Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Applications of N-Halo Reagents in Multicomponent Reactions: A Still Underrated Approach for the Construction of Heterocyclic Scaffolds

Author(s): Vitor S.C. de Andrade* and Marcio C.S. de Mattos*

Volume 26, Issue 11, 2022

Published on: 09 September, 2022

Page: [1088 - 1111] Pages: 24

DOI: 10.2174/1385272826666220822124705

Price: $65

Abstract

Heterocyclic scaffolds are important from both academic and industrial points of view. Due to their biological and pharmacological activities, they are useful intermediates in organic synthesis and have great interest in medicinal and natural products chemistry. N-halo compounds bearing an electron-withdrawing group on nitrogen (e.g., carbonyl, sulfonyl) present the unique chemical properties of the N-X bond that give them broad synthetic utility for diverse organic transformation. In the past years, significant progress has been achieved in the synthesis of heterocyclic compounds with the intermediacy of N-halo compounds. Numerous strategies (e.g., electrophilic cyclizations, asymmetric halocyclizations, oxidative cyclizations, radical processes) were implemented featuring high atom- and step-economy, and more efficient procedures are continually being developed. An interesting approach consists of using Nhalo compounds to promote multicomponent reactions (MCRs), which rapidly became an emerging field in heterocyclic construction. MCRs are recognized for their mild conditions, high convergence, and efficiency. Thus, the present review will focus attention on the main topics and utilization of N-halo compounds (N-halosuccinimides, trihaloisocyanuric acids, N-halosulfonamides, etc.) as green and convenient reagents in heterocyclic construction via MCRs. Examples of the preparation of azoles, pyridines, 1,4-dihydropyridines, chromenes, and xanthenes, among other scaffolds are presented and discussed.

Keywords: Organic synthesis, green chemistry, halogenation, N-haloimides, pot-economy, azoles, pyridines, xanthenes.

Graphical Abstract

[1]
(a)Nishanth Rao, R.; Jena, S.; Mukherjee, M.; Maiti, B.; Chanda, K. Green synthesis of biologically active heterocycles of medicinal importance: A review. Environ. Chem. Lett., 2021, 19(4), 3315-3358.
[http://dx.doi.org/10.1007/s10311-021-01232-9]
(b)Maheshwari, K.K.; Bandyopadhyay, D. Heterocycles in the treatment of neglected tropical diseases. Curr. Med. Chem., 2021, 28(3), 472-495.
[http://dx.doi.org/10.2174/0929867327666200219141652] [PMID: 32072886]
(c)Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
(d)Cabrele, C.; Reiser, O. The modern face of synthetic heterocyclic chemistry. J. Org. Chem., 2016, 81(21), 10109-10125.
[http://dx.doi.org/10.1021/acs.joc.6b02034] [PMID: 27680573]
[2]
(a)Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S.B. A review of recent advances in the green synthesis of azole- and pyran-based fused heterocycles using MCRs and sustainable catalysis. Curr. Org. Chem., 2021, 25(1), 4-39.
[http://dx.doi.org/10.2174/1385272824999201020204620]
(b)Hayashi, Y. Time and pot economy in total synthesis. Acc. Chem. Res., 2021, 54(6), 1385-1398.
[http://dx.doi.org/10.1021/acs.accounts.0c00803] [PMID: 33617234]
(c)Kumari, S.; Kishore, D.; Paliwal, S.; Chauhan, R.; Dwivedi, J.; Mishra, A. Transition metal-free one-pot synthesis of nitrogen-containing heterocycles. Mol. Divers., 2016, 20(1), 185-232.
[http://dx.doi.org/10.1007/s11030-015-9596-0] [PMID: 26055184]
(d)Sydnes, M. One-pot reactions: A step towards greener chemistry. Curr. Green Chem., 2014, 1(3), 216-226.
[http://dx.doi.org/10.2174/2213346101666140221225404]
(e)Wu, G.; Yin, W.; Shen, H.C.; Huang, Y. One-pot synthesis of useful heterocycles in medicinal chemistry using a cascade strategy. Green Chem., 2012, 14(3), 580-585.
[http://dx.doi.org/10.1039/c2gc16457d]
(f)Zhao, W.; Chen, F.E. One-pot synthesis and its practical application in pharmaceutical industry. Curr. Org. Synth., 2012, 9(6), 873-897.
[http://dx.doi.org/10.2174/157017912803901619]
[3]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, 1998, p. 30.
[4]
(a)Andrade, V.; Mattos, M. A abordagem telescópica como ferramenta da química verde. Quim. Nova, 2021, 44, 912-918.
[http://dx.doi.org/10.21577/0100-4042.20170731]
(b)Hayashi, Y. Pot economy and one-pot synthesis. Chem. Sci. (Camb.), 2016, 7(2), 866-880.
[http://dx.doi.org/10.1039/C5SC02913A] [PMID: 28791118]
[5]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[6]
Denmark, S.E.; Thorarensen, A. Tandem [4+2]/[3+2] cycloadditions of nitroalkenes. Chem. Rev., 1996, 96(1), 137-166.
[http://dx.doi.org/10.1021/cr940277f] [PMID: 11848747]
[7]
Ugi, I.; Dömling, A.; Hörl, W. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18(3), 115-122.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
[8]
Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143]
[9]
(a)Wender, P.A.; Handy, S.T.; Wright, D.L. Towards the ideal synthesis. Chem. Ind., 2013, 69(36), 7529-7550.
(b)Wender, P.A. Toward the ideal synthesis and molecular function through synthesis-informed design. Nat. Prod. Rep., 2014, 31(4), 433-440.
[http://dx.doi.org/10.1039/C4NP00013G] [PMID: 24589860]
[10]
(a)Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
(b)Cimarelli, C. Multicomponent reactions. Molecules, 2019, 24(13), 2372.
[http://dx.doi.org/10.3390/molecules24132372] [PMID: 31252514]
[11]
(a)Strecker, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Ann. Chem., 1850, 75(1), 27-45.
[http://dx.doi.org/10.1002/jlac.18500750103]
(b)Kouznetsov, V.V.; Galvis, C.E.P. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron, 2018, 74(8), 773-810.
[http://dx.doi.org/10.1016/j.tet.2018.01.005]
[12]
(a)Hantzsch, A. Ueber die synthese pyridinartiger verbindungen aus acetessigäther und aldehydammoniak. Justus Liebigs Ann. Chem., 1882, 215(1), 1-82.
[http://dx.doi.org/10.1002/jlac.18822150102]
(b)Sohal, H.S. A review on recent trends in synthesis and applications of 1,4-dihydropyridines. Mater. Today Proc., 2022, 48, 1163-1170.
[http://dx.doi.org/10.1016/j.matpr.2021.08.209]
[13]
(a)Hantzsch, A. Neue bildungsweise von pyrrolderivaten. Ber. Dtsch. Chem. Ges., 1890, 23(1), 1474-1476.
[http://dx.doi.org/10.1002/cber.189002301243]
(b)Menéndez, J.; Leonardi, M.; Estévez, V.; Villacampa, M. The Hantzsch pyrrole synthesis: Non-conventional variations and applications of a neglected classical reaction. Synthesis, 2019, 51(4), 816-828.
[http://dx.doi.org/10.1055/s-0037-1610320]
[14]
(a)Biginelli, P. Ueber aldehyduramide des acetessigäthers. Ber. Dtsch. Chem. Ges., 1891, 24(1), 1317-1319.
[http://dx.doi.org/10.1002/cber.189102401228]
(b)de Fátima, Â.; Braga, T.C.; Neto, L.S.; Terra, B.S.; Oliveira, B.G.F.; da Silva, D.L.; Modolo, L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res., 2015, 6(3), 363-373.
[http://dx.doi.org/10.1016/j.jare.2014.10.006] [PMID: 26257934]
[15]
(a)Robinson, R. LXIII.—A synthesis of tropinone. J. Chem. Soc. Trans., 1917, 111(0), 762-768.
[http://dx.doi.org/10.1039/CT9171100762]
(b)Medley, J.W.; Movassaghi, M. Robinson’s landmark synthesis of tropinone. Chem. Commun. (Camb.), 2013, 49(92), 10775-10777.
[http://dx.doi.org/10.1039/c3cc44461a] [PMID: 24116374]
[16]
(a)Asinger, F. Über die gemeinsame Einwirkung von Schwefel und Ammoniak auf Ketone. Angew. Chem., 1956, 68(12), 413.
[http://dx.doi.org/10.1002/ange.19560681209]
(b)Liu, Z.Q. Two neglectd multicomponent reactions: Asinger and Groebke reaction for constructing thiazolines and imidazolines. Curr. Org. Synth., 2015, 12(1), 20-60.
[http://dx.doi.org/10.2174/1570179411999141112144441]
(c)Griboura, N.; Gatzonas, K.; Neochoritis, C.G. Still relevant today: The Asinger multicomponent reaction. ChemMedChem, 2021, 16(13), 1997-2020.
[http://dx.doi.org/10.1002/cmdc.202100086] [PMID: 33769692]
[17]
(a)Gewald, K.; Schinke, E.; Böttcher, H. Heterocyclen aus CH‐aciden Nitrilen, VIII. 2‐Amino‐thiophene aus methylenaktiven Nitrilen, Carbonylverbindungen und Schwefel. Chem. Ber., 1966, 99(1), 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
(b)Huang, Y.; Dömling, A. The Gewald multicomponent reaction. Mol. Divers., 2011, 15(1), 3-33.
[http://dx.doi.org/10.1007/s11030-010-9229-6] [PMID: 20191319]
(c)El-Mekabaty, A. Chemistry of 2-amino-3-carbethoxythiophene and related compounds. Synth. Commun., 2014, 44(1), 1-31.
[http://dx.doi.org/10.1080/00397911.2013.821618]
[18]
(a)Groebke, K.; Weber, L.; Mehlin, F. Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett, 1998, 1998(6), 661-663.
[http://dx.doi.org/10.1055/s-1998-1721]
(b)Blackburn, C.; Guan, B.; Fleming, P.; Shiosaki, K.; Tsai, S. Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett., 1998, 39(22), 3635-3638.
[http://dx.doi.org/10.1016/S0040-4039(98)00653-4]
(c)Bienaymé, H.; Bouzid, K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew. Chem. Int. Ed., 1998, 37(16), 2234-2237.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19980904)37:16<2234::AID-ANIE2234>3.0.CO;2-R] [PMID: 29711433]
(d)Boltjes, A.; Dömling, A. The groebke-blackburn-bienaymé reaction. Eur. J. Org. Chem., 2019, 2019(42), 7007-7049.
[http://dx.doi.org/10.1002/ejoc.201901124] [PMID: 34012704]
[19]
Bon, R.S.; Hong, C.; Bouma, M.J.; Schmitz, R.F.; de Kanter, F.J.J.; Lutz, M.; Spek, A.L.; Orru, R.V.A. Novel multicomponent reaction for the combinatorial synthesis of 2-imidazolines. Org. Lett., 2003, 5(20), 3759-3762.
[http://dx.doi.org/10.1021/ol035521g] [PMID: 14507224]
[20]
(a)Li, K.; Lv, Y.; Lu, Z.; Yun, X.; Yan, S. An environmentally benign multi-component reaction: Highly regioselective synthesis of functionalized 2-(diarylphosphoryl)-1,2-dihydro-pyridine derivatives. Green Syn. Cat., 2022, 3(1), 59-68.
[http://dx.doi.org/10.1016/j.gresc.2021.10.008]
(b)Ma, X.; Qiu, W.; Liu, L.; Zhang, X.; Awad, J.; Evans, J.; Zhang, W. Synthesis of tetrahydropyrrolothiazoles through one-pot and four-component N,S-acetalation and decarboxylative [3+2] cycloaddition. Green Syn. Cat., 2021, 2(1), 74-77.
[http://dx.doi.org/10.1016/j.gresc.2020.11.001]
[21]
(a)Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat., 2021, 31(3), 267-289.
[http://dx.doi.org/10.1080/13543776.2021.1858797] [PMID: 33275061]
(b)Shaw, R.; Elagamy, A.; Althagafi, I.; Srivastava, A.K.; Pratap, R. Multi-component reactions for the synthesis of biologically relevant molecules under environmentally benign conditions. Curr. Org. Chem., 2021, 25(20), 2331-2377.
[http://dx.doi.org/10.2174/1385272825666210623160932]
(c)Insuasty, D.; Castillo, J.; Becerra, D.; Rojas, H.; Abonia, R. Synthesis of biologically active molecules through multicomponent reactions. Molecules, 2020, 25(3), 505.
[http://dx.doi.org/10.3390/molecules25030505] [PMID: 31991635]
(d)Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
(e)Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[22]
(a)de Andrade, V.; de Mattos, M. N-Halo reagents: Modern synthetic approaches for heterocyclic synthesis. Synthesis, 2019, 51(9), 1841-1870.
[http://dx.doi.org/10.1055/s-0037-1611746]
(b)Lyubchuk, T.V.; Hordiyenko, O.V. The use of N-halosuccinimides for cyclization with the formation of five-membered heterocyclic compounds. Chem. Heterocycl. Compd., 2020, 56(1), 1-29.
[http://dx.doi.org/10.1007/s10593-020-02616-5]
(c)Andrade, V.S.C.; Mattos, M.C.S. N-Halo reagents-mediated greener protocols for heterocyclic synthesis: Safe chemistry and pot-economy approaches to azoles and quinoxalines. Curr. Green Chem., 2018, 5(2), 68-85.
[http://dx.doi.org/10.2174/2452273202666180719124023]
(d)China, H.; Kumar, R.; Kikushima, K.; Dohi, T. Halogen-induced controllable cyclizations as diverse heterocycle synthetic strategy. Molecules, 2020, 25(24), 6007.
[http://dx.doi.org/10.3390/molecules25246007] [PMID: 33353126]
[23]
(a)Kolvari, E.; Ghorbani, C.A.; Salehi, P.; Shirini, F.; Zolfigol, M.A. Application of N-halo reagents in organic synthesis. J. Indian Chem. Soc., 2007, 4(2), 126-174.
[http://dx.doi.org/10.1007/BF03245963]
(b)Veisi, H.; Ghorbani, V.R.; Zolfigol, M.A. Recent progress in the use of N-halo compounds in organic synthesis. Org. Prep. Proced. Int., 2011, 43(6), 489-540.
[http://dx.doi.org/10.1080/00304948.2011.629553]
(c)Minakata, S. Utilization of N-X bonds in the synthesis of N-heterocycles. Acc. Chem. Res., 2009, 42(8), 1172-1182.
[http://dx.doi.org/10.1021/ar900059r] [PMID: 19480410]
[24]
Gołebiewski, W.; Gucma, M. Applications of N-chlorosuccinimide in organic synthesis. Synthesis, 2007, 2007(23), 3599-3619.
[http://dx.doi.org/10.1055/s-2007-990871]
[25]
(a)Mendonça, G.; Mattos, M. Green chlorination of organic compounds using trichloroisocyanuric acid (TCCA). Curr. Org. Synth., 2014, 10(6), 820-836.
[http://dx.doi.org/10.2174/157017941006140206102255]
(b)Almeida, L.; Esteves, P.; Mattos, M. Tribromoisocyanuric acid: A green and versatile reagent. Curr. Green Chem., 2014, 1(2), 94-107.
[http://dx.doi.org/10.2174/2213346101999140109142834]
(c)Gaspa, S.; Carraro, M.; Pisano, L.; Porcheddu, A.; De Luca, L. Trichloroisocyanuric acid: A versatile and efficient chlorinating and oxidizing reagent. Eur. J. Org. Chem., 2019, 2019(22), 3544-3552.
[http://dx.doi.org/10.1002/ejoc.201900449]
[26]
Tilstam, U.; Weinmann, H. Trichloroisocyanuric acid: A safe and efficient oxidant. Org. Process Res. Dev., 2002, 6(4), 384-393.
[http://dx.doi.org/10.1021/op010103h]
[27]
(a)de Almeida, L.S.; Esteves, P.M.; Mattos, M.C.S. Tribromoisocyanuric acid: A new reagent for regioselective cobromination of alkenes. Synlett, 2006, 1515-1518.
(b)Ribeiro, R.S.; Esteves, P.M.; Mattos, M.C.S. Triiodoisocyanuric acid: A new and convenient reagent for regioselective iodination of activated arenes. J. Braz. Chem. Soc., 2008, 19(7), 1239-1243.
[http://dx.doi.org/10.1590/S0103-50532008000700002]
[28]
(a)Souza, S.P.L.; Silva, J.F.M.; de Mattos, M.C.S. A green preparation of N-chloro- and N-bromosaccharin. Synth. Commun., 2003, 33(6), 935-939.
[http://dx.doi.org/10.1081/SCC-120016353]
(b)Dolenc, D. N-Iodosaccharin - a new reagent for iodination of alkenes and activated aromatics. Synlett, 2000, 544-546.
[29]
(a)Souza, S.P.L.; Silva, J.F.M.; Mattos, M.C.S. N-halossacarinas: Reagentes úteis (e alternativos) em síntese orgânica. Quim. Nova, 2006, 29(5), 1061-1064.
[http://dx.doi.org/10.1590/S0100-40422006000500028]
(b)Sharma, K.; Jain, I.; Sharma, V.K. N-Halosaccharin: A novel and versatile reagent. Oxid. Commun., 2015, 38, 631-647.
[30]
Ghorbani, V.R.; Jalili, H. Mild and regioselective bromination of aromatic compounds with N,N,N′,N′-tetrabromobenzene-1,3-disulfonylamide and poly(N-bromobenzene-1,3-disulfonylamide). Synthesis, 2005, (7), 1099-1102.
[http://dx.doi.org/10.1055/s-2005-861851]
[31]
Umemoto, T.; Yang, Y.; Hammond, G.B. Development of N -F fluorinating agents and their fluorinations: Historical perspective. Beilstein J. Org. Chem., 2021, 17, 1752-1813.
[http://dx.doi.org/10.3762/bjoc.17.123] [PMID: 34386101]
[32]
Trost, B.M. The atom economy a search for synthetic efficiency. Science, 1991, 254(5037), 1471-1477.
[http://dx.doi.org/10.1126/science.1962206] [PMID: 1962206]
[33]
(a)Bianco, M.C.A.D.; Marinho, D.I.L.F.; Hoelz, L.V.B.; Bastos, M.M.; Boechat, N. Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors. Pharmaceuticals (Basel), 2021, 14(9), 893.
[http://dx.doi.org/10.3390/ph14090893] [PMID: 34577593]
(b)Philkhana, S.C.; Badmus, F.O.; Dos Reis, I.C.; Kartika, R. Recent advancements in pyrrole synthesis. Synthesis, 2021, 53(9), 1531-1555.
[http://dx.doi.org/10.1055/s-0040-1706713] [PMID: 34366491]
[34]
Eze, C.C.; Ezeokonkwo, M.A.; Ezema, B.E.; Onoabedje, A.E.; Ibeanu, F.N.; Ugwu, D.I.; Onyeyilim, L.E.; Ezugwu, J.A. One-pot multicomponent synthesis of imidazole rings in acid ionic liquids: A review. Mini Rev. Org. Chem., 2020, 17(8), 975-990.
[http://dx.doi.org/10.2174/1570193X17666200226110645]
[35]
(a)Shiri, P.; Amani, A.M.; Mayer, G.T. A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Beilstein J. Org. Chem., 2021, 17, 1600-1628.
[http://dx.doi.org/10.3762/bjoc.17.114] [PMID: 34354770]
(b)Varala, R.; Bollikolla, H.B.; Kurmarayuni, C.M. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues-a review. Curr. Org. Synth., 2021, 18(2), 101-124.
[http://dx.doi.org/10.2174/1570179417666200914142229] [PMID: 32928090]
[36]
Govindaraju, S.; Tabassum, S. Visible light mediated organophotoredox-catalyzed one-pot domino synthesis of novel 6,7 disubstituted 1H-pyrroles. Top. Catal., 2022.
[http://dx.doi.org/10.1007/s11244-022-01580-y]
[37]
Hojati, S.F.; Nezhadhoseiny, S.A.; Beykzadeh, Z. Trichloroisocyanuric acid-catalyzed one-pot synthesis of 2,4,5-trisubstituted imidazoles. Monatsh. Chem., 2013, 144(3), 387-390.
[http://dx.doi.org/10.1007/s00706-012-0830-5]
[38]
Maleki, B.; Ashrafi, S.S. N-Bromosuccinimide catalyzed three component one-pot efficient synthesis of 2,4,5-triaryl-1H-imidazoles from aldehyde, ammonium acetate, and 1,2-diketone or α-hydroxyketone. J. Mex. Chem. Soc., 2014, 58, 76-81.
[39]
Sedrpoushan, A.; Joshani, Z.; Fatollahi, L. Efficient synthesis of 2,4,5-triary-1H-imidazoles from aromatic aldehydes with HMDS catalyzed by N-bromosaccharin (NBSa). Lett. Org. Chem., 2014, 11(4), 287-292.
[http://dx.doi.org/10.2174/15701786113106660091]
[40]
Li, L.; Zhang, G.; Zhu, A.; Zhang, L. A convenient preparation of 5-iodo-1,4-disubstituted-1,2,3-triazole: Multicomponent one-pot reaction of azide and alkyne mediated by CuI-NBS. J. Org. Chem., 2008, 73(9), 3630-3633.
[http://dx.doi.org/10.1021/jo800035v] [PMID: 18357998]
[41]
Balova, I.A.; Danilkina, N.A.; Govdi, A.I. 5-Iodo-1H-1,2,3-triazoles as versatile building blocks. Synthesis, 2020, 52(13), 1874-1896.
[http://dx.doi.org/10.1055/s-0039-1690858]
[42]
Li, L.; Ding, S.; Yang, Y.; Zhu, A.; Fan, X.; Cui, M.; Chen, C.; Zhang, G. Multicomponent aqueous synthesis of iodo-1,2,3-triazoles: Single-step models for dual modification of free peptide and radioactive iodo labeling. Chemistry, 2017, 23(5), 1166-1172.
[http://dx.doi.org/10.1002/chem.201605034] [PMID: 27862485]
[43]
Li, L.; Xing, X.; Zhang, C.; Zhu, A.; Fan, X.; Chen, C.; Zhang, G. Novel synthesis of 5-iodo-1,2,3-triazoles using an aqueous iodination system under air. Tetrahedron Lett., 2018, 59(39), 3563-3566.
[http://dx.doi.org/10.1016/j.tetlet.2018.08.039]
[44]
(a)Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
(b)Khan, E. Pyridine derivatives as biologically active precursors; organics and selected coordination complexes. ChemistrySelect, 2021, 6(13), 3041-3064.
[http://dx.doi.org/10.1002/slct.202100332]
(c)Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114, 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
(d)Alizadeh, S.R.; Ebrahimzadeh, M.A. Antiviral activities of pyridine fused and pyridine containing heterocycles, a review (from 2000 to 2020). Mini Rev. Med. Chem., 2021, 21(17), 2584-2611.
[http://dx.doi.org/10.2174/1389557521666210126143558] [PMID: 33573543]
[45]
(a)N, J.B.; Goudgaon, N.M. A comprehensive review on pyrimidine analogs-versatile scaffold with medicinal and biological potential. J. Mol. Struct., 2021, 1246, 131168.
[http://dx.doi.org/10.1016/j.molstruc.2021.131168]
(b)Devi, M.; Jaiswal, S.; Dwivedi, J.; Kaur, N. Synthetic aspects of condensed pyrimidine derivatives. Curr. Org. Chem., 2021, 25(21), 2625-2649.
[http://dx.doi.org/10.2174/1385272825666210706123734]
(c)Devi, M.; Jaiswal, S.; Jain, S.; Kaur, N.; Dwivedi, J. Synthetic and biological attributes of pyrimidine derivatives: A recent update. Curr. Org. Synth., 2021, 18(8), 790-825.
[http://dx.doi.org/10.2174/1570179418666210706152515] [PMID: 34886770]
[46]
Hashem, H.E. A short review on the synthesis of 1,2,4-triazine derivatives as bioactive compounds. Mini Rev. Org. Chem., 2021, 18(8), 1127-1133.
[http://dx.doi.org/10.2174/1570193X18666210122154419]
[47]
Faisal, M.; Saeed, A. Chemical insights into the synthetic chemistry of quinazolines: Recent advances. Front Chem., 2021, 8, 594717.
[http://dx.doi.org/10.3389/fchem.2020.594717] [PMID: 33585397]
[48]
Ojha, M.; Yadav, D.; Kumar, A.; Dasgupta, S.; Yadav, R. 1,8-Naphthyridine derivatives: A privileged scaffold for versatile biological activities. Mini Rev. Med. Chem., 2021, 21(5), 586-601.
[http://dx.doi.org/10.2174/1389557520666201009162804] [PMID: 33038911]
[49]
Biesen, L.; Müller, T.J.J. Multicomponent and one-pot syntheses of quinoxalines. Adv. Synth. Catal., 2021, 363(4), 980-1006.
[http://dx.doi.org/10.1002/adsc.202001219]
[50]
(a)Kröhnke, F. The specific synthesis of pyridines and oligopyridines. Synthesis, 1976, 1976(1), 1-24.
[http://dx.doi.org/10.1055/s-1976-23941]
(b)Shabalin, D.A. Recent advances and future challenges in the synthesis of 2,4,6-triarylpyridines. Org. Biomol. Chem., 2021, 19(38), 8184-8204.
[http://dx.doi.org/10.1039/D1OB01310F] [PMID: 34499071]
[51]
Maleki, B. Solvent-free synthesis of 2,4,6-triarylpyridine derivatives promoted by 1,3-dibromo-5,5-dimethylhydantoin. Org. Prep. Proced. Int., 2015, 47(2), 173-178.
[http://dx.doi.org/10.1080/00304948.2015.1005990]
[52]
Maleki, B.; Salehabadi, H.; Sepehr, Z.; Kermanian, M. Solvent-free, one-pot synthesis of 2,4,6-triarylpyridines using trichloroisocyanuric acid or N-bromosuccinimide as a novel and neutral catalyst. Collect. Czech. Chem. Commun., 2011, 76(11), 1307-1315.
[http://dx.doi.org/10.1135/cccc2011021]
[53]
Ghorbani, V.R.; Toghraei, S.Z.; Karimi, N.R. One-pot synthesis of 2-amino-3-cyanopyridine derivatives under solvent-free conditions. C. R. Chim., 2013, 16(12), 1111-1117.
[http://dx.doi.org/10.1016/j.crci.2013.06.006]
[54]
Chen, J.; Ding, Y.; Gao, Y.; Zhou, D.; Hider, R.; Ma, D.Y. Selectfluor-promoted synthesis of 2,4- and 2,6-diarylpyridines through annulation of aromatic ketones with an ammonium source in DMF. ChemistrySelect, 2019, 4(8), 2404-2408.
[http://dx.doi.org/10.1002/slct.201900113]
[55]
Ghorbani-Vaghei, R.; Toghraei-Semiromi, Z.; Amiri, M.; Karimi-Nami, R.; Salimi, Z.; Ghavidel, M. One-pot synthesis of pyrimidines under solvent-free conditions. C. R. Chim., 2014, 17, 324-330.
[56]
Ghorbani, V.R.; Shirzadi, A.M.; Eslami, F.; Malaekehpoor, S.M.; Salimi, Z.; Toghraei, S.Z.; Noori, S. Efficient one-pot synthesis of quinazoline and benzopyrano[2,3-d] pyrimidine derivatives catalyzed by N-bromosulfonamides. J. Heterocycl. Chem., 2017, 54(1), 215-225.
[http://dx.doi.org/10.1002/jhet.2570]
[57]
Ghorbani, V.R.; Shahriari, A.; Salimi, Z.; Hajinazari, S. Solvent-free synthesis of triazines using N-halosulfonamides. RSC Advances, 2015, 5(5), 3665-3669.
[http://dx.doi.org/10.1039/C4RA10892B]
[58]
Ghorbani, V.R.; Malaekehpoor, S. Multicomponent approach for the synthesis of substituted 1,8-naphthyridine derivatives catalyzed by N-bromosulfonamides. Synthesis, 2016, 49(4), 763-769.
[http://dx.doi.org/10.1055/s-0036-1588886]
[59]
Ghorbani, V.R.; Amiri, M.; Karimi, N.R.; Salimi, Z. Efficient one-pot synthesis of mono and bis-N-cyclohexyl-3-alkyl(aryl)-quinoxaline-2-amines using N-halo catalysts. RSC Advances, 2013, 3(48), 25924-25929.
[http://dx.doi.org/10.1039/c3ra44496a]
[60]
Khazaei, A.; Massoudi, A.; Chegeni, M. Synthesis of Bisindolylindeno[1,2-b]quinoxaline and Bisindolylindeno[3,4-b]pyrazine with Poly(N,N ′-dibromo- N -ethylnaphthyl-2,7-disulfonamide). Synth. Commun., 2014, 44(5), 633-639.
[http://dx.doi.org/10.1080/00397911.2013.829237]
[61]
Sun, J.; Yang, X.; Liu, Y.; Wang, Y.; Pan, Y. NIS‐promoted multicomponent reaction of 2‐aminopyridines with aldehydes and nitromethane for the synthesis of 3‐nitroimidazo[1.2‐a]pyridines. J. Heterocycl. Chem., 2020, 57(3), 1449-1455.
[http://dx.doi.org/10.1002/jhet.3869]
[62]
Fersing, C.; Basmaciyan, L.; Boudot, C.; Pedron, J.; Hutter, S.; Cohen, A.; Castera, D.C.; Primas, N.; Laget, M.; Casanova, M.; Bourgeade-Delmas, S.; Piednoel, M.; Sournia-Saquet, A.; Belle Mbou, V.; Courtioux, B.; Boutet, R.É.; Since, M.; Milne, R.; Wyllie, S.; Fairlamb, A.H.; Valentin, A.; Rathelot, P.; Verhaeghe, P.; Vanelle, P.; Azas, N. Nongenotoxic 3-nitroimidazo[1,2-a]pyridines are NTR1 substrates that display potent in vitro antileishmanial activity. ACS Med. Chem. Lett., 2019, 10(1), 34-39.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00347] [PMID: 30655943]
[63]
Wang, G.; Sun, S.; Guo, H. Current status of carbazole hybrids as anticancer agents. Eur. J. Med. Chem., 2022, 229, 113999.
[http://dx.doi.org/10.1016/j.ejmech.2021.113999] [PMID: 34838335]
[64]
Zolfigol, M.A.; Khazaei, A.; Karimitabar, F.; Hamidi, M.; Maleki, F.; Aghabarari, B.; Sefat, F.; Mozafari, M. Synthesis of indolo[3,2-b]carbazoles via an anomeric-based oxidation process: A combined experimental and computational strategy. J. Heterocycl. Chem., 2018, 55(4), 1061-1068.
[http://dx.doi.org/10.1002/jhet.3077]
[65]
Taslimi, P.; Türkan, F.; Turhan, K.; Karaman, H.S.; Turgut, Z.; Gulcin, İ. 2 H‐indazolo [2,1‐b]phthalazine‐trione derivatives: Inhibition on some metabolic enzymes and molecular docking studies. J. Heterocycl. Chem., 2020, 57(8), 3116-3125.
[http://dx.doi.org/10.1002/jhet.4019]
[66]
Ghorbani-Vaghei, R.; Karimi-Nami, R.; Toghraei-Semiromi, Z.; Amiri, M.; Ghavidel, M. One-pot synthesis of aliphatic and aromatic 2H-indazolo[2,1-b]phthalazine-triones catalyzed by N-halosulfonamides under solvent-free conditions. Tetrahedron, 2011, 67(10), 1930-1937.
[http://dx.doi.org/10.1016/j.tet.2011.01.024]
[67]
Ghorbani, V.R.; Noori, S.; Toghraei, S.Z.; Salimi, Z. One-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives under solvent-free conditions. RSC Advances, 2014, 4(89), 47925-47928.
[http://dx.doi.org/10.1039/C4RA08617A]
[68]
Khazaei, A.; Zolfigol, M.A.; Karimitabar, F.; Nikokar, I.; Moosavi-Zare, A.R. N,2-Dibromo-6-chloro-3,4-dihydro-2H-benzo[e]-[1,2,4]thiadiazine-7-sulfonamide 1,1-dioxide: An efficient and homogeneous catalyst for one-pot synthesis of 4H-pyran, pyranopyrazole and pyrazolo[1,2-b]phthalazine derivatives under aqueous media. RSC Advances, 2015, 5, 71402-71412.
[http://dx.doi.org/10.1039/C5RA10730J]
[69]
Badolato, M.; Aiello, F.; Neamati, N. 2,3-Dihydroquinazolin-4(1 H)-one as a privileged scaffold in drug design. RSC Advances, 2018, 8(37), 20894-20921.
[http://dx.doi.org/10.1039/C8RA02827C] [PMID: 35542353]
[70]
Ghorbani, V.R.; Shahriari, A.; Maghbooli, Y.; Mahmoudi, J. Efficient synthesis of novel quinazoline-4(1H)-one derivatives by N-halosulfonamides. Res. Chem. Intermed., 2017, 43(2), 983-993.
[http://dx.doi.org/10.1007/s11164-016-2678-5]
[71]
(a)Khot, S.; Auti, P.B.; Khedkar, S.A. Diversified synthetic pathway of 1,4-dihydropyridines: A class of pharmacologically important molecules. Mini Rev. Med. Chem., 2021, 21(2), 135-149.
[http://dx.doi.org/10.2174/1389557520666200807130215] [PMID: 32767934]
(b)Mishra, A.P.; Bajpai, A.; Rai, A.K. 1,4-Dihydropyridine: A dependable heterocyclic ring with the promising and the most anticipable therapeutic effects. Mini Rev. Med. Chem., 2019, 19(15), 1219-1254.
[http://dx.doi.org/10.2174/1389557519666190425184749] [PMID: 31735158]
[72]
Roknaddini, M.; Sheikhhosseini, E. Synthesis of 1,4-dihydropyridines (DHP) catalyzed by trichloroisocyanuric acid (TCCA) in aqueous media. Sci. Iran. C, 2016, 23, 2756-2761.
[73]
Maleki, B.; Tayebee, R.; Kermanian, M.; Ashrafi, S.S. One-pot synthesis of 1,8-dioxodecahydroacridines and polyhydroquinoline using 1,3-di(bromo or chloro)-5,5-dimethylhydantoin as a novel and green catalyst under solvent-free conditions. J. Mex. Chem. Soc., 2013, 57, 290-297.
[74]
Ghorbani, V.R.; Malaekehpoor, S.M.; Hasanein, P.; Karamyan, R.; Asadbegy, M. Synthesis and biological evaluation of new series 1,4-dihydropyridines. Res. Chem. Intermed., 2016, 42(5), 4715-4731.
[http://dx.doi.org/10.1007/s11164-015-2310-0]
[75]
Ghorbani, V.R.; Malaekehpoor, S.M. One-pot facile synthesis of acridine derivatives under solvent-free condition. J. Indian Chem. Soc., 2010, 7(4), 957-964.
[http://dx.doi.org/10.1007/BF03246091]
[76]
(a)Khasimbi, S.; Ali, F.; Manda, K.; Sharma, A.; Chauhan, G.; Wakode, S. Dihydropyrimidinones scaffold as a promising nucleus for synthetic profile and various therapeutic targets: A review. Curr. Org. Synth., 2021, 18(3), 270-293.
[http://dx.doi.org/10.2174/1570179417666201207215710] [PMID: 33290199]
(b)Mohammadi, B.; Behbahani, F.K. Recent developments in the synthesis and applications of dihydropyrimidin-2(1H)-ones and thiones. Mol. Divers., 2018, 22(2), 405-446.
[http://dx.doi.org/10.1007/s11030-017-9806-z] [PMID: 29349521]
[77]
Hazarkhani, H.; Karimi, B. N-Bromosuccinimide as an almost neutral catalyst for efficient synthesis of dihydropyrimidinones under microwave irradiation. Synthesis, 2004, 1239-1242.
[78]
Marinescu, M. Biginelli reaction mediated synthesis of antimicrobial pyrimidine derivatives and their therapeutic properties. Molecules, 2021, 26(19), 6022.
[http://dx.doi.org/10.3390/molecules26196022] [PMID: 34641566]
[79]
Agarwal, D.K.; Sahiba, N.; Sethiya, A.; Soni, J.; Teli, P.; Agarwal, S.; Goyal, P.K. Insight view on synthetic strategies and biological applications of pyrimidobenzothiazoles. Mini Rev. Org. Chem., 2021, 18(8), 1012-1025.
[http://dx.doi.org/10.2174/1570193X18666210122155016]
[80]
Fedotov, V.V.; Rusinov, V.L.; Ulomsky, E.N.; Mukhin, E.M.; Gorbunov, E.B.; Chupakhin, O.N. Pyrimido[1,2-a]benzimidazoles: Synthesis and perspective of their pharmacological use. Chem. Heterocycl. Compd., 2021, 57(4), 383-409.
[http://dx.doi.org/10.1007/s10593-021-02916-4] [PMID: 34024913]
[81]
Ghorbani, V.R.; Maghbooli, Y.; Mahmoodi, J.; Shahriari, A. Poly(N-bromo-N-ethyl-benzene-1,3-disulfonamide) and N,N,N′,N′-tetrabromobenzene-1,3-disulfonamide as new efficient reagents for one-pot synthesis of furano and pyrano pyrimidinones (thiones). RSC Advances, 2015, 5(91), 74336-74341.
[http://dx.doi.org/10.1039/C5RA16646B]
[82]
Ghorbani, V.R.; Toghraei, S.Z.; Karimi, N.R.; Salimi, Z. One-pot synthesis of pyrimido[1,2-a]benzimidazoles under solvent-free conditions. Helv. Chim. Acta, 2014, 97(7), 979-984.
[http://dx.doi.org/10.1002/hlca.201300361]
[83]
Rao, G.B.D.; Acharya, B.N.; Verma, S.K.; Kaushik, M.P.N N′-Dichlorobis(2,4,6-trichlorophenyl)urea (CC-2) as a new reagent for the synthesis of pyrimidone and pyrimidine derivatives via Biginelli reaction. Tetrahedron Lett., 2011, 52(7), 809-812.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.039]
[84]
Dolzhenko, A.V. 5-Aminotetrazole as a building block for multicomponent reactions. Heterocycles, 2017, 94, 1819-1846.
[http://dx.doi.org/10.3987/REV-17-867]
[85]
Ghorbani, V.R.; Toghraei, S.Z.; Amiri, M.; Karimi, N.R. One-pot synthesis of tetrazolo[1,5-a]pyrimidines under solvent-free conditions. Mol. Divers., 2013, 17(2), 307-318.
[http://dx.doi.org/10.1007/s11030-013-9435-0] [PMID: 23588896]
[86]
Ghorbani, V.R.; Amiri, M.; Karimi, N.R.; Toghraei, S.Z.; Ghavidel, M.N N,N’,N’-Tetrabromobenzene-1,3-disulfonamide and poly(N-bromo-N-ethylbenzene-1,3-disulfonamide) as new and efficient catalysts for the synthesis of highly substituted 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. Mol. Divers., 2013, 17(2), 251-259.
[http://dx.doi.org/10.1007/s11030-013-9427-0] [PMID: 23412753]
[87]
Ramin, G.V.; Hajar, S. Highly efficient one-pot synthesis of tetrahydropyridines. C. R. Chim., 2013, 16(11), 1047-1054.
[http://dx.doi.org/10.1016/j.crci.2013.02.015]
[88]
Pengpeng, L. Multicomponent reaction for the synthesis of 1,2,3,4,6-pentasubstituted piperidines catalyzed by NIS. Heterocycles, 2021, 102(8), 1563-1569.
[http://dx.doi.org/10.3987/COM-21-14479]
[89]
Kiyani, H.; Kanaani, A.; Ajloo, D.; Ghorbani, F.; Vakili, M. N-bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one. Res. Chem. Intermed., 2015, 41(10), 7739-7773.
[http://dx.doi.org/10.1007/s11164-014-1857-5]
[90]
Raj, V.; Lee, J. 2H/4H-Chromenes - a versatile biologically attractive scaffold. Front Chem., 2020, 8, 623.
[http://dx.doi.org/10.3389/fchem.2020.00623] [PMID: 32850645]
[91]
(a)Chaudhary, A.; Khurana, J.M. Advances in the synthesis of xanthenes: An overview. Curr. Org. Synth., 2018, 15(3), 341-369.
[http://dx.doi.org/10.2174/1570179414666171011162902]
(b)Ghahsare, A.G.; Nazifi, Z.S.; Nazifi, S.M.R. Structure-bioactivity relationship study of xanthene derivatives: A brief review. Curr. Org. Synth., 2020, 16(8), 1071-1077.
[http://dx.doi.org/10.2174/1570179416666191017094908] [PMID: 31984917]
[92]
Borah, B.; Dwivedi, K.D.; Chowhan, L.R. Review on Synthesis and medicinal application of dihydropyrano[3,2-b]pyrans and spiro-pyrano[3,2-b]pyrans by employing the reactivity of 5-hydroxy-2-(hydroxymethyl)-4H-pyran-4-one. Polycycl. Aromat. Compd., 2021, 1-45.
[http://dx.doi.org/10.1080/10406638.2021.1962923]
[93]
Ghorbani, V.R.; Toghraei, S.Z.; Karimi, N.R. One-pot synthesis of 4H-Chromene and Dihydropyrano[3,2-c]chromene derivatives in hydroalcoholic media. J. Braz. Chem. Soc., 2011, 22, 905-909.
[http://dx.doi.org/10.1590/S0103-50532011000500013]
[94]
Hojati, S.F. MoeiniEghbali, N.; Mohamadi, S.; Ghorbani, T. Trichloroisocyanuric acid as a highly efficient catalyst for the synthesis of tetrahydrobenzo(b]pyran derivatives. Org. Prep. Proced. Int., 2018, 50(4), 408-415.
[http://dx.doi.org/10.1080/00304948.2018.1468982]
[95]
Ghorbani, V.R.; Malaekehpoor, S.M.N N,N′,N′ ‐Tetrabromobenzene‐1,3‐disulfonamide Catalyzed Synthesis of New Spiro[chroman‐3,2′‐chromeno[2,3‐ b]furan]‐2,4,4′‐(3′ H)‐trione Derivatives. J. Heterocycl. Chem., 2017, 54(3), 1822-1827.
[http://dx.doi.org/10.1002/jhet.2769]
[96]
Habibzadeh, S.; Ghasemnejad, H.; Faraji, M. N-Bromosuccinimide (NBS): A novel and efficient catalyst for the synthesis of 14-aryl-14h-dibenzo[a,j]xanthenes under solvent-free conditions. Helv. Chim. Acta, 2011, 94(3), 429-432.
[http://dx.doi.org/10.1002/hlca.201000243]
[97]
Maleki, B.; Gholizadeh, M.; Sepehr, Z. 1,3,5-Trichloro-2,4,6-triazinetrion: A versatile heterocycle for the one-pot synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthene, 1,8-dioxooctahydroxanthene and 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives under solvent-free conditions. Bull. Korean Chem. Soc., 2011, 32(5), 1697-1702.
[http://dx.doi.org/10.5012/bkcs.2011.32.5.1697]
[98]
Bigdeli, M.A.; Nemati, F.; Mahdavinia, G.H.; Doostmohammadi, H. A series of 1,8-dioxooctahydroxanthenes are prepared using trichloroisocyanuric acid. Chin. Chem. Lett., 2009, 20(11), 1275-1278.
[http://dx.doi.org/10.1016/j.cclet.2009.06.024]
[99]
Khazaei, A.; Rezaei, M.; Moosavi, Z.A.R.; Saednia, S. Solvent-free Synthesis of 1,8-Dioxo-octahydroxanthenes and Tetra-hydrobenzo[a]xanthene-11-ones over Poly(N,N ′-dibromo- N -ethylnaphtyl-2,7-sulfonamide). J. Chin. Chem. Soc. (Taipei), 2017, 64(9), 1088-1095.
[http://dx.doi.org/10.1002/jccs.201700082]
[100]
Ghorbani, V.R.; Salimi, Z.; Malaekehpoor, S.M.; Eslami, F.; Noori, S. One-pot synthesis of new derivatives of pyran using N-halosulfonamide. RSC Advances, 2014, 4(63), 33582-33586.
[http://dx.doi.org/10.1039/C4RA04929B]
[101]
Ziarani, G.M.; Javadi, F.; Mohajer, F. The molecular diversity scope of oxindole derivatives in organic synthesis. Curr. Org. Chem., 2021, 25(7), 779-818.
[http://dx.doi.org/10.2174/1385272825666210111112814]
[102]
Mamaghani, M.; Hossein Nia, R. A review on the recent multicomponent synthesis of pyranopyrazoles. Polycycl. Aromat. Compd., 2021, 41(2), 223-291.
[http://dx.doi.org/10.1080/10406638.2019.1584576]
[103]
Ghorbani, V.R.; Malaekehpoor, S.M. N -Bromosulfonamides catalyzed synthesis of new spiro [indoline-3,4 ' -pyrano[2,3- c]pyrazole] derivatives. J. Heterocycl. Chem., 2017, 54(1), 465-472.
[http://dx.doi.org/10.1002/jhet.2605]
[104]
Jetti, S.R.; Verma, D.; Jain, S. NBS/AIBN promoted one-pot multi component regioselective synthesis of spiro heterobicyclic rings via Biginelli-like condensation reaction. J. Chem. Pharm. Res., 2012, 4, 2373-2379.
[105]
El-Mekabaty, A.; Etman, H.A.; Mosbah, A.; Fadda, A.A. Reactivity of barbituric, thiobarbituric acids and their related analogues: Synthesis of substituted and heterocycles-based pyrimidines. Curr. Org. Chem., 2020, 24(14), 1610-1642.
[http://dx.doi.org/10.2174/1385272824999200608134859]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy