Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Carbon Nanotube – Synthesis, Purification and Biomedical Applications

Author(s): Sudhanshu Mishra, Sonali Kumari, Ayush Chandra Mishra, Ratnesh Chaubey and Smriti Ojha*

Volume 8, Issue 4, 2023

Published on: 12 September, 2022

Page: [328 - 335] Pages: 8

DOI: 10.2174/2405461507666220827092425

Price: $65

Abstract

Carbon Nanotubes (CNTs) are a relatively new class of technical materials with a variety of unique and beneficial features. CNT is a revolutionary carrier technology for both tiny and big medicinal compounds. These formulations can be surface engineered and functionalized with predefined functional groups to control their physical and biological characteristics. CNTs have proven potential for cancer therapy along with other target-oriented therapy due to their unique features, such as ease of cell viability, high drug stacking, thermal ablation, and exceptional intrinsic physical and chemical characteristics. Graphite with Sp2 bonded carbon atoms is used for the synthesis of CNT. CNTs are fabricated in a variety of ways, including arc discharge, laser ablation, chemical vapor deposition, flame synthesis, and silane solution. The present review summarises methods of preparation, types, and various applications of CNT.

Keywords: Carbon, nanotubes, nanomedicine, graphite, single-walled carbon nanotubes, multi-walled carbon nanotubes.

Graphical Abstract

[1]
Farokhzad O, Langer R. Nanomedicine: Developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006; 58(14): 1456-9.
[http://dx.doi.org/10.1016/j.addr.2006.09.011] [PMID: 17070960]
[2]
Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotubes as nanomedicines: From toxicology to pharmacology. Adv Drug Deliv Rev 2006; 58(14): 1460-70.
[http://dx.doi.org/10.1016/j.addr.2006.09.015] [PMID: 17113677]
[3]
Ojha S, Kumar B. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. J Cell Immunotherapy 2018; 4(2): 56-64.
[http://dx.doi.org/10.1016/j.jocit.2017.12.001]
[4]
Ojha S, Kumar B. Preparation and statistical modeling of solid lipid nanoparticles of dimethyl fumarate for better management of multiple sclerosis. Adv Pharm Bull 2018; 8(2): 225-33.
[http://dx.doi.org/10.15171/apb.2018.027] [PMID: 30023324]
[5]
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[http://dx.doi.org/10.7508/IBJ.2016.01.001] [PMID: 26286636]
[6]
Jong WH, Borm PJA. Drug delivery and nanoparticles: Applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[7]
Rahman G, Najaf Z, Mehmood A, Bilal S, Shah A. An overview of the recent progress in the synthesis and applications of carbon nanotubes. J Carbon Res 2019; 5(1): 3.
[http://dx.doi.org/10.3390/c5010003]
[8]
Cirillo G, Hampel S, Spizzirri UG, Parisi OI, Picci N, Iemma F. Carbon nanotubes hybrid hydrogels in drug delivery: A perspective review. Biomed Res Int 2014; 2014: 1-17.
[http://dx.doi.org/10.1155/2014/825017] [PMID: 24587993]
[9]
Hughes GA. Nanostructure mediated drug delivery. Nanomedicine 2005; 1(1): 22-30.
[http://dx.doi.org/10.1016/j.nano.2004.11.009] [PMID: 17292054]
[10]
Servant A, Jacobs I, Bussy C, et al. Gadolinium functionalised multi walled carbon nanotubes as a T 1 contrast agent for MRI cell labelling and tracking. Carbon 2016; 97: 126-33.
[http://dx.doi.org/10.1016/j.carbon.2015.08.051]
[11]
Briley SKC, Mulder WJM, Mani V, et al. Magnetic resonance imaging of vulnerable atherosclerotic plaques: Current imaging strategies and molecular imaging probes. J Magn Reson Imaging 2007; 26(3): 460-79.
[http://dx.doi.org/10.1002/jmri.20989] [PMID: 17729343]
[12]
Tang L, Xiao Q, Mei Y, et al. Insights on functionalized carbon nanotubes for cancer theranostics. J Nanobiotechnol 2021; 19(1): 423.
[http://dx.doi.org/10.1186/s12951-021-01174-y] [PMID: 34915901]
[13]
Iijima S, Ichihashi T. Single shell carbon nanotubes of 1 nm diameter. Nature 1993; 363(6430): 603-5.
[http://dx.doi.org/10.1038/363603a0]
[14]
Vander WRL, Berger GM, Ticich TM. Carbon nanotube synthesis in a flame using laser ablation for in situ catalyst generation. Appl Phy A 2003; 77(7): 885-9.
[http://dx.doi.org/10.1007/s00339-003-2196-3]
[15]
Hirsch A, Backes C. Carbon nanotube science. synthesis, properties and applications. Von Peter J. F. Harris. Angewandte Chemie 2010; 122(10): 1766-7.
[http://dx.doi.org/10.1002/ange.201000314]
[16]
Rathinavel S, Priyadharshini K, Panda D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 2021; 268: 6375.
[http://dx.doi.org/10.1016/j.mseb.2021.115095]
[17]
Yamaguchi T, Bandow S, Iijima S. Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre heated carbon rods. Chem Phys Lett 2004; 389(1-3): 181-5.
[http://dx.doi.org/10.1016/j.cplett.2004.03.068]
[18]
Holmes A, Deniau E, Lartigau DC, Bousquet A, Chambon S, Holmes NP. Review of waterborne organic semiconductor colloids for photovoltaics. ACS Nano 2021; 15(3): 3927-59.
[http://dx.doi.org/10.1021/acsnano.0c10161] [PMID: 33620200]
[19]
Millstone JE, Kavulak DFJ, Woo CH, et al. Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles. Langmuir 2010; 26(16): 13056-61.
[http://dx.doi.org/10.1021/la1022938] [PMID: 20695542]
[20]
Jyoti J, Basu S, Singh BP, Dhakate SR. Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos, Part B Eng 2015; 83: 58-65.
[http://dx.doi.org/10.1016/j.compositesb.2015.08.055]
[21]
Xu J, Cao Z, Zhang Y, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 2018; 195: 351-64.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.061] [PMID: 29272803]
[22]
Dai L, Sun J. Mechanical Properties of Carbon Nanotubes- Polymer Composites. Carbon Nanotubes - Current Progress of their Polymer Composites [Internet]. 2016 July 20; Available from: http://dx.doi.org/10.5772/62635
[23]
Lu S, Wang X, Meng Z, et al. The mechanical properties, microstructures and mechanism of carbon nanotube reinforced oil well cement based nanocomposites. RSC Advances 2019; 9(46): 26691-702.
[http://dx.doi.org/10.1039/C9RA04723A] [PMID: 35528553]
[24]
Wu CC, Su CC, Yang CF. Preparation, structure and properties of carbon nanotube reinforced polymer nanocomposites. Synth Met 2015; 205: 98-105.
[http://dx.doi.org/10.1016/j.synthmet.2015.03.021]
[25]
Duman O, Özcan C, Gürkan Polat T, Tunç S. Carbon nanotube based magnetic and non magnetic adsorbents for the high efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-κ-carrageenan-Fe3O4 nanocomposites. Environ Pollut 2019; 244: 723-32.
[http://dx.doi.org/10.1016/j.envpol.2018.10.071] [PMID: 30384078]
[26]
Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles 2020; 13(3): 59-81.
[http://dx.doi.org/10.1080/17518253.2020.1802517]
[27]
Sharma VK, McDonald TJ, Kim H, Garg VK. Magnetic graphene–carbon nanotube iron nanocomposites as adsorbents and antibacterial agents for water purification. Adv Colloid Interface Sci 2015; 225: 229-40.
[http://dx.doi.org/10.1016/j.cis.2015.10.006] [PMID: 26498500]
[28]
Hampel S, Leonhardt A, Selbmann D, et al. Growth and characterization of filled carbon nanotubes with ferromagnetic properties. Carbon 2006; 44(11): 2316-22.
[http://dx.doi.org/10.1016/j.carbon.2006.02.015]
[29]
Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chem Rev 2006; 106(3): 1105-36.
[http://dx.doi.org/10.1021/cr050569o] [PMID: 16522018]
[30]
Thostenson ET, Ren Z, Chou TW. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos Sci Technol 2001; 61(13): 1899-912.
[http://dx.doi.org/10.1016/S0266-3538(01)00094-X]
[31]
Leonhardt A, Hampel S, Müller C, et al. Synthesis, properties, and applications of ferromagnetic filled carbon nanotubes. Chem Vap Depos 2006; 12(6): 380-7.
[http://dx.doi.org/10.1002/cvde.200506441]
[32]
Moisala A, Nasibulin AG, Kauppinen EI. The role of metal nanoparticles in the catalytic production of single walled carbon nanotubes—a review. J Phys Condens Matter 2003; 15(42): S3011-35.
[http://dx.doi.org/10.1088/0953-8984/15/42/003]
[33]
Walters DA, Casavant MJ, Qin XC, et al. In plane aligned membranes of carbon nanotubes. Chem Phys Lett 2001; 338(1): 14-20.
[http://dx.doi.org/10.1016/S0009-2614(01)00072-0]
[34]
Jahanshahi M, Kiadehi AD. Fabrication, purification and characterization of carbon nanotubes: Arc-discharge in liquid media (ADLM). In: Suzuki S, Ed. Syntheses and Applications of Carbon Nanotubes and Their Composites. London: IntechOpen 2013.
[http://dx.doi.org/10.5772/51116]
[35]
Burgt Y. Laser assisted growth of carbon nanotubes-A review. J Laser Appl 2014; 26(3): 032001.
[http://dx.doi.org/10.2351/1.4869257]
[36]
Manawi Y. Ihsanullah, Samara A, Al-Ansari T, Atieh M. A review of carbon nanomaterials’ synthesis via the Chemical Vapor Deposition (CVD) method. Materials 2018; 11(5): 822.
[http://dx.doi.org/10.3390/ma11050822] [PMID: 29772760]
[37]
Sinnott S B, Andrews R. Carbon nanotubes: Synthesis, properties, and applications. Critic Rev Solid State Mater Sci 2010; 26(3): 145-249.
[http://dx.doi.org/10.1080/20014091104189]
[38]
Ibrahim KS. Carbon nanotubes properties and applications: A review. Carbon Lett 2013; 14(3): 131-44.
[http://dx.doi.org/10.5714/CL.2013.14.3.131]
[39]
Nigar A, Rahil H, Manshi T, Neelam Y, Jagriti N. Carbon nanotube - A review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int 2020; 1: 1.
[40]
Lamberti M, Pedata P, Sannolo N, Porto S, De Rosa A, Caraglia M. Carbon nanotubes: Properties, biomedical applications, advantages and risks in patients and occupationally-exposed workers. Int J Immunopathol Pharmacol 2015; 28(1): 4-13.
[http://dx.doi.org/10.1177/0394632015572559] [PMID: 25816400]
[41]
Jung J, Suh EH, Jeong YJ, Yang HS, Lee T, Jang J. Efficient debundling of few walled carbon nanotubes by wrapping with donor–acceptor polymers for improving thermoelectric properties. ACS Appl Mater Interfaces 2019; 11(50): 47330-9.
[http://dx.doi.org/10.1021/acsami.9b16012] [PMID: 31741375]
[42]
Berlin JM, Leonard AD, Pham TT, et al. Effective drug delivery, in vitro and in vivo, by carbon based nanovectors noncovalently loaded with unmodified paclitaxel. ACS Nano 2010; 4(9): 5512.
[http://dx.doi.org/10.1021/nn1019994]
[43]
Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE. Catalytic growth of single walled manotubes by laser vaporization. Chem Phys Lett 1995; 243(1-2): 49-54.
[http://dx.doi.org/10.1016/0009-2614(95)00825-O]
[44]
Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G. Carbon nanotube purification: Preparation and characterization of carbon nanotube paste electrodes. Anal Chem 2003; 75(20): 5413-21.
[http://dx.doi.org/10.1021/ac0300237] [PMID: 14710820]
[45]
Eatemadi A, Daraee H, Karimkhanloo H, et al. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res Lett 2014; 9(1): 393.
[http://dx.doi.org/10.1186/1556-276X-9-393] [PMID: 25170330]
[46]
Cheng YJ, Luo GF, Zhu JY, et al. Enzyme induced and tumor targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl Mater Interfaces 2015; 7(17): 9078-87.
[http://dx.doi.org/10.1021/acsami.5b00752] [PMID: 25893819]
[47]
Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I. Functionalized single walled carbon nanotubes as rationally designed vehicles for tumor targeted drug delivery. J Am Chem Soc 2008; 130(49): 16778-85.
[http://dx.doi.org/10.1021/ja805570f] [PMID: 19554734]
[48]
Dai C, Zhang S, Liu Z, Wu R, Chen Y. Two dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 2017; 11(9): 9467-80.
[http://dx.doi.org/10.1021/acsnano.7b05215] [PMID: 28829584]
[49]
Bhattacharya K, Mukherjee SP, Gallud A, et al. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine 2016; 12(2): 333-51.
[http://dx.doi.org/10.1016/j.nano.2015.11.011] [PMID: 26707820]
[50]
Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000; 287(5453): 637-40.
[http://dx.doi.org/10.1126/science.287.5453.637] [PMID: 10649994]
[51]
Cheon YA, Bae JH, Chung BG. Reduced graphene oxide nanosheet for chemo-photothermal therapy. Langmuir 2016; 32(11): 2731-6.
[http://dx.doi.org/10.1021/acs.langmuir.6b00315] [PMID: 26930106]
[52]
Harris A, MacKenzie K, Dunens O, See C. Large scale carbon nanotube synthesis. Recent Pat Nanotechnol 2008; 2(1): 25-40.
[http://dx.doi.org/10.2174/187221008783478617] [PMID: 19076041]
[53]
Das M, Singh RP, Datir SR, Jain S. Intranuclear drug delivery and effective in vivo cancer therapy via estradiol-PEG-appended multi-walled carbon nanotubes. Mol Pharm 2013; 10(9): 3404-16.
[http://dx.doi.org/10.1021/mp4002409] [PMID: 23905512]
[54]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[55]
Maiti D, Tong X, Mou X, Yang K. Carbon based nanomaterials for biomedical applications: A recent study. Front Pharmacol 2019; 9: 1401.
[http://dx.doi.org/10.3389/fphar.2018.01401] [PMID: 30914959]
[56]
Chen F, Gao W, Qiu X, et al. Graphene quantum dots in biomedical applications: Recent advances and future challenges. Frontiers Lab Med 2017; 1(4): 192-9.
[http://dx.doi.org/10.1016/j.flm.2017.12.006]
[57]
Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A. Carbon nanotubes in biomedical applications: Factors, mechanisms, and remedies of toxicity. J Med Chem 2016; 59(18): 8149-67.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01770] [PMID: 27142556]
[58]
Aubert JD, Juillerat JL. Endothelin-receptor antagonists beyond pulmonary arterial hypertension: Cancer and fibrosis. J Med Chem 2016; 59(18): 8168-88.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01781] [PMID: 27266371]
[59]
Chadar R, Afzal O, Alqahtani SM, Kesharwani P. Carbon nanotubes as an emerging nanocarrier for the delivery of doxorubicin for improved chemotherapy. Colloids Surf B Biointerfaces 2021; 208: 112044.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112044] [PMID: 34419810]
[60]
Karimi M, Solati N, Ghasemi A, et al. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin Drug Deliv 2015; 12(7): 1089-105.
[http://dx.doi.org/10.1517/17425247.2015.1004309] [PMID: 25613837]
[61]
Han T, Nag A, Afsarimanesh N, Mukhopadhyay SC, Kundu S, Xu Y. Laser assisted printed flexible sensors: A review. Sensors (Basel) 2019; 19(6): 1462.
[http://dx.doi.org/10.3390/s19061462] [PMID: 30934649]
[62]
Liu X, Marangon I, Melinte G, et al. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation. ACS Nano 2014; 8(11): 11290-304.
[http://dx.doi.org/10.1021/nn5040923] [PMID: 25343751]
[63]
Bharath G, Madhu R, Chen SM, et al. Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide. J Mater Chem B Mater Biol Med 2015; 3(7): 1360-70.
[http://dx.doi.org/10.1039/C4TB01651C] [PMID: 32264487]
[64]
Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 2006; 103(9): 3357-62.
[http://dx.doi.org/10.1073/pnas.0509009103] [PMID: 16492781]
[65]
Singh A, Rai SK, Manisha M, Yadav SK. Immobilized L-ribose isomerase for the sustained synthesis of a rare sugar D-talose. Molecular Catalysis 2021; 511: 111723.
[http://dx.doi.org/10.1016/j.mcat.2021.111723]
[66]
Harrison BS, Atala A. Carbon nanotube applications for tissue engineering. Biomaterials 2007; 28(2): 344-53.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.044] [PMID: 16934866]
[67]
Gorain B, Choudhury H, Pandey M, et al. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomed Pharmacother 2018; 104: 496-508.
[http://dx.doi.org/10.1016/j.biopha.2018.05.066] [PMID: 29800914]
[68]
Fotouhi A, Maleki A, Dolati S, Aghebati MA, Aghebati ML. Platelet rich plasma, stromal vascular fraction and autologous conditioned serum in treatment of knee osteoarthritis. Biomed Pharmacother 2018; 104: 652-60.
[http://dx.doi.org/10.1016/j.biopha.2018.05.019] [PMID: 29803179]
[69]
Saha S, Panigrahi DP, Patil S, Bhutia SK. Autophagy in health and disease: A comprehensive review. Biomed Pharmacother 2018; 104: 485-95.
[http://dx.doi.org/10.1016/j.biopha.2018.05.007] [PMID: 29800913]
[70]
He H, Pham HLA, Dramou P, Xiao D, Zuo P, Pham HC. Carbon nanotubes: Applications in pharmacy and medicine. BioMed Res Int 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/578290] [PMID: 24195076]
[71]
Shweta Vishwakarma K. Prasadsahafotou S, et al Plants and carbon nanotubes (CNTs) interface: Present status and future prospects. Nanotech 2017; pp. 317-40.
[http://dx.doi.org/10.1007/978-981-10-4678-0_16]
[72]
Prasad R, Kumar V, Kumar M. Nanotechnology: Food and environmental paradigm. Nanotechnology 2017; 1-344.
[http://dx.doi.org/10.1007/978-981-10-4678-0]
[73]
Current and potential applications of carbon nanotubes - prescouter - custom intelligence from a global network of experts. 2017. Available from: https://www.prescouter.com/2017/03/applications -carbon-nanotubes/ (Accessed on: 2022-05-14).
[74]
Todri SA, Magnani A, de Magistris M, Maffucci A. Present and future prospects of carbon nanotube interconnects for energy efficient integrated circuits. 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. 18-20 Apr, 2016; Montpellier, France.
[http://dx.doi.org/10.1109/EuroSimE.2016.7463379]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy