Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Research Article

Preparation, Characterization and Thermal Studies of Polypyrrole - Gold Nanocomposites

Author(s): Mahesh D. Bedre, Vijaykumar B. Malashetty, Abbaraju Venkataramana, Shivakumar Inamdar and Raghunanadan Deshpande*

Volume 5, Issue 3, 2022

Published on: 06 October, 2022

Page: [212 - 220] Pages: 9

DOI: 10.2174/2452271605666220820124619

Price: $65

Abstract

Background: Understanding nanocomposites' morphological characteristics is important for explaining their properties and their usefulness.

Methods: In this paper, we present the method for interfacial synthesis of polypyrrole and its gold nanocomposites with varying concentrations of polymer. The bonding involved in the nanocomposites is understood from Fourier transform infrared spectroscopy and X-ray diffraction studies confirmed the crystalline nature of the particles.

Results: Scanning electron microscope and transmission electron microscopy studies showed that the spherical and globular nature of the particles is mutually connected to form nanocomposites compared with virgin polymer.

Conclusion: Catalytic behavior of gold nanoparticles in polymer composites is observed from the thermal analysis.

Keywords: gold nanoparticles, polypyrrole, nanocomposites, morphological studies, thermal analysis.

Graphical Abstract

[1]
Tamayo L, Palza H, Bejarano J, Zapata PA. Polymer composites with Metal nanoparticles: Synthesis, properties, and applications. In: polymer composites with functionalized nanoparticles. Amsterdam: Elsevier 2019; pp. 249-86.
[http://dx.doi.org/10.1016/B978-0-12-814064-2.00008-1]
[2]
He Z, Zhang Z, Bi S. Nanoparticles for organic electronics applications. Mater Res Express 2020; 7(1): 012004.
[http://dx.doi.org/10.1088/2053-1591/ab636f]
[3]
Namsheer K, Rout CS. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Advances 2021; 11(10): 5659-97.
[http://dx.doi.org/10.1039/D0RA07800J]
[4]
Mahesh DB, Basavaraj S, Deshpande R, Balaji DS, Venkataraman A. Preparation and characterization of polypyrrole silver nanocomposites via interfacial polymerization. Int J Polym Mater 2010; 59(8): 531-43.
[http://dx.doi.org/10.1080/00914031003760642]
[5]
Stamenovic U, Davidovic S, Sandra PS, Leskovac A, Stoiljkovic M, Vesna V. Antimicrobial and biological effects of polyaniline/polyvinylpyrrolidone nanocomposites loaded with silver nanospheres/triangles. New J Chem 2021; 45(28): 12711-20.
[http://dx.doi.org/10.1039/D1NJ02729H]
[6]
Khanna PK, Singh N, Charan S, Viswanath AK. Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Mater Chem Phys 2005; 92(1): 214-9.
[http://dx.doi.org/10.1016/j.matchemphys.2005.01.011]
[7]
Zhang Z, Zhang L, Wang S, Chen W, Lei Y. A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization-reduction approach 2001; 42: 8315-8.
[8]
Sharma S, Sudhakara P, Omran AAB, Singh J, Ilyas RA. Recent trends and developments in conducting polymer nanocomposites for multifunctional applications. Polymer 2021; 13(17): 2898.
[http://dx.doi.org/10.3390/polym13172898] [PMID: 34502938]
[9]
Ateh DD, Navsaria HA, Vadgama P. Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 2006; 3(11): 741-52.
[http://dx.doi.org/10.1098/rsif.2006.0141] [PMID: 17015302]
[10]
Sangiorgi N, Sanson A. Influence of electropolymerized polypyrrole optical properties on bifacial Dye-Sensitized Solar Cells. Polymer 2017; 125: 208-16.
[http://dx.doi.org/10.1016/j.polymer.2017.08.014]
[11]
Shu Gao Jiang Zhong, Xue Guobin, Wang Bo. Study on enhancement mechanism of conductivity induced by graphene oxide for polypyrrole nanocomposites. Macromol 2015; 48(5): 1592-7.
[12]
Masato A, Hiroyuki Y. Preparation of polypyrrole by emulsion polymerization using hydroxypropyl cellulose. Polym J 2006; 38(7): 703-9.
[http://dx.doi.org/10.1295/polymj.PJ2005198]
[13]
Wang H, Liu Y, Fei G, Lan J. Preparation, morphology, and conductivity of waterborne, nanostructured, cationic polyurethane/polypyrrole conductive coatings. J Appl Polym Sci 2015; 132(6): 41445.
[http://dx.doi.org/10.1002/app.41445]
[14]
Nazarenko OB, Amelkovich YA, Bannov AG, Berdyugina IS, Maniyan VP. Thermal stability and flammability of epoxy composites filled with multi-walled carbon nanotubes, boric Acid, and sodium bicarbonate. Polymers 2021; 13(4): 638.
[http://dx.doi.org/10.3390/polym13040638] [PMID: 33669925]
[15]
Laoutid F, Bonnaud L, Alexandre M, Lopez JM, Dubois P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater Sci Eng Rep 2009; 63(3): 100-25.
[http://dx.doi.org/10.1016/j.mser.2008.09.002]
[16]
Kang H, Geckeler K. Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization. Effect of the preparation technique and polymer additive. Polymer 2000; 41(18): 6931-4.
[http://dx.doi.org/10.1016/S0032-3861(00)00116-6]
[17]
Bartlewicz O, Dąbek I, Szymańska A, Maciejewski H. Heterogeneous catalysis with the participation of ionic liquids. Catalysts 2020; 10(11): 1227.
[http://dx.doi.org/10.3390/catal10111227]
[18]
Le TH, Kim Y, Yoon H. Electrical and electrochemical properties of conducting polymers. Polymers 2017; 9(4): 150.
[http://dx.doi.org/10.3390/polym9040150] [PMID: 30970829]
[19]
Dong YZ, Choi K, Kwon SH, Nam JD, Choi HJ. Nanoparticles functionalized by conducting polymers and their electrorheological and magnetorheological applications. Polymers 2020; 12(1): 204.
[http://dx.doi.org/10.3390/polym12010204] [PMID: 31941163]
[20]
Kurc B, Pigłowska M, Rymaniak Ł, Fuć P. Modern nanocomposites and hybrids as electrode materials used in energy carriers. Nanomaterials 2021; 11(2): 538.
[http://dx.doi.org/10.3390/nano11020538] [PMID: 33669863]
[21]
Ash B, Kheti J, Sanjay K, Subbaiah T, Anand S, Paramguru R. Physico-chemical and electro-chemical properties of nickel hydroxide precipitated in the presence of metal additives. Hydrometallurgy 2006; 84(3-4): 250-5.
[http://dx.doi.org/10.1016/j.hydromet.2006.05.007]
[22]
Yagati AK, Chavan SG, Baek C, Lee MH, Min J. Label-free impedance sensing of aflatoxin B1 with polyaniline nanofibers/Au nanoparticle electrode array. Sensors 2018; 18(5): 1320.
[http://dx.doi.org/10.3390/s18051320] [PMID: 29695134]
[23]
Selvan ST. Novel nanostructures of gold–polypyrrole composites. Chem Commun 1998; 3(3): 351-2.
[http://dx.doi.org/10.1039/a708050f]
[24]
Selvan ST, Spartz JP, Klok HA, Moller M. Gold–polypyrrole core–shell particles in diblock copolymer micelles. Adv Mater 1998; 10(2): 32-4.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:2<132::AID-ADMA132>3.0.CO;2-Y]
[25]
Shin HJ, Hwang IW, Hwang YN, et al. Comparative investigation of energy relaxation dynamics of gold nanoparticles and gold-polypyrrole encapsulated nanoparticles. J Phys Chem B 2003; 107(20): 4699-04.
[http://dx.doi.org/10.1021/jp022055o]
[26]
Park S, Lim JH, Chung SW, Mirkin CA. Self-assembly of mesoscopic metal-polymer amphiphiles. Science 2004; 303(5656): 348-51.
[http://dx.doi.org/10.1126/science.1093276] [PMID: 14726585]
[27]
Lu X, Chao D, Chem J, Zhang W, Wei Y. Preparation and characterization of inorganic/organic hybrid nanocomposites based on Au nanoparticles and polypyrrole. Mater Lett 2006; 60(23): 2851-4.
[http://dx.doi.org/10.1016/j.matlet.2006.02.002]
[28]
Begum B, Bilal S, Shah AUHA, Röse P. Physical, chemical, and electrochemical properties of redox-responsive polybenzopyrrole as electrode material for faradaic energy storage. Polymers 2021; 13(17): 2883.
[http://dx.doi.org/10.3390/polym13172883] [PMID: 34502922]
[29]
Maruthapandi M, Gedanken A. A short report on the polymerization of pyrrole and its copolymers by sonochemical synthesis of fluorescent carbon dots. Polymers 2019; 11(8): 1240.
[http://dx.doi.org/10.3390/polym11081240] [PMID: 31357422]
[30]
Jang KS, Ko HC, Moon B, Lee H. Observation of photoluminescence in polypyrrole micelles. Synth Met 2005; 150(2): 127-31.
[http://dx.doi.org/10.1016/j.synthmet.2005.01.013]
[31]
Gomes A, Carnerero JM, Jimenez-Ruiz A, Grueso E, Giráldez-Pérez RM, Prado-Gotor R. Lysozyme-AuNPs interactions: Determination of binding free energy. Nanomaterials 2021; 11(8): 2139.
[http://dx.doi.org/10.3390/nano11082139] [PMID: 34443969]
[32]
Luceño JA, Díez AM. Grafting of polypyrrole-3-carboxylic acid to the surface of hexamethylene diisocyanate-functionalized graphene oxide. Nanomaterials 2019; 9(8): 1095.
[http://dx.doi.org/10.3390/nano9081095] [PMID: 31370134]
[33]
Benhammada A, Trache D, Kesraoui M, Chelouche S. Hydrothermal synthesis of hematite nanoparticles decorated on carbon mesospheres and their synergetic action on the thermal decomposition of nitrocellulose. Nanomaterials 2020; 10: 968.
[http://dx.doi.org/10.3390/nano10050968]
[34]
Savva I, Kalogirou AS, Achilleos M, Vasile E, Koutentis PA, Krasia T. Evaluation of PVP/Au nanocomposite fibers as heterogeneous catalysts in indole synthesis. molecules 2016; 21: 1218.
[35]
Chalmers E, Lee H, Zhu C, Liu X. Increasing the conductivity and adhesion of polypyrrole hydrogels with electropolymerized polydopamine. Chem Mater 2020; 32(1): 234-44.
[http://dx.doi.org/10.1021/acs.chemmater.9b03655]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy