose transporters in cancer metabolism. Curr Opin Oncol 2012; 24(6): 650-4.
[http://dx.doi.org/10.1097/CCO.0b013e328356da72]
[9]
Massari F, Ciccarese C, Santoni M, et al. Metabolic phenotype of bladder cancer. Cancer Treat Rev 2016; 45: 46-57.
[http://dx.doi.org/10.1016/j.ctrv.2016.03.005]
[10]
Feng J, Li J, Wu L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res 2020; 39(1): 126.
[http://dx.doi.org/10.1186/s13046-020-01629-4]
[11]
Tang Z, Xu Z, Zhu X, Zhang J. New insights into molecules and pathways of cancer metabolism and therapeutic implications. Cancer Commun (Lond) 2021; 41(1): 16-36.
[http://dx.doi.org/10.1002/cac2.12112]
[12]
Luengo A, Gui DY, Vander Heiden MG. Targeting metabolism for cancer therapy. Cell Chem Biol 2017; 24(9): 1161-80.
[http://dx.doi.org/10.1016/j.chembiol.2017.08.028]
[13]
Wu K-H, Ho C-T, Chen Z-F, et al. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. Yao Wu Shi Pin Fen Xi 2018; 26(1): 221-31.
[14]
Maher JC, Krishan A, Lampidis TJ. Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-d-glucose in tumor cells treated under hypoxic vs. aerobic conditions. Cancer Chemother Pharmacol 2004; 53(2): 116-22.
[http://dx.doi.org/10.1007/s00280-003-0724-7]
[15]
Zhou Y, Yi X, Stoffer JNB, et al. The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res 2008; 6(8): 1375-84.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-2170]
[16]
Spoden GA, Mazurek S, Morandell D, et al. Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int J Cancer 2008; 123(2): 312-21.
[http://dx.doi.org/10.1002/ijc.23512]
[17]
Pietro B, Machnicka MA, Purta E, et al. MODOMICS: A database of RNA modification pathways. 2017 update. Nucleic Acids Res 2017; 46(D1): D303-7.
[18]
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 1974; 71(10): 3971-5.
[http://dx.doi.org/10.1073/pnas.71.10.3971]
[19]
Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S, Liu T. The critical role of RNA m6A methylation in cancer. Cancer Res 2019; 79(7): 1285-92.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2965]
[20]
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 2012; 149(7): 1635-46.
[http://dx.doi.org/10.1016/j.cell.2012.05.003]
[21]
Bedi RK, Huang D, Eberle SA, Wiedmer L, Śledź P, Caflisch A. Small‐molecule inhibitors of METTL3, the major human epitranscriptomic writer. ChemMedChem 2020; 15(9): 744-8.
[http://dx.doi.org/10.1002/cmdc.202000011]
[22]
He L, Li H, Wu A, Peng Y, Shu G, Yin G. Functions of N6-methyladenosine and its role in cancer. Mol Cancer 2019; 18(1): 176.
[http://dx.doi.org/10.1186/s12943-019-1109-9]
[23]
Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 2019; 20(10): 608-24.
[http://dx.doi.org/10.1038/s41580-019-0168-5]
[24]
Tang C, Klukovich R, Peng H, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3′-UTR mRNAs in male germ cells. Proc Natl Acad Sci USA 2018; 115(2): E325-e333.
[http://dx.doi.org/10.1073/pnas.1717794115]
[25]
Song P, Feng L, Li J, et al. β-catenin represses miR455-3p to stimulate m6A modification of HSF1 mRNA and promote its translation in colorectal cancer. Mol Cancer 2020; 19(1): 129.
[http://dx.doi.org/10.1186/s12943-020-01244-z]
[26]
Shi H, Wang X, Lu Z, et al. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res 2017; 27(3): 315-28.
[http://dx.doi.org/10.1038/cr.2017.15]
[27]
He Y, Hu H, Wang Y, et al. ALKBH5 inhibits pancreatic cancer motility by decreasing long non-coding RNA KCNK15-AS1 methylation. Cell Physiol Biochem 2018; 48(2): 838-46.
[http://dx.doi.org/10.1159/000491915]
[28]
Zhuang C, Zhuang C, Luo X, et al. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J Cell Mol Med 2019; 23(3): 2163-73.
[http://dx.doi.org/10.1111/jcmm.14128]
[29]
Cai X, Wang X, Cao C, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett 2018; 415: 11-9.
[http://dx.doi.org/10.1016/j.canlet.2017.11.018]
[30]
Choe J, Lin S, Zhang W, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 2018; 561(7724): 556-60.
[http://dx.doi.org/10.1038/s41586-018-0538-8]
[31]
Huang H, Weng H, Chen J. m6A modification in coding and non-coding RNAs: Roles and therapeutic implications in cancer. Cancer Cell 2020; 37(3): 270-88.
[http://dx.doi.org/10.1016/j.ccell.2020.02.004]
[32]
De Jesus DF, Zhang Z, Kahraman S, et al. m6A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nat Metab 2019; 1(8): 765-74.
[http://dx.doi.org/10.1038/s42255-019-0089-9]
[33]
Gu C, Shi X, Dai C, et al. RNA m6A modification in cancers: Molecular mechanisms and potential clinical applications. Innovation 2020; 1(3): 100066.
[34]
Shen C, Xuan B, Yan T, et al. m6A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer 2020; 19(1): 72.
[http://dx.doi.org/10.1186/s12943-020-01190-w]
[35]
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med 2020; 52(3): 400-8.
[http://dx.doi.org/10.1038/s12276-020-0407-z]
[36]
Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener 2019; 14(1): 2.
[http://dx.doi.org/10.1186/s13024-019-0305-9]
[37]
Wang Q, Guo X, Li L, et al. N6-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis 2020; 11(10): 911.
[http://dx.doi.org/10.1038/s41419-020-03071-y]
[38]
Hou Y, Zhang Q, Pang W, et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ 2021; 28(11): 3105-24.
[http://dx.doi.org/10.1038/s41418-021-00804-0]
[39]
Wang Q, Chen C, Ding Q, et al. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut 2020; 69(7): 1193-205.
[http://dx.doi.org/10.1136/gutjnl-2019-319639]
[40]
Yang KM, Kim K. Protein kinase CK2 modulation of pyruvate kinase M isoforms augments the Warburg effect in cancer cells. J Cell Biochem 2018; 119(10): 8501-10.
[http://dx.doi.org/10.1002/jcb.27078]
[41]
Im DK, Cheong H, Lee JS, Oh M-K, Yang KM. Protein kinase CK2-dependent aerobic glycolysis-induced lactate dehydrogenase A enhances the migration and invasion of cancer cells. Sci Rep 2019; 9(1): 5337.
[http://dx.doi.org/10.1038/s41598-019-41852-4]
[42]
Yu H, Yang X, Tang J, et al. ALKBH5 inhibited cell proliferation and sensitized bladder cancer cells to cisplatin by m6A-CK2α-mediated glycolysis. Mol Ther Nucleic Acids 2021; 23: 27-41.
[http://dx.doi.org/10.1016/j.omtn.2020.10.031]
[43]
Du L, Li Y, Kang M, et al. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization. Cancer Res 2021; 81(14): 3822-34.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-4163]
[44]
Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST. Mol Cancer 2020; 19(1): 46.
[http://dx.doi.org/10.1186/s12943-020-1146-4]
[45]
Ni W, Yao S, Zhou Y, et al. Long noncoding RNA GAS5 inhibits progression of colorectal cancer by interacting with and triggering YAP phosphorylation and degradation and is negatively regulated by the m6A reader YTHDF3. Mol Cancer 2019; 18(1): 143.
[http://dx.doi.org/10.1186/s12943-019-1079-y]
[46]
Wen S, Wei Y, Zen C, Xiong W, Niu Y, Zhao Y. Long non-coding RNA NEAT1 promotes bone metastasis of prostate cancer through N6-methyladenosine. Mol Cancer 2020; 19(1): 171.
[http://dx.doi.org/10.1186/s12943-020-01293-4]
[47]
Lu S, Han L, Hu X, et al. N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: Implication in colorectal cancer. J Hematol Oncol 2021; 14(1): 188.
[http://dx.doi.org/10.1186/s13045-021-01204-0]
[48]
Xue L, Li J, Lin Y, et al. m6A transferase METTL3‐induced lncRNA ABHD11‐AS1 promotes the Warburg effect of non‐small‐cell lung cancer. J Cell Physiol 2021; 236(4): 2649-58.
[http://dx.doi.org/10.1002/jcp.30023]
[49]
Jia G, Wang Y, Lin C, et al. LNCAROD enhances hepatocellular carcinoma malignancy by activating glycolysis through induction of pyruvate kinase isoform PKM2. J Exp Clin Cancer Res 2021; 40(1): 299.
[http://dx.doi.org/10.1186/s13046-021-02090-7]
[50]
Pan J, Fang S, Tian H, et al. LncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer 2020; 19(1): 9.
[http://dx.doi.org/10.1186/s12943-020-1133-9]
[51]
Xing Y, Wen X, Ding X, et al. CANT1 lncRNA triggers efficient therapeutic efficacy by correcting aberrant lncing cascade in malignant uveal melanoma. Mol Ther 2017; 25(5): 1209-21.
[http://dx.doi.org/10.1016/j.ymthe.2017.02.016]
[52]
Li XD, Wang MJ, Zheng JL, Wu YH, Wang X, Jiang XB. Long noncoding RNA just proximal to X‐inactive specific transcript facilitates aerobic glycolysis and temozolomide chemoresistance by promoting stability of PDK1 mRNA in an m6A‐dependent manner in glioblastoma multiforme cells. Cancer Sci 2021; 112(11): 4543-52.
[http://dx.doi.org/10.1111/cas.15072]
[53]
Li Z, Peng Y, Li J, et al. N6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun 2020; 11(1): 2578.
[http://dx.doi.org/10.1038/s41467-020-16306-5]
[54]
Yang X, Shao F, Guo D, et al. WNT/β-catenin-suppressed FTO expression increases m6A of c-Myc mRNA to promote tumor cell glycolysis and tumorigenesis. Cell Death Dis 2021; 12(5): 462.
[http://dx.doi.org/10.1038/s41419-021-03739-z]
[55]
Ma L, Xue X, Zhang X, et al. The essential roles of m6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res 2022; 41(1): 36.
[http://dx.doi.org/10.1186/s13046-021-02200-5]
[56]
Newman AC, Maddocks ODK. One-carbon metabolism in cancer. Br J Cancer 2017; 116(12): 1499-504.
[http://dx.doi.org/10.1038/bjc.2017.118]
[57]
Nishimura T, Nakata A, Chen X, et al. Cancer stem-like properties and gefitinib resistance are dependent on purine synthetic metabolism mediated by the mitochondrial enzyme MTHFD2. Oncogene 2019; 38(14): 2464-81.
[http://dx.doi.org/10.1038/s41388-018-0589-1]
[58]
Green NH, Galvan DL, Badal SS, et al. MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene 2019; 38(34): 6211-25.
[http://dx.doi.org/10.1038/s41388-019-0869-4]
[59]
Wang W, Shao F, Yang X, et al. METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding. Nat Commun 2021; 12(1): 3803.
[http://dx.doi.org/10.1038/s41467-021-23501-5]
[60]
Du H, Zhao Y, He J, et al. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4–NOT deadenylase complex. Nat Commun 2016; 7(1): 12626.
[http://dx.doi.org/10.1038/ncomms12626]
[61]
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 2014; 505(7481): 117-20.
[http://dx.doi.org/10.1038/nature12730]
[62]
Liu Y, Liang G, Xu H, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab 2021; 33(6): 1221-1233.e11.
[http://dx.doi.org/10.1016/j.cmet.2021.04.001]
[63]
Han J, Wang J, Yang X, et al. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer 2019; 18(1): 110.
[http://dx.doi.org/10.1186/s12943-019-1036-9]
[64]
Du C, Lv C, Feng Y, Yu S. Activation of the KDM5A/miRNA-495/YTHDF2/m6A-MOB3B axis facilitates prostate cancer progression. J Exp Clin Cancer Res 2020; 39(1): 223.
[http://dx.doi.org/10.1186/s13046-020-01735-3]
[65]
Han X, Guo J, Fan Z. Interactions between m6A modification and miRNAs in malignant tumors. Cell Death Dis 2021; 12(6): 598.
[http://dx.doi.org/10.1038/s41419-021-03868-5]
[66]
Yi YC, Chen X-Y, Zhang J, Zhu J-S. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer. Mol Cancer 2020; 19(1): 121.
[http://dx.doi.org/10.1186/s12943-020-01233-2]
[67]
Liu XS, Liu J-M, Chen Y-J, et al. Comprehensive analysis of hexokinase 2 immune infiltrates and m6a related genes in human esophageal carcinoma. Front Cell Dev Biol 2021; 9: 715883.
[http://dx.doi.org/10.3389/fcell.2021.715883]
[68]
Liu XS, Gao Y, Wu L-B, et al. Comprehensive analysis of GLUT1 immune infiltrates and ceRNA network in human esophageal carcinoma. Front Oncol 2021; 11: 665388.
[http://dx.doi.org/10.3389/fonc.2021.665388]
[69]
Liu XS, Zhou L-M, Yuan L-L, et al. NPM1 is a prognostic biomarker involved in immune infiltration of lung adenocarcinoma and associated with m6A modification and glycolysis. Front Immunol 2021; 12: 724741.
[http://dx.doi.org/10.3389/fimmu.2021.724741]
[70]
Xiao Q, Lei L, Ren J, et al. Mutant NPM1-regulated FTO-mediated m6A demethylation promotes leukemic cell survival via PDGFRB/ERK signaling axis. Front Oncol 2022; 12: 817584.
[http://dx.doi.org/10.3389/fonc.2022.817584]
[71]
Buller CL, Heilig CW, Brosius FC III. GLUT1 enhances mTOR activity independently of TSC2 and AMPK. Am J Physiol Renal Physiol 2011; 301(3): F588-96.
[http://dx.doi.org/10.1152/ajprenal.00472.2010]
[72]
Villa E, Sahu U, O’Hara BP, et al. mTORC1 stimulates cell growth through SAM synthesis and m6A mRNA-dependent control of protein synthesis. Mol Cell 2021; 81(10): 2076-2093.e9.
[http://dx.doi.org/10.1016/j.molcel.2021.03.009]
[73]
Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 2022; 82(9): 1660-1677.e10.
[http://dx.doi.org/10.1016/j.molcel.2022.02.033]
[74]
Fry NJ, Law BA, Ilkayeva OR, Holley CL, Mansfield KD. N6 -methyladenosine is required for the hypoxic stabilization of specific mRNAs. RNA 2017; 23(9): 1444-55.
[http://dx.doi.org/10.1261/rna.061044.117]
[75]
Chan DA, Sutphin PD, Nguyen P, et al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 2011; 3(94): 94ra70.
[http://dx.doi.org/10.1126/scitranslmed.3002394]
[76]
Le A, Cooper CR, Gouw AM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci USA 2010; 107(5): 2037-42.
[http://dx.doi.org/10.1073/pnas.0914433107]
[77]
Zhou Y, Wang Q, Deng H, et al. N6-methyladenosine demethylase FTO promotes growth and metastasis of gastric cancer via m6A modification of caveolin-1 and metabolic regulation of mitochondrial dynamics. Cell Death Dis 2022; 13(1): 72.
[http://dx.doi.org/10.1038/s41419-022-04503-7]
[78]
Abdel-Wahab AF, Mahmoud W, Al-Harizy RM. Targeting glucose metabolism to suppress cancer progression: Prospective of anti-glycolytic cancer therapy. Pharmacol Res 2019; 150: 104511.
[http://dx.doi.org/10.1016/j.phrs.2019.104511]
[79]
Chen H, Gao S, Liu W, et al. RNA N6-methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m6A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology 2021; 160(4): 1284-1300.e16.
[http://dx.doi.org/10.1053/j.gastro.2020.11.013]
[80]
Yang N, Wang T, Li Q, et al. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3‐mediated m6A modification of HIF‐1α. J Cell Physiol 2021; 236(5): 3863-80.
[http://dx.doi.org/10.1002/jcp.30128]
[81]
Yu H, Zhao K, Zeng H, et al. N6-methyladenosine (m6A) methyltransferase WTAP accelerates the Warburg effect of gastric cancer through regulating HK2 stability. Biomed Pharmacother 2021; 133: 111075.
[http://dx.doi.org/10.1016/j.biopha.2020.111075]
[82]
Hu C, Liu T, Han C, et al. HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m6A-MYC expression. Int J Biol Sci 2022; 18(2): 507-21.
[http://dx.doi.org/10.7150/ijbs.67770]
[83]
Liu H, Qin S, Liu C, et al. m6A reader IGF2BP2-stabilized CASC9 accelerates glioblastoma aerobic glycolysis by enhancing HK2 mRNA stability. Cell Death Discov 2021; 7(1): 292.
[http://dx.doi.org/10.1038/s41420-021-00674-y]
[84]
Ding Y, Qi N, Wang K, et al. FTO facilitates lung adenocarcinoma cell progression by activating cell migration through mRNA demethylation. OncoTargets Ther 2020; 13: 1461-70.
[http://dx.doi.org/10.2147/OTT.S231914]
[85]
Qing Y, Dong L, Gao L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB axis. Mol Cell 2021; 81(5): 922-39.
[86]
Peng S, Xiao W, Ju D, et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci Transl Med 2019; 11(488): eaau7116.
[http://dx.doi.org/10.1126/scitranslmed.aau7116]
[87]
Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc 2012; 134(43): 17963-71.
[http://dx.doi.org/10.1021/ja3064149]
[88]
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res 2015; 43(1): 373-84.
[http://dx.doi.org/10.1093/nar/gku1276]
[89]
Aik W, Demetriades M, Hamdan MKK, et al. Structural basis for inhibition of the fat mass and obesity associated protein (FTO). J Med Chem 2013; 56(9): 3680-8.
[http://dx.doi.org/10.1021/jm400193d]
[90]
Chen YY, Xu GB. Effect of circulating tumor cells combined with negative enrichment and CD45-FISH identification in diagnosis, therapy monitoring and prognosis of primary lung cancer. Med Oncol 2014; 31(12): 240.
[http://dx.doi.org/10.1007/s12032-014-0240-0]
[91]
Huang J, Sun W, Wang Z, et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J Exp Clin Cancer Res 2022; 41(1): 42.
[http://dx.doi.org/10.1186/s13046-022-02254-z]
[92]
Ding C, Yi X, Chen X, et al. Warburg effect-promoted exosomal circ_0072083 releasing up-regulates NANGO expression through multiple pathways and enhances temozolomide resistance in glioma. J Exp Clin Cancer Res 2021; 40(1): 164.
[http://dx.doi.org/10.1186/s13046-021-01942-6]
[93]
Visvanathan A, Patil V, Arora A, et al. Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 2018; 37(4): 522-33.
[http://dx.doi.org/10.1038/onc.2017.351]
[94]
Sun W, Shi Q, Zhang H, et al. Advances in the techniques and methodologies of cancer gene therapy. Discov Med 2019; 27(146): 45-55.
[95]
Zeng X, Li Z, Zhu C, Xu L, Sun Y, Han S. Research progress of nanocarriers for gene therapy targeting abnormal glucose and lipid metabolism in tumors. Drug Deliv 2021; 28(1): 2329-47.
[http://dx.doi.org/10.1080/10717544.2021.1995081]
[96]
Chang SH, Chung Y-S, Hwang S-K, et al. Lentiviral vector-mediated shRNA against AIMP2-DX2 suppresses lung cancer cell growth through blocking glucose uptake. Mol Cells 2012; 33(6): 553-62.
[http://dx.doi.org/10.1007/s10059-012-2269-2]
[97]
Gu D, Jiang M, Mei Z, et al. microRNA-7 impairs autophagy-derived pools of glucose to suppress pancreatic cancer progression. Cancer Lett 2017; 400: 69-78.
[http://dx.doi.org/10.1016/j.canlet.2017.04.020]
[98]
Belli F, Testori A, Rivoltini L, et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: Clinical and immunologic findings. J Clin Oncol 2002; 20(20): 4169-80.
[http://dx.doi.org/10.1200/JCO.2002.09.134]
[99]
Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: A pilot study. Int J Cancer 2000; 88(2): 232-8.
[http://dx.doi.org/10.1002/1097-0215(20001015)88:2<232::AID-IJC14>3.0.CO;2-8]
[100]
Liu S, Wang H, Yang Z, et al. Enhancement of cancer radiation therapy by use of adenovirus-mediated secretable glucose-regulated protein 94/gp96 expression. Cancer Res 2005; 65(20): 9126-31.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0945]
[101]
Zhang H, Wang S, Huang T. Identification of chronic hypersensitivity pneumonitis biomarkers with machine learning and differential co-expression analysis. Curr Gene Ther 2021; 21(4): 299-303.
[http://dx.doi.org/10.2174/1566523220666201208093325]
[102]
Martinez M, Moon EK. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front Immunol 2019; 10: 128.
[http://dx.doi.org/10.3389/fimmu.2019.00128]
[103]
Renner K, Singer K, Koehl GE, et al. Metabolic hallmarks of tumor and immune cells in the tumor microenvironment. Front Immunol 2017; 8: 248.
[http://dx.doi.org/10.3389/fimmu.2017.00248]
[104]
McLellan AD, Ali Hosseini Rad SM. Chimeric antigen receptor T cell persistence and memory cell formation. Immunol Cell Biol 2019; 97(7): 664-74.
[http://dx.doi.org/10.1111/imcb.12254]
[105]
Juillerat A, Marechal A, Filhol JM, et al. An oxygen sensitive self-decision making engineered CAR T-cell. Sci Rep 2017; 7(1): 39833.
[http://dx.doi.org/10.1038/srep39833]
[106]
Cui J, Zhang Q, Song Q, et al. Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro-oncol 2019; 21(11): 1436-46.
[http://dx.doi.org/10.1093/neuonc/noz117]
[107]
Kawalekar OU, O’Connor RS, Fraietta JA, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in cAR T cells. Immunity 2016; 44(2): 380-90.
[http://dx.doi.org/10.1016/j.immuni.2016.01.021]
[108]
Liu J, Zhang X, Chen K, et al. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 2019; 50(3): 600-615.e15.
[http://dx.doi.org/10.1016/j.immuni.2019.01.021]
[109]
Zhao Z, Meng J, Su R, et al. Epitranscriptomics in liver disease: Basic concepts and therapeutic potential. J Hepatol 2020; 73(3): 664-79.
[http://dx.doi.org/10.1016/j.jhep.2020.04.009]
[110]
Elkashef SM, Lin A-P, Myers J, et al. IDH mutation, competitive inhibition of FTO, and RNA methylation. Cancer Cell 2017; 31(5): 619-20.
[http://dx.doi.org/10.1016/j.ccell.2017.04.001]
[111]
Lan Q, Liu PY, Bell JL, et al. The emerging roles of RNA m6A methylation and demethylation as critical regulators of tumorigenesis, drug sensitivity, and resistance. Cancer Res 2021; 81(13): 3431-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-4107]
[112]
Xiao W, Adhikari S, Dahal U, et al. Nuclear m 6 A reader YTHDC1 regulates mRNA splicing. Mol Cell 2016; 61(4): 507-19.
[http://dx.doi.org/10.1016/j.molcel.2016.01.012]
[113]
Roundtree IA, Luo G-Z, Zhang Z, et al. YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. eLife 2017; 6: e31311.
[114]
Wang X, Zhao BS, Roundtree IA, et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015; 161(6): 1388-99.
[http://dx.doi.org/10.1016/j.cell.2015.05.014]
[115]
Alarcón CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 2015; 162(6): 1299-308.
[http://dx.doi.org/10.1016/j.cell.2015.08.011]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy