Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Expression and Functional Characterization of a Novel NAD(H)- dependent 3α-HSDH

Author(s): Deshuai Lou*, Zixin Zhou, Xiaoli Zhang, Yangyang Cao, Qian Long, Cunhong Luo, Qiang Li, Xi Liu and Jun Tan*

Volume 29, Issue 11, 2022

Published on: 06 October, 2022

Page: [946 - 953] Pages: 8

DOI: 10.2174/0929866529666220822102311

Price: $65

Abstract

Background: 3α-Hydroxysteroid dehydrogenase (3α-HSDH) reversibly catalyzes the oxidation of the C3-hydroxyl group of steroids, and has been used in clinical applications to detect serum total bile acid (TBA). In this study, A novel 3α-HSDH (called Sb 3α-HSDH) was expressed and characterized.

Methods: Plasmid pGEX-6p-1 was used for the expression of Sb 3α-HSDH in Escherichia coli (BL21), and activities were determined by recording the change in absorbance at 340 nm with/without adding of ions. A prediction of its three-dimensional structure was performed with AlphaFold.

Results: The substrate specificity test indicated that Sb 3α-HSDH is NAD(H)-dependent and has no activity with NADP(H). We also showed that Sb 3α-HSDH can catalyze the oxidation reaction of GCDCA and GUDCA with catalytic efficiencies (kcat/Km) of 29.060 and 45.839 s-1mM-1, respectively. The temperature dependence of catalysis suggests that Sb 3α-HSDH is a member of the mesophilic enzymes with its best activity at about 45 °C. The optimum pH of Sb 3α-HSDH was found to be between pH 8.0 and 9.0. The effect of ions, including K+, Mg2+, Na+, Cu2+, Mn2+, Fe2+, and Fe3+ on enzyme activity was evaluated and K+ and Mg2+ were found to enhance the activity of Sb 3α-HSDH by about 20% at concentrations of 200 mM and 50 mM, respectively. The well-conserved GIG motif, the active sites, and the Rossmann fold in the threedimensional structure indicate that Sb 3α-HSDH belongs to the “classical” type of SDR superfamily.

Conclusion: We expressed and characterized a novel NAD(H)-dependent 3α-HSDH with typical threedimensional characteristics of the SDRs that exhibited substrate specificity to GCDCA and GUDCA.

Keywords: 3α-Hydroxysteroid dehydrogenase, Heterologous expression, Biochemical property, Catalytic activity, Short-chain dehydrogenase/reductase, Metal ions

Graphical Abstract

[1]
Doden, H.L.; Ridlon, J.M. Microbial hydroxysteroid dehydrogenases: From alpha to omega. Microorganisms, 2021, 9(3), 469.
[http://dx.doi.org/10.3390/microorganisms9030469] [PMID: 33668351]
[2]
Hofmann, A.F.; Hagey, L.R. Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci., 2008, 65(16), 2461-2483.
[http://dx.doi.org/10.1007/s00018-008-7568-6] [PMID: 18488143]
[3]
Sato, Y.; Atarashi, K.; Plichta, D.R.; Arai, Y.; Sasajima, S.; Kearney, S.M.; Suda, W.; Takeshita, K.; Sasaki, T.; Okamoto, S.; Skelly, A.N.; Okamura, Y.; Vlamakis, H.; Li, Y.; Tanoue, T.; Takei, H.; Nittono, H.; Narushima, S.; Irie, J.; Itoh, H.; Moriya, K.; Sugiura, Y.; Suematsu, M.; Moritoki, N.; Shibata, S.; Littman, D.R.; Fischbach, M.A.; Uwamino, Y.; Inoue, T.; Honda, A.; Hattori, M.; Murai, T.; Xavier, R.J.; Hirose, N.; Honda, K. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature, 2021, 599(7885), 458-464.
[http://dx.doi.org/10.1038/s41586-021-03832-5] [PMID: 34325466]
[4]
Degtiar, W.G.; Kushlinsky, N.E. 3alpha-Hydroxysteroid dehydrogenase in animal and human tissues. Biochemistry (Mosc.), 2001, 66(3), 256-266.
[http://dx.doi.org/10.1023/A:1010291527744] [PMID: 11333148]
[5]
Feldmann, D.; Read, M.H.; Rosenau, A.; Lavollay, B.; Aymard, P. Assay of total serum bile acids. Reference values in children. Ann. Biol. Clin. (Paris), 1982, 40(3), 181-185.
[PMID: 6958208]
[6]
Zhang, G.H.; Cong, A.R.; Xu, G.B.; Li, C.B.; Yang, R.F.; Xia, T.A. An enzymatic cycling method for the determination of serum total bile acids with recombinant 3alpha-hydroxysteroid dehydrogenase. Biochem. Biophys. Res. Commun., 2005, 326(1), 87-92.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.005] [PMID: 15567156]
[7]
Mundaca, R.A.; Moreno-Guzmán, M.; Eguílaz, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Enzyme biosensor for androsterone based on 3α-hydroxysteroid dehydrogenase immobilized onto a carbon nanotubes/ionic liquid/NAD+ composite electrode. Talanta, 2012, 99, 697-702.
[http://dx.doi.org/10.1016/j.talanta.2012.07.008] [PMID: 22967613]
[8]
Cheng, K.C. Molecular cloning of rat liver 3α-hydroxysteroid dehydrogenase and identification of structurally related proteins from rat lung and kidney. J. Steroid Biochem. Mol. Biol., 1992, 43(8), 1083-1088.
[http://dx.doi.org/10.1016/0960-0760(92)90335-G] [PMID: 22217852]
[9]
Möbus, E.; Maser, E. Molecular cloning, overexpression, and characterization of steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni. A novel member of the short-chain dehydrogenase/reductase superfamily. J. Biol. Chem., 1998, 273(47), 30888-30896.
[http://dx.doi.org/10.1074/jbc.273.47.30888] [PMID: 9812981]
[10]
Kataoka, S.; Nakamura, S.; Ohkubo, T.; Ueda, S.; Uchiyama, S.; Kobayashi, Y.; Oda, M. Crystallization and preliminary X-ray analysis of the complex of NADH and 3alpha-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 6), 569-571.
[http://dx.doi.org/10.1107/S1744309106016861] [PMID: 16754984]
[11]
Saunders, E.; Pukall, R.; Abt, B.; Lapidus, A.; Glavina Del Rio, T.; Copeland, A.; Tice, H.; Cheng, J.F.; Lucas, S.; Chen, F.; Nolan, M.; Bruce, D.; Goodwin, L.; Pitluck, S.; Ivanova, N.; Mavromatis, K.; Ovchinnikova, G.; Pati, A.; Chen, A.; Palaniappan, K.; Land, M.; Hauser, L.; Chang, Y.J.; Jeffries, C.D.; Chain, P.; Meincke, L.; Sims, D.; Brettin, T.; Detter, J.C.; Göker, M.; Bristow, J.; Eisen, J.A.; Markowitz, V.; Hugenholtz, P.; Kyrpides, N.C.; Klenk, H.P.; Han, C. Complete genome sequence of Eggerthella lenta type strain (IPP VPI 0255). Stand. Genomic Sci., 2009, 1(2), 174-182.
[http://dx.doi.org/10.4056/sigs.33592] [PMID: 21304654]
[12]
Jin, Y.; Stayrook, S.E.; Albert, R.H.; Palackal, N.T.; Penning, T.M.; Lewis, M. Crystal structure of human type III 3alpha-hydroxysteroid dehydrogenase/bile acid binding protein complexed with NADP(+) and ursodeoxycholate. Biochemistry, 2001, 40(34), 10161-10168.
[http://dx.doi.org/10.1021/bi010919a] [PMID: 11513593]
[13]
Grimm, C.; Maser, E.; Möbus, E.; Klebe, G.; Reuter, K.; Ficner, R. The crystal structure of 3alpha -hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni shows a novel oligomerization pattern within the short chain dehydrogenase/reductase family. J. Biol. Chem., 2000, 275(52), 41333-41339.
[http://dx.doi.org/10.1074/jbc.M007559200] [PMID: 11007791]
[14]
Lou, D.; Long, Q.; Luo, C.; Zhang, X.; Zhou, Z.; Zhang, C.; Li, Q.; Liu, X.; Tan, J. A novel NAD(H)-dependent 3alpha-HSDH with enhanced activity by magnesium or manganese ions. Int. J. Biol. Macromol., 2022, 204, 34-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.01.198] [PMID: 35124015]
[15]
Ji, S.; Pan, Y.; Zhu, L.; Tan, J.; Tang, S.; Yang, Q.; Zhang, Z.; Lou, D.; Wang, B. A novel 7α-hydroxysteroid dehydrogenase: Magnesium ion significantly enhances its activity and thermostability. Int. J. Biol. Macromol., 2021, 177, 111-118.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.082] [PMID: 33592267]
[16]
Tang, S.; Pan, Y.; Lou, D.; Ji, S.; Zhu, L.; Tan, J.; Qi, N.; Yang, Q.; Zhang, Z.; Yang, B.; Zhao, W.; Wang, B. Structural and functional characterization of a novel acidophilic 7α-hydroxysteroid dehydrogenase. Protein Sci., 2019, 28(5), 910-919.
[http://dx.doi.org/10.1002/pro.3599] [PMID: 30839141]
[17]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[18]
Lou, D.; Wang, B.; Tan, J.; Zhu, L. Carboxyl-terminal and Arg38 are essential for activity of the 7α-hydroxysteroid dehydrogenase from Clostridium absonum. Protein Pept. Lett., 2014, 21(9), 894-900.
[http://dx.doi.org/10.2174/0929866521666140507160050] [PMID: 24810359]
[19]
Lou, D.; Tan, J.; Zhu, L.; Ji, S.; Wang, B. The β-sheet core is the favored candidate of engineering SDR for enhancing thermostability but not for activity. Protein Pept. Lett., 2017, 24(6), 511-516.
[http://dx.doi.org/10.2174/0929866524666170126150006] [PMID: 28128053]
[20]
Kutyshenko, V.P.; Mikoulinskaia, G.V.; Chernyshov, S.V.; Yegorov, A.Y.; Prokhorov, D.A.; Uversky, V.N. Effect of C-terminal His-tag and purification routine on the activity and structure of the metalloenzyme, l-alanyl-d-glutamate peptidase of the bacteriophage T5. Int. J. Biol. Macromol., 2019, 124, 810-818.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.219] [PMID: 30500497]
[21]
Oppermann, U.; Filling, C.; Hult, M.; Shafqat, N.; Wu, X.; Lindh, M.; Shafqat, J.; Nordling, E.; Kallberg, Y.; Persson, B.; Jörnvall, H. Short-chain dehydrogenases/reductases (SDR): The 2002 update. Chem. Biol. Interact., 2003, 143-144, 247-253.
[http://dx.doi.org/10.1016/S0009-2797(02)00164-3] [PMID: 12604210]
[22]
Persson, B.; Kallberg, Y. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs). Chem. Biol. Interact., 2013, 202(1-3), 111-115.
[http://dx.doi.org/10.1016/j.cbi.2012.11.009] [PMID: 23200746]
[23]
Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult, J. Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins, 2021, 89(12), 1607-1617.
[http://dx.doi.org/10.1002/prot.26237] [PMID: 34533838]
[24]
Galperin, M.Y.; Koonin, E.V. Divergence and convergence in enzyme evolution. J. Biol. Chem., 2012, 287(1), 21-28.
[http://dx.doi.org/10.1074/jbc.R111.241976] [PMID: 22069324]
[25]
Lou, D.; Wang, B.; Tan, J.; Zhu, L.; Cen, X.; Ji, Q.; Wang, Y. The three-dimensional structure of Clostridium absonum 7α-hydroxysteroid dehydrogenase: New insights into the conserved arginines for NADP(H) recognition. Sci. Rep., 2016, 6(1), 22885.
[http://dx.doi.org/10.1038/srep22885] [PMID: 26961171]
[26]
Penning, T.M. The aldo-keto reductases (AKRs): Overview. Chem. Biol. Interact., 2015, 234, 236-246.
[http://dx.doi.org/10.1016/j.cbi.2014.09.024] [PMID: 25304492]
[27]
Zhao, H. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J. Mol. Catal., B Enzym., 2005, 37(1-6), 16-25.
[http://dx.doi.org/10.1016/j.molcatb.2005.08.007]
[28]
Schäfer, F.; Seip, N.; Maertens, B.; Block, H.; Kubicek, J. Purification of gst-tagged proteins. Methods Enzymol., 2015, 559, 127-139.
[http://dx.doi.org/10.1016/bs.mie.2014.11.005] [PMID: 26096507]
[29]
Deming, J.W. Psychrophiles and polar regions. Curr. Opin. Microbiol., 2002, 5(3), 301-309.
[http://dx.doi.org/10.1016/S1369-5274(02)00329-6] [PMID: 12057685]
[30]
Takai, K.; Nakamura, K.; Toki, T.; Tsunogai, U.; Miyazaki, M.; Miyazaki, J.; Hirayama, H.; Nakagawa, S.; Nunoura, T.; Horikoshi, K. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc. Natl. Acad. Sci. USA, 2008, 105(31), 10949-10954.
[http://dx.doi.org/10.1073/pnas.0712334105] [PMID: 18664583]
[31]
Verma, S.; Meghwanshi, G.K.; Kumar, R. Current perspectives for microbial lipases from extremophiles and metagenomics. Biochimie, 2021, 182, 23-36.
[http://dx.doi.org/10.1016/j.biochi.2020.12.027] [PMID: 33421499]
[32]
Littlechild, J.A. Enzymes from extreme environments and their industrial applications. Front. Bioeng. Biotechnol., 2015, 3, 161.
[http://dx.doi.org/10.3389/fbioe.2015.00161] [PMID: 26528475]
[33]
Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Ostell, J.; Pruitt, K.D.; Sayers, E.W. GenBank. Nucleic Acids Res., 2018, 46(D1), D41-D47.
[http://dx.doi.org/10.1093/nar/gkx1094] [PMID: 29140468]
[34]
Chen, J.; Gao, X.; Hong, L.; Ma, L.; Li, Y. Expression, purification and functional characterization of a novel 3α-hydroxysteroid dehydrogenase from Pseudomonas aeruginosa. Protein Expr. Purif., 2015, 115, 102-108.
[http://dx.doi.org/10.1016/j.pep.2015.07.006] [PMID: 26193374]
[35]
Caparco, A.A.; Pelletier, E.; Petit, J.L.; Jouenne, A.; Bommarius, B.R.; de Berardinis, V.; Zaparucha, A.; Champion, J.A.; Bommarius, A.S.; Vergne-Vaxelaire, C. Metagenomic mining for amine dehydrogenase discovery. Adv. Synth. Catal., 2020, 362(12), 2427-2436.
[http://dx.doi.org/10.1002/adsc.202000094]
[36]
Datta, S.; Rajnish, K.N.; Samuel, M.S.; Pugazlendhi, A.; Selvarajan, E. Metagenomic applications in microbial diversity, bioremediation, pollution monitoring, enzyme and drug discovery. A review. Environ. Chem. Lett., 2020, 18(4), 1229-1241.
[http://dx.doi.org/10.1007/s10311-020-01010-z]
[37]
Kavanagh, K.L.; Jörnvall, H.; Persson, B.; Oppermann, U. Medium- and short-chain dehydrogenase/reductase gene and protein families: The SDR superfamily: Functional and structural diversity within a family of metabolic and regulatory enzymes. Cell. Mol. Life Sci., 2008, 65(24), 3895-3906.
[http://dx.doi.org/10.1007/s00018-008-8588-y] [PMID: 19011750]
[38]
Danev, R.; Yanagisawa, H.; Kikkawa, M. Cryo-electron microscopy methodology: Current aspects and future directions. Trends Biochem. Sci., 2019, 44(10), 837-848.
[http://dx.doi.org/10.1016/j.tibs.2019.04.008] [PMID: 31078399]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy