Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Bioprinting: From Technique to Application in Tissue Engineering and Regenerative Medicine

Author(s): Thaís Vieira de Souza, Luciana Pastena Giorno, Sonia Maria Malmonge and Arnaldo R. Santos Jr.*

Volume 23, Issue 9, 2023

Published on: 05 October, 2022

Page: [934 - 951] Pages: 18

DOI: 10.2174/1566524023666220822152448

Price: $65

Abstract

Among the different approaches present in regenerative medicine and tissue engineering, the one that has attracted the most interest in recent years is the possibility of printing functional biological tissues. Bioprinting is a technique that has been applied to create cellularized three-dimensional structures that mimic biological tissues and thus allow their replacement. Hydrogels are interesting materials for this type of technique. Hydrogels based on natural polymers are known due to their biocompatible properties, in addition to being attractive biomaterials for cell encapsulation. They provide a threedimensional aqueous environment with biologically relevant chemical and physical signals, mimicking the natural environment of the extracellular matrix (ECM). Bioinks are ink formulations that allow the printing of living cells. The controlled deposition of biomaterials by bioinks needs to maintain cell viability and offer specific biochemical and physical stimuli capable of guiding cell migration, proliferation, and differentiation. In this work, we analyze the theoretical and practical issues of bioprinting, citing currently used methods, their advantages, and limitations. We present some important molecules that have been used to compose bioinks, as well as the cellular responses that have been observed in different tissues. Finally, we indicate future perspectives of the method.

Keywords: Biomaterials, regenerative medicine, bioink, additive manufacturing, hydrogels, cell differentiation

[1]
Nascimento MHM, Lombello CB. Hidrogéis a base de ácido hialurônico e quitosana para engenharia de tecido cartilaginoso. Polímeros 2016; 26(04): 360-70.
[http://dx.doi.org/10.1590/0104-1428.1987]
[2]
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.
[http://dx.doi.org/10.1126/science.8493529] [PMID: 8493529]
[3]
Santos AR Jr, Lombello CB, Genari S. Technologies applied to stimulate bone regeneration. In: Tissue Regeneration-From Basic Biology to Clinical Application. Rijeka: InTech 2012; pp. 339-66. Available from: https://www.intechopen.com/chapters/34645
[http://dx.doi.org/10.5772/26412]
[4]
Santos AR Jr, Zavaglia CAC. Tissue engineering concepts. In: Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier 2016; pp. 1-5.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.04141-2]
[5]
Edgar L, Pu T, Porter B, et al. Regenerative medicine, organ bioengineering and transplantation. Br J Surg 2020; 107(7): 793-800.
[http://dx.doi.org/10.1002/bjs.11686] [PMID: 32463143]
[6]
Zhang L, Hu J, Athanasiou KA. The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 2009; 37(1-2): 1-57.
[http://dx.doi.org/10.1615/CritRevBiomedEng.v37.i1-2.10] [PMID: 20201770]
[7]
Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature 2018; 557(7705): 335-42.
[http://dx.doi.org/10.1038/s41586-018-0089-z] [PMID: 29769665]
[8]
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97: 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[9]
Zavaglia CAC, Silva MHP. Feature Article: Biomaterials. Reference Module in Materials Science and Materials Engineering. Oxford: Elsevier 2016; pp. 1-5.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.04109-6]
[10]
Bakhshandeh B, Zarrintaj P, Oftadeh MO, et al. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 2017; 33(2): 144-72.
[http://dx.doi.org/10.1080/02648725.2018.1430464] [PMID: 29385962]
[11]
Martínez Ávila H, Schwarz S, Rotter N, Gatenholm P. 3D Bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient- specific auricular cartilage regeneration. Bioprinting 2016; 1-2: 22-35.
[http://dx.doi.org/10.1016/j.bprint.2016.08.003]
[12]
Souza TV, Malmonge SM, Santos AR Jr. Bioprinting and stem cells: The new frontier of tissue engineering and regenerative medicine. J Stem Cell Res Ther 2018; 4(3): 49-51.
[http://dx.doi.org/10.15406/jsrt.2018.04.00114]
[13]
Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 2017; 107(Pt A): 261-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.171]
[14]
Demirtaş TT, Irmak G, Gümüşderelioğlu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017; 9(3): 035003.
[http://dx.doi.org/10.1088/1758-5090/aa7b1d] [PMID: 28639943]
[15]
Malheiro A, Wieringa P, Mota C, Baker M, Moroni L. Patterning vasculature: The role of biofabrication to achieve an integrated multicellular ecosystem. ACS Biomater Sci Eng 2016; 2(10): 1694-709.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00269] [PMID: 33440469]
[16]
Ambrosi A, Pumera M. 3D-printing technologies for electrochemical applications. Chem Soc Rev 2016; 45(10): 2740-55.
[http://dx.doi.org/10.1039/C5CS00714C] [PMID: 27048921]
[17]
Markstedt K, Mantas A, Tournier I, Martínez Ávila H, Hägg D, Gatenholm P. 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015; 16(5): 1489-96.
[http://dx.doi.org/10.1021/acs.biomac.5b00188] [PMID: 25806996]
[18]
Thayer PS, Orrhult LS, Martínez H. Bioprinting of cartilage and skin tissue analogs utilizing a novel passive mixing unit technique for bioink precellularization. J Vis Exp 2018; 131(131): e56372.
[http://dx.doi.org/10.3791/56372] [PMID: 29364216]
[19]
Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 2018; 156: 88-106.
[http://dx.doi.org/10.1016/j.biomaterials.2017.11.030] [PMID: 29190501]
[20]
Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016; 34(4): 422-34.
[http://dx.doi.org/10.1016/j.biotechadv.2015.12.011] [PMID: 26724184]
[21]
Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020; 226: 119536.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119536] [PMID: 31648135]
[22]
Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs. Front Bioeng Biotechnol 2017; 5: 23.
[http://dx.doi.org/10.3389/fbioe.2017.00023] [PMID: 28424770]
[23]
Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: The future of burn wound reconstruction? Burns Trauma 2019; 7: 4.
[http://dx.doi.org/10.1186/s41038-019-0142-7] [PMID: 30805375]
[24]
Ozbolat IT. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 2015; 33(7): 395-400.
[http://dx.doi.org/10.1016/j.tibtech.2015.04.005] [PMID: 25978871]
[25]
Giorno LP, Santos AR Jr. Skin: Injury, repair and tissue engineering. In: Advances in medicine and biology. Hauppauge, NY: Nova Science Publishers 2022; Vol. 190: pp. 1-83. Available from: https://novapublishers.com/shop/advances-in-medicine-and-biology-volume-190/
[26]
Albanna M, Binder KW, Murphy SV, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep 2019; 9(1): 1856.
[http://dx.doi.org/10.1038/s41598-018-38366-w] [PMID: 30755653]
[27]
Carter B, Burke M, Perriman A. Bioprinting: Uncovering the utility layer-by-layer J 3D Print Med 2017; 1(3): 165-79.
[http://dx.doi.org/10.2217/3dp-2017-0006]
[28]
Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev 2020; 120(19): 11028-55.
[http://dx.doi.org/10.1021/acs.chemrev.0c00084] [PMID: 32856892]
[29]
Knowlton S, Anand S, Shah T, Tasoglu S. Bioprinting for neural tissue engineering. Trends Neurosci 2018; 41(1): 31-46.
[http://dx.doi.org/10.1016/j.tins.2017.11.001] [PMID: 29223312]
[30]
Hunziker EB. Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage 2002; 10(6): 432-63.
[http://dx.doi.org/10.1053/joca.2002.0801] [PMID: 12056848]
[31]
Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: Tips and tricks. Methods Mol Biol 2011; 698: 253-78.
[http://dx.doi.org/10.1007/978-1-60761-999-4_20] [PMID: 21431525]
[32]
Apelgren P, Amoroso M, Lindahl A, et al. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One 2017; 12(12): e0189428.
[http://dx.doi.org/10.1371/journal.pone.0189428] [PMID: 29236765]
[33]
Akther F, Little P, Li Z, Nguyen NT, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Advances 2020; 10(71): 43682-703.
[http://dx.doi.org/10.1039/D0RA08566A] [PMID: 35519701]
[34]
Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods 2016; 13(5): 405-14.
[http://dx.doi.org/10.1038/nmeth.3839] [PMID: 27123816]
[35]
Miranda DG, Malmonge SM, Campos DM, Attik NG, Grosgogeat B, Gritsch K. A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J Biomed Mater Res B Appl Biomater 2016; 104(8): 1691-702.
[http://dx.doi.org/10.1002/jbm.b.33516] [PMID: 26344054]
[36]
Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol 2011; 3(1): a004978.
[http://dx.doi.org/10.1101/cshperspect.a004978] [PMID: 21421911]
[37]
Bella J. Collagen structure: New tricks from a very old dog. Biochem J 2016; 473(8): 1001-25.
[http://dx.doi.org/10.1042/BJ20151169] [PMID: 27060106]
[38]
Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for 3-Dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C 2018; 83: 195-201.
[http://dx.doi.org/10.1016/j.msec.2017.09.002] [PMID: 29208279]
[39]
Wang Y, Beekman J, Hew J, et al. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev 2018; 123: 3-17.
[http://dx.doi.org/10.1016/j.addr.2017.09.018] [PMID: 28941987]
[40]
Pretorius E, Vieira WA, Oberholzer HM, Auer REJ. Comparative scanning electron microscopy of platelets and fibrin networks of human and differents animals. Int J Morphol 2009; 27(1): 69-76.
[http://dx.doi.org/10.4067/S0717-95022009000100013]
[41]
De Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater 2020; 117: 60-76.
[http://dx.doi.org/10.1016/j.actbio.2020.09.024] [PMID: 32949823]
[42]
Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 2013; 65(4): 457-70.
[http://dx.doi.org/10.1016/j.addr.2012.09.043] [PMID: 23137786]
[43]
Zhou CZ, Confalonieri F, Jacquet M, Perasso R, Li ZG, Janin J. Silk fibroin: Structural implications of a remarkable amino acid sequence. Proteins 2001; 44(2): 119-22.
[http://dx.doi.org/10.1002/prot.1078] [PMID: 11391774]
[44]
Marques NN, Maia AMS, Balaban RC. Development of dual-sensitive smart polymers by grafting chitosan with poly (N-isopropylacrylamide): An overview. Polímeros 2015; 25(3): 237-46.
[http://dx.doi.org/10.1590/0104-1428.1744]
[45]
Wang Y, Cai LQ, Nugraha B, Gao Y, Leo HL. Current hydrogel solutions for repairing and regeneration of complex tissues. Curr Med Chem 2014; 21(22): 2480-96.
[http://dx.doi.org/10.2174/0929867321666131212151855] [PMID: 24358974]
[46]
Frampton JP, Hynd MR, Shuler ML, Shain W. Fabrication and optimization of alginate hydrogel constructs for use in 3D neural cell culture. Biomed Mater 2011; 6(1): 015002.
[http://dx.doi.org/10.1088/1748-6041/6/1/015002] [PMID: 21205998]
[47]
Mørch YA, Donati I, Strand BL, Skjåk-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 2006; 7(5): 1471-80.
[http://dx.doi.org/10.1021/bm060010d] [PMID: 16677028]
[48]
Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater 2011; 23(12): H41-56.
[http://dx.doi.org/10.1002/adma.201003963] [PMID: 21394792]
[49]
Petta D, D’Amora U, Ambrosio L, Grijpma DW, Eglin D, D’Este M. Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication 2020; 12(3): 032001.
[http://dx.doi.org/10.1088/1758-5090/ab8752] [PMID: 32259809]
[50]
Vasvani S, Kulkarni P, Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol 2020; 151: 1012-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.066] [PMID: 31715233]
[51]
Cao Z, Dou C, Dong S. Scaffolding biomaterials for cartilage regeneration. J Nanomater 2014; 2014: 1-4.
[http://dx.doi.org/10.1155/2014/489128]
[52]
Duarte Campos DF, Blaeser A, Korsten A, et al. The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Part A 2015; 21(3-4): 740-56.
[http://dx.doi.org/10.1089/ten.tea.2014.0231] [PMID: 25236338]
[53]
Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30(13): 2499-506.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.080] [PMID: 19167750]
[54]
Wu QX, Lin DQ, Yao SJ. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Mar Drugs 2014; 12(12): 6236-53.
[http://dx.doi.org/10.3390/md12126236] [PMID: 25532565]
[55]
Vieira de Souza T, Malmonge SM, Santos AR Jr. Development of a chitosan and hyaluronic acid hydrogel with potential for bioprinting utilization: A preliminary study. J Biomater Appl 2021; 36(2): 358-71.
[http://dx.doi.org/10.1177/08853282211024164] [PMID: 34102923]
[56]
Ulucan-Karnak F. 3D bioprinting in medicine. Glob J Biotechnol Biomater Sci 2021; 7(1): 1-5.
[http://dx.doi.org/10.17352/gjbbs.000015]
[57]
Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK. The dynamic anatomy and patterning of skin. Exp Dermatol 2016; 25(2): 92-8.
[http://dx.doi.org/10.1111/exd.12832] [PMID: 26284579]
[58]
Junqueira LC, Carneiro J. Histologia Básica Texto e Atlas. (12th ed.), Rio de Janeiro: Guanabara Koogan 2013.
[59]
Kierszenbaum AL, Tres LL. Histology and cell biology: An introduction to pathology. (4th ed.), Philadelphia, PA: Elsevier 2016.
[60]
Gallagher AJ, Ni-Anniadh A, Bruyere K, Otténio M, Xie H, Gilchrist MD. Dynamic tensile properties of human skin IRCOBI Conference. Dublin. 2012; pp. 1-9. Available from: http://www.ircobi.org/wordpress/downloads/irc12/pdf_files/59.pdf
[61]
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: A cellular perspective. Physiol Rev 2019; 99(1): 665-706.
[http://dx.doi.org/10.1152/physrev.00067.2017] [PMID: 30475656]
[62]
Kim BS, Gao G, Kim JY, Cho D-W. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv Healthc Mater 2019; 8(7): e1801019.
[http://dx.doi.org/10.1002/adhm.201801019] [PMID: 30358939]
[63]
Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009; 30(8): 1587-95.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.009] [PMID: 19108884]
[64]
Michael S, Sorg H, Peck C-T, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 2013; 8(3): e57741.
[http://dx.doi.org/10.1371/journal.pone.0057741] [PMID: 23469227]
[65]
Rimann M, Bono E, Annaheim H, Bleisch M, Graf-Hausner U. Standardized 3D bioprinting of soft tissue models with human primary cells. J Lab Autom 2016; 21(4): 496-509.
[http://dx.doi.org/10.1177/2211068214567146] [PMID: 25609254]
[66]
Pourchet LJ, Thepot A, Albouy M, et al. Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater 2017; 6(4): 1601101.
[http://dx.doi.org/10.1002/adhm.201601101] [PMID: 27976537]
[67]
Min D, Lee W, Bae I-H, Lee TR, Croce P, Yoo S-S. Bioprinting of biomimetic skin containing melanocytes. Exp Dermatol 2018; 27(5): 453-9.
[http://dx.doi.org/10.1111/exd.13376] [PMID: 28453913]
[68]
Kim BS, Kwon YW, Kong J-S, et al. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering. Biomaterials 2018; 168: 38-53.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.040] [PMID: 29614431]
[69]
Derr K, Zou J, Luo K, et al. Fully 3D bioprinted skin equivalent constructs with validated morphology and barrier function. Tissue Eng Part C Methods 2019; 25(6): 334-43.
[http://dx.doi.org/10.1089/ten.tec.2018.0318] [PMID: 31007132]
[70]
Zhou F, Hong Y, Liang R, et al. Rapid printing of bio-inspired 3D tissue constructs for skin regeneration. Biomaterials 2020; 258: 120287.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120287] [PMID: 32847683]
[71]
Abaci HE, Coffman A, Doucet Y, et al. Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat Commun 2018; 9(1): 5301.
[http://dx.doi.org/10.1038/s41467-018-07579-y] [PMID: 30546011]
[72]
Newman AP. Articular cartilage repair. Am J Sports Med 1998; 26(2): 309-24.
[http://dx.doi.org/10.1177/03635465980260022701] [PMID: 9548130]
[73]
Tortora GJ, Derrickson B. Principles of Anatomy and Physiology. (15th ed.), Danvers, MA: John Wiley & Sons 2018.
[74]
Ross MH, Pawlina W. Histologia texto e atlas correlações com Biologia Celular e Molecular. (7th ed.), Rio de Janeiro: Guanabara Koogan 2016.
[75]
Griffin MF, Premakumar Y, Seifalian AM, Szarko M, Butler PEM. Biomechanical characterisation of the human auricular cartilages; implication for tissue engineering. Ann Biomed Eng 2016; 44(12): 3460-7.
[http://dx.doi.org/10.1007/s10439-016-1688-1] [PMID: 27417940]
[76]
Cook JL, Kuroki K, Stoker AM, Monibi FA, Roller BL. Meniscal biology in health and disease. Connect Tissue Res 2017; 58(3-4): 225-37.
[http://dx.doi.org/10.1080/03008207.2016.1243670] [PMID: 27715381]
[77]
Dhawan A, Kennedy PM, Rizk EB, Ozbolat IT. Three-dimensional bioprinting for bone and cartilage restoration in orthopaedic surgery. J Am Acad Orthop Surg 2019; 27(5): e215-26.
[http://dx.doi.org/10.5435/JAAOS-D-17-00632] [PMID: 30371527]
[78]
Yodmuang S, McNamara SL, Nover AB, et al. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 2015; 11: 27-36.
[http://dx.doi.org/10.1016/j.actbio.2014.09.032] [PMID: 25281788]
[79]
Yu Y, Moncal KK, Li J, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep 2016; 6: 28714.
[http://dx.doi.org/10.1038/srep28714] [PMID: 27346373]
[80]
Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 2016; 8(4): 045002.
[http://dx.doi.org/10.1088/1758-5090/8/4/045002] [PMID: 27716628]
[81]
Zhu W, Cui H, Boualam B, et al. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering. Nanotechnology 2018; 29(18): 185101.
[http://dx.doi.org/10.1088/1361-6528/aaafa1] [PMID: 29446757]
[82]
Antich C, de Vicente J, Jiménez G, et al. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater 2020; 106: 114-23.
[http://dx.doi.org/10.1016/j.actbio.2020.01.046] [PMID: 32027992]
[83]
Trovato FM, Imbesi R, Conway N, Castrogiovanni P. Morphological and functional aspects of human skeletal muscle. J Funct Morphol Kinesiol 2016; 1(3): 289-302.
[http://dx.doi.org/10.3390/jfmk1030289]
[84]
Ostrovidov S, Salehi S, Costantini M, et al. 3D bioprinting in skeletal muscle tissue engineering. Small 2019; 15(24): e1805530.
[http://dx.doi.org/10.1002/smll.201805530] [PMID: 31012262]
[85]
Martins ALL, Santos AR Jr, Giorno LP. Tissue engineering applied to skeletal muscle injuries: An overview of therapeutic perspectives. J Bio Med Open Access 2021; 2(1): 121. Available from: https://gnoscience.com/uploads/journals/articles/221636224814.pdf
[86]
Stenger RJ, Spiro D. Structure of the cardiac muscle cell. Am J Med 1961; 30(5): 653-65.
[http://dx.doi.org/10.1016/0002-9343(61)90205-4]
[87]
Webb RC. Smooth muscle contraction and relaxation. Adv Physiol Educ 2003; 27(1-4): 201-6.
[http://dx.doi.org/10.1152/advances.2003.27.4.201] [PMID: 14627618]
[88]
Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol 2015; 5(3): 1027-59.
[http://dx.doi.org/10.1002/cphy.c140068] [PMID: 26140708]
[89]
Li EW, McKee-Muir OC, Gilbert PM. Cellular biomechanics in skeletal muscle regeneration. Curr Top Dev Biol 2018; 126: 125-76.
[http://dx.doi.org/10.1016/bs.ctdb.2017.08.007] [PMID: 29304997]
[90]
Glenn DJ, Rahmutula D, Nishimoto M, Liang F, Gardner DG. Atrial natriuretic peptide suppresses endothelin gene expression and proliferation in cardiac fibroblasts through a GATA4-dependent mechanism. Cardiovasc Res 2009; 84(2): 209-17.
[http://dx.doi.org/10.1093/cvr/cvp208] [PMID: 19546173]
[91]
McGeachie JK. Smooth muscle regeneration. A review and experimental study. Monogr Dev Biol 1975; 9: 1-90.
[PMID: 1124085]
[92]
Wu HY, Baskin LS, Liu W, Li YW, Hayward S, Cunha GR. Understanding bladder regeneration: Smooth muscle ontogeny. J Urol 1999; 162(3 Pt 2): 1101-5.
[http://dx.doi.org/10.1016/S0022-5347(01)68082-0] [PMID: 10458440]
[93]
Hong X, Margariti A, Le Bras A, et al. Transdifferentiated human vascular smooth muscle cells are a new potential cell source for endothelial regeneration. Sci Rep 2017; 7(1): 5590.
[http://dx.doi.org/10.1038/s41598-017-05665-7] [PMID: 28717251]
[94]
Cvetkovic C, Raman R, Chan V, et al. Three-dimensionally printed biological machines powered by skeletal muscle. Proc Natl Acad Sci USA 2014; 111(28): 10125-30.
[http://dx.doi.org/10.1073/pnas.1401577111] [PMID: 24982152]
[95]
Merceron TK, Burt M, Seol YJ, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 2015; 7(3): 035003.
[http://dx.doi.org/10.1088/1758-5090/7/3/035003] [PMID: 26081669]
[96]
Yeo M, Lee H, Kim GH. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration. Biofabrication 2016; 8(3): 035021.
[http://dx.doi.org/10.1088/1758-5090/8/3/035021] [PMID: 27634918]
[97]
Yeo M, Kim G. Three-dimensional microfibrous bundle structure fabricated using an electric field-assisted/cell printing process for muscle tissue regeneration. ACS Biomater Sci Eng 2018; 4(2): 728-38.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00983] [PMID: 33418760]
[98]
Choi YJ, Kim TG, Jeong J, et al. 3D Cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater 2016; 5(20): 2636-45.
[http://dx.doi.org/10.1002/adhm.201600483] [PMID: 27529631]
[99]
Kim JH, Seol YJ, Ko IK, et al. 3D Bioprinted human skeletal muscle constructs for muscle function restoration. Sci Rep 2018; 8(1): 12307.
[http://dx.doi.org/10.1038/s41598-018-29968-5] [PMID: 30120282]
[100]
Bour RK, Sharma PR, Turner JS, et al. Bioprinting on sheet-based scaffolds applied to the creation of implantable tissue-engineered constructs with potentially diverse clinical applications: Tissue-Engineered Muscle Repair (TEMR) as a representative testbed. Connect Tissue Res 2020; 61(2): 216-28.
[http://dx.doi.org/10.1080/03008207.2019.1679800] [PMID: 31899969]
[101]
Zhang YS, Arneri A, Bersini S, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016; 110: 45-59.
[http://dx.doi.org/10.1016/j.biomaterials.2016.09.003] [PMID: 27710832]
[102]
Maiullari F, Costantini M, Milan M, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 2018; 8(1): 13532.
[http://dx.doi.org/10.1038/s41598-018-31848-x] [PMID: 30201959]
[103]
Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 2019; 365(6452): 482-7.
[http://dx.doi.org/10.1126/science.aav9051] [PMID: 31371612]
[104]
Giorno LP, Santos AR Jr. Substitutos tissulares aplicados ao tecido ósseoColeção desafios das engenharias: Engenharia biomédica 2021; 62-87. Available from: https://www.atenaeditora.com.br/post-artigo/52960
[http://dx.doi.org/10.22533/at.ed.5692116076]
[105]
Unal M, Creecy A, Nyman JS. The role of matrix composition in the mechanical behavior of bone. Curr Osteoporos Rep 2018; 16(3): 205-15.
[http://dx.doi.org/10.1007/s11914-018-0433-0] [PMID: 29611037]
[106]
Burr DB. Changes in bone matrix properties with aging. Bone 2019; 120: 85-93.
[http://dx.doi.org/10.1016/j.bone.2018.10.010] [PMID: 30315999]
[107]
Marsell R, Einhorn TA. The biology of fracture healing. Injury 2011; 42(6): 551-5.
[http://dx.doi.org/10.1016/j.injury.2011.03.031] [PMID: 21489527]
[108]
Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep 2017; 6: 87-100.
[http://dx.doi.org/10.1016/j.bonr.2017.03.002] [PMID: 28377988]
[109]
Ansari M. Bone tissue regeneration: Biology, strategies and interface studies. Prog Biomater 2019; 8(4): 223-37.
[http://dx.doi.org/10.1007/s40204-019-00125-z] [PMID: 31768895]
[110]
Herberg S, Kondrikova G, Periyasamy-Thandavan S, et al. Inkjet-based biopatterning of SDF-1β augments BMP-2-induced repair of critical size calvarial bone defects in mice. Bone 2014; 67: 95-103.
[http://dx.doi.org/10.1016/j.bone.2014.07.007] [PMID: 25016095]
[111]
Das S, Pati F, Choi Y-J, et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 2015; 11: 233-46.
[http://dx.doi.org/10.1016/j.actbio.2014.09.023] [PMID: 25242654]
[112]
Duarte Campos DF, Blaeser A, Buellesbach K, et al. Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater 2016; 5(11): 1336-45.
[http://dx.doi.org/10.1002/adhm.201501033] [PMID: 27072652]
[113]
Keriquel V, Guillemot F, Arnault I, et al. in vivo bioprinting for computer- and robotic-assisted medical intervention: Preliminary study in mice. Biofabrication 2010; 2(1): 014101.
[http://dx.doi.org/10.1088/1758-5082/2/1/014101] [PMID: 20811116]
[114]
Raja N, Yun HS. A simultaneous 3D printing process for the fabrication of bioceramic and cell-laden hydrogel core/shell scaffolds with potential application in bone tissue regeneration. J Mater Chem B Mater Biol Med 2016; 4(27): 4707-16.
[http://dx.doi.org/10.1039/C6TB00849F] [PMID: 32263243]
[115]
Daly AC, Cunniffe GM, Sathy BN, Jeon O, Alsberg E, Kelly DJ. 3D Bioprinting of developmentally inspired templates for whole bone organ engineering. Adv Healthc Mater 2016; 5(18): 2353-62.
[http://dx.doi.org/10.1002/adhm.201600182] [PMID: 27281607]
[116]
Alba B, Swami P, Tanna N, Grande D. A Novel technique for tissue engineering periosteum using three-dimensional bioprinting. Plast Reconstr Surg Glob Open 2018; 6: 98.
[http://dx.doi.org/10.1097/01.GOX.0000546950.64387.8d]
[117]
Anada T, Pan C-C, Stahl AM, et al. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci 2019; 20(5): 1096.
[http://dx.doi.org/10.3390/ijms20051096] [PMID: 30836606]
[118]
Zhang W, Shi W, Wu S, et al. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication 2020; 12(3): 035020.
[http://dx.doi.org/10.1088/1758-5090/ab906e] [PMID: 32369796]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy