Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Research Article

Magnetic and Dielectric Properties of 0.1 Bi2/3Cu3Ti4O12 -0.9 Bi3LaTi3O12 Nanocomposite Prepared by Semi-Wet Route

Author(s): Pooja Gautam*, Arvind Kumar Bharti, Anurag Tewari and Kam Deo Mandal

Volume 8, Issue 3, 2023

Published on: 03 September, 2022

Page: [259 - 265] Pages: 7

DOI: 10.2174/2405461507666220820121450

Price: $65

Abstract

Introduction: A chemical formula of nanocomposite 0.1 Bi2/3Cu3Ti4O12 -0.9 Bi3LaTi3O12 (BCLT-19) was prepared by semi wet route using metal nitrate and solid TiO2. The phase formation of Bi2/3Cu3Ti4O12 (BCT) and Bi3LaTi3O12 (BLT) was confirmed by an X-ray diffraction (XRD) study.

Methods: Transmission electron microscope (TEM) analysis showed a nanoparticle of size 14 ± 5 nm on average for BCLT-19 composites. Scanning electron microscope (SEM) images exhibited a tubular, spherical, and heterogeneous structure of grains. The root means square roughness, average roughness, and maximum area peak height were explained by atomic force microscopy (AFM).

Results: Study of magnetic properties was determined as weak antiferromagnetic to ferromagnetic in nature. The high dielectric constant (ε' = 3147 at 100Hz to 500 K) of BCLT-19 may be due to the existence of space charge polarization.

Conclusion: This paper studies the novel composite materials of BCLT-19 micro-structural properties. This study might be useful for future random-access memory devices and dielectric materials.

Keywords: Nano composite, Magnetic behavior, Dielectric properties, Atomic force microscopy, CCTO, BTO

Graphical Abstract

[1]
Siriprapa P, Watcharapasorn A, Jiansirisomboon S. Electrical and mechanical characteristics of (Bi4-x Lax) Ti3O12 Ceramics. Ferroelectrics 2009; 382(1): 160-5.
[http://dx.doi.org/10.1080/00150190902870200]
[2]
Trubnikov IL, Svirskaya SN, Zubkov AA, Toguleva IN. Possible ways to obtain materials based on Bismuth TitanateBi4Ti3O12 Russian J of AppliChem 2009; 82(11): 1911-4.
[3]
Moure A, Castro A, Pardo L. Aurivillius-type ceramics, a class of hightemperature piezoelectric materials: Drawbacks, advantages and trends. Prog Solid State Chem 2009; 37(1): 15-39.
[4]
Villegas M, Caballero AC, Jardiel T. Evaluation of piezoelectric properties of bi4ti3o12based ceramics at high temperature. Ferroelectrics 2009; 393(1): 44-53.
[5]
Scott JF, Araujo PD. Ferroelectric memories science. Science 1989; 246: 1400-5.
[6]
Park BH, Kang BS, Bu SD, Noh TW, Lee Jand Jo W. Lanthanum substituted bismuth titanate for use in non-volatile memories. Nature 1999; 401(6754): 682-4.
[http://dx.doi.org/10.1038/44352]
[7]
Fang T. Mechanism for developing the boundary barrierlayers of CaCu3Ti4O12. J Am Ceram Soc 2004; 87: 2072-9.
[8]
Prakash BS, Varma KBR. Influence of sintering conditions and dopingon the dielectric relaxation originating from the surface layer effects in CaCu3Ti4O12ceramics. J Phys Chem Solids 2007; 68490-502.
[9]
Prakash BS, Varma KBR. Effect of sintering conditions on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics: A comparative study. Physica B 2006; 382(1-2): 312-9.
[http://dx.doi.org/10.1016/j.physb.2006.03.005]
[10]
Hao WT, Zhang JL, Tan YQ, Su W. B2009 Giant dielectric permittivity phenomena of compositionally and structurally CaCu3Ti4O12 like oxide ceramics. J Am Ceram Soc 2009; 92(12): 2937-43.
[http://dx.doi.org/10.1111/j.1551-2916.2009.03298.x]
[11]
Liu JJ, Duan CG, Yin WG, Mei WN, Smith RW, Hardly JR. Large dielectric constant and Maxwell–Wagner relaxation in Bi2/3Cu3Ti4O12. Phys Rev B Condens Matter Mater Phys 2004; 70(14): 144106.
[http://dx.doi.org/10.1103/PhysRevB.70.144106]
[12]
Liu JJ, Duan CG, Mei WN, Smith RW, Hardly JR. Dielectric properties and Maxwell–Wagner relaxation of compounds ACu3Ti4O12 (A= Ca, Bi2/3,Y2/3,La2/3). J Appl Phys 2005; 98(9): 98093703.
[http://dx.doi.org/10.1063/1.2125117]
[13]
Gautam P, Khare A, Sharma S, Singh NB, Mandal KD. Characterization of Bi2/3Cu3Ti4O12 ceramics synthesized by semi-wet route. Prog Nat Sci 2016; 26(6): 567-71.
[http://dx.doi.org/10.1016/j.pnsc.2016.11.008]
[14]
Gautam P, Yadava SS, Khare A, Mandal KD. Dielectric and magnetic studies of 0.5 Bi2/3Cu3Ti4O12- 0.5Bi3LaTi3O12 nano-composite ceramic synthesized by semi-wet route. Ceram Int 2017; 43(3): 3133-9.
[http://dx.doi.org/10.1016/j.ceramint.2016.11.130]
[15]
Ferrarelli MC, Adams TB, Feteira A, Sinclair DC, West AR. High intrinsic permittivity in Na1/2Bi1/2Cu3Ti4O12. Appl Phys Lett 2006; 89(21): 89212904.
[http://dx.doi.org/10.1063/1.2388251]
[16]
Ocwelwang AR, Tichagwa L. Synthesisand characterisationof Ag and nitrogen doped Tio2 nanoparticles supported on a chitosan-pvae nanofibre support. Int J Adv Res Chem Sci 2014; 1: 28-37.
[17]
Vasconcelos DCL, Costa VC, Nunes EHM, Sabioni ACS, Gasparon M, Vasconcelos WL. Infrared spectroscopy of titania sol-gel coatings on 316L stainless steel. Mater Sci Appl 2011; 2(10): 1375-82.
[http://dx.doi.org/10.4236/msa.2011.210186]
[18]
Simoes AZ, Quinelato C, Ries A, Stojanovic BD, Longo E, Varela JA. Preparation of lanthanum doped Bi4Ti3O12 ceramics by the polymeric precursor method. Mater Chem Phys 2006; 98(2-3): 481-5.
[http://dx.doi.org/10.1016/j.matchemphys.2005.09.070]
[19]
He F, He Z, Xie J, Li Y. IR and Raman Spectra Properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system. Ameri. J Anal Chem 2014; 5: 1142-50.
[http://dx.doi.org/10.4236/ajac.2014.516121]
[20]
Kumar BR, Rao TS. AFM studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig J Nanomater Biostruct 2012; 71881-9.
[21]
Pomiro F, Gil MD, Nassif V, Paesano JA, Gómez MI. Weak ferromagnetism and superparamagnetic clusters coexistence in YFe1-x COxO3 perovskites. Mater Res Bull 94: 472-82.
[22]
Zhang D, Zhu J, Zhang N, et al. Controllable fabrication and magnetic properties of double-shell cobalt oxides hollow particles. Sci Rep 2015; 5(1): 8737.
[http://dx.doi.org/10.1038/srep08737] [PMID: 25736824]
[23]
Singh L, Rai SU, Mandal DK, et al. Comparative dielectric studies of nanostructured BaTiO3,CaCu3Ti4O12 and 0.5BaTiO3⋅0.5CaCu3 Ti4O12 nano-composites synthesized by modified sol–gel and solid state methods. Mater Charact 2014; 96: 54-62.
[http://dx.doi.org/10.1016/j.matchar.2014.07.019]
[24]
Shen Q, Batashev I, Zang F, Ojiyed H. Dijk van N, Brunk E. The antiferromagnetic to ferrimagnetic phase transition in Mn2Sb1-xBix compounds. J Alloys Compd 2001; 866: 158963.
[http://dx.doi.org/10.1016/j.jallcom.2021.158963]
[25]
Singh L, Rai US, Mandal KD, Sin BC, Lee S, Lee Y. Dielectric, AC-impedance, modulus studies on 0.5BaTiO3-0.5CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycine-assisted nitrate-gel route. Ceram Int 2014; 40(7): 10073-83.
[http://dx.doi.org/10.1016/j.ceramint.2014.04.001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy