Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Nanogel-based Transdermal Drug Delivery System: A Therapeutic Strategy with Under Discussed Potential

Author(s): Lubna Tariq, Azher Arafah, Shafat Ali, Saba Beigh, Mashooq Ahmad Dar, Tanvir ul Hassan Dar, Aqib Iqbal Dar, Rana M. Alsaffar, Mubashir Hussain Masoodi and Muneeb U. Rehman*

Volume 23, Issue 1, 2023

Published on: 14 October, 2022

Page: [44 - 61] Pages: 18

DOI: 10.2174/1568026622666220818112728

Price: $65

Abstract

The application of nanoparticles in medication delivery has revolutionized the field of therapeutic biology. To improve medical efficacy, currently, drug nanocarriers are employed to control the release and stability, expand its circulation time, or protect it from cell clearance or premature breakdown. A crosslinked polymeric framework is used to crosslink the hydrogel nanoparticle dispersions for safer and stable delivery on target sites. Nanogels have developed in the last two decades as potential biomaterials with a wide variety of applications. Later attributes of nanogels are mainly due to large surface areas, retention of molecules, size flexibility, and water-based formulations that have made them popular as drug delivery vehicles, as seen by several in vivo uses. The gel matrix containing the nanoparticle drug demonstrated a considerable increase in drug penetration in transdermal drug and topical delivery methods. This review aims to understand why and how nanogels are considered so innovative as a drug delivery method. It also examines their preparation methods and applications in the pharmaceutical and biomedical fields and discusses the benefits of nanogels, including swelling capacity and stimulus stimuli sensitivity. Nanogels, on the other hand, have recently been investigated for applications outside the field of biomedicine. Since there are many possible uses for nanogels, we have comprehensively reviewed the current state of the art for all feasible nanogel applications and manufacturing methods.

Keywords: Nanotechnology, Nanogels, Hydrogels, Transdermal drug delivery system, Gel matrix, Therapeutics

Graphical Abstract

[1]
Li, C.; Obireddy, S.R.; Lai, W.F. Preparation and use of nanogels as carriers of drugs. Drug Deliv., 2021, 28(1), 1594-1602.
[http://dx.doi.org/10.1080/10717544.2021.1955042] [PMID: 34308729]
[2]
Bernhard, S.; Tibbitt, M.W. Supramolecular engineering of hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2021, 171, 240-256.
[http://dx.doi.org/10.1016/j.addr.2021.02.002] [PMID: 33561451]
[3]
Suhail, M.; Rosenholm, J.M.; Minhas, M.U.; Badshah, S.F.; Naeem, A.; Khan, K.U.; Fahad, M. Nanogels as drug-delivery systems: A comprehensive overview. Ther. Deliv., 2019, 10(11), 697-717.
[http://dx.doi.org/10.4155/tde-2019-0010] [PMID: 31789106]
[4]
Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. Engl., 2009, 48(30), 5418-5429.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[5]
Jha, A.; Rama, A.; Ladani, B.; Verma, N.; Kannan, S.; Naha, A. Temperature And Ph-responsive nanogels as intelligent drug delivery systems: A comprehensive review. J. Appl. Pharm. Sci., 2021.
[http://dx.doi.org/10.7324/JAPS.2021.1101201]
[6]
Farhana, S.; Imran-Ul-Haque, M.; Arafat, M.; Sharmin, S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci., 2013, 3(1), S95-S105.
[7]
Sahiner, N.; Godbey, W.; McPherson, G.; John, V. Microgel, nanogel and hydrogel–hydrogel semi-IPN composites for biomedical applications: Synthesis and characterization. Colloid Polym. Sci., 2006, 284(10), 1121-1129.
[http://dx.doi.org/10.1007/s00396-006-1489-4]
[8]
Lu, Y.; Jia, D.; Ma, X.; Liang, M.; Hou, S.; Qiu, W.; Gao, Y.; Xue, P.; Kang, Y.; Xu, Z. Reduction-responsive chemo-capsule-based prodrug nanogel for synergistic treatment of tumor chemotherapy. ACS Appl. Mater. Interfaces, 2021, 13(7), 8940-8951.
[http://dx.doi.org/10.1021/acsami.0c21710] [PMID: 33565847]
[9]
Vinogradov, S.V. Nanogels in the race for drug delivery. Nanomedicine (Lond.), 2010, 5(2), 165-168.
[http://dx.doi.org/10.2217/nnm.09.103] [PMID: 20148627]
[10]
Peng, S.; Ouyang, B.; Xin, Y.; Zhao, W.; Shen, S.; Zhan, M.; Lu, L. Hypoxia-degradable and long-circulating zwitterionic phosphorylcholine-based nanogel for enhanced tumor drug delivery. Acta Pharm. Sin. B, 2021, 11(2), 560-571.
[http://dx.doi.org/10.1016/j.apsb.2020.08.012] [PMID: 33643831]
[11]
Pinelli, F.; Perale, G.; Rossi, F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels, 2020, 6(1), 6.
[http://dx.doi.org/10.3390/gels6010006] [PMID: 32033057]
[12]
Kazakov, S. Liposome-nanogel structures for future pharmaceutical applications: An updated review. Curr. Pharm. Des., 2016, 22(10), 1391-1413.
[http://dx.doi.org/10.2174/1381612822666160125114733] [PMID: 26806343]
[13]
Chiriac, A.P.; Ghilan, A.; Neamtu, I.; Nita, L.E.; Rusu, A.G.; Chiriac, V.M. Advancement in the biomedical applications of the (nano) gel structures based on particular polysaccharides. Macromol. Biosci., 2019, 19(9), e1900187.
[http://dx.doi.org/10.1002/mabi.201900187] [PMID: 31373753]
[14]
Qin, J.H.; Zhang, H.; Sun, P.; Huang, Y.D.; Shen, Q.; Yang, X.G.; Ma, L.F. Ionic liquid induced highly dense assembly of porphyrin in MOF nanosheets for photodynamic therapy. Dalton Trans., 2020, 49(48), 17772-17778.
[http://dx.doi.org/10.1039/D0DT03031G] [PMID: 33245085]
[15]
Nochi, T.; Yuki, Y.; Takahashi, H.; Sawada, S.; Mejima, M.; Kohda, T.; Harada, N.; Kong, I.G.; Sato, A.; Kataoka, N.; Tokuhara, D.; Kurokawa, S.; Takahashi, Y.; Tsukada, H.; Kozaki, S.; Akiyoshi, K.; Kiyono, H. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nat. Mater., 2010, 9(7), 572-578.
[http://dx.doi.org/10.1038/nmat2784] [PMID: 20562880]
[16]
Zha, L.; Banik, B.; Alexis, F. Stimulus responsive nanogels for drug delivery. Soft Matter, 2011, 7(13), 5908.
[http://dx.doi.org/10.1039/c0sm01307b]
[17]
Movassaghian, S.; Merkel, O.M.; Torchilin, V.P. Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(5), 691-707.
[http://dx.doi.org/10.1002/wnan.1332] [PMID: 25683687]
[18]
Zhao, Z.; Hu, R.; Shi, H.; Wang, Y.; Ji, L.; Zhang, P.; Zhang, Q. Design of ruthenium-albumin hydrogel for cancer therapeutics and luminescent imaging. J. Inorg. Biochem., 2019, 194, 19-25.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.02.002] [PMID: 30798078]
[19]
Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther., 2021, 6(1), 426.
[http://dx.doi.org/10.1038/s41392-021-00830-x] [PMID: 34916490]
[20]
Wei, Y.S.; Chen, K.S.; Wu, L.T. In situ synthesis of high swell ratio polyacrylic acid/silver nanocomposite hydrogels and their antimicrobial properties. J. Inorg. Biochem., 2016, 164, 17-25.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.08.007] [PMID: 27968959]
[21]
Keskin, D.; Zu, G.; Forson, A.M.; Tromp, L.; Sjollema, J.; Van Rijn, P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact. Mater., 2021, 6(10), 3634-3657.
[http://dx.doi.org/10.1016/j.bioactmat.2021.03.004] [PMID: 33898869]
[22]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[23]
Szilágyi, B.Á.; Némethy, Á.; Magyar, A.; Szabó, I.; Bősze, S.; Gyarmati, B.; Szilágyi, A. Amino acid based polymer hydrogel with enzymatically degradable cross-links. React. Funct. Polym., 2018, 133, 21-28.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.09.015]
[24]
Peres, L.; Dos Anjos, R.; Tappertzhofen, L.; Feuser, P.; De Araújo, P.; Landfester, K.; Sayer, C.; Muñoz-Espí, R. Ph-responsive physically and chemically cross-linked glutamic-acid-based hydrogels and nanogels. Eur. Polym. J., 2018, 101, 341-349.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.02.039]
[25]
Cortez-Lemus, N.; Licea-Claverie, A. Poly(N-Vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular. Prog. Polym. Sci., 2016, 53, 1-51.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.08.001]
[26]
Etchenausia, L.; Khoukh, A.; Deniau Lejeune, E.; Save, M. RAFT/MADIX emulsion copolymerization of vinyl acetate And N-vinylcaprolactam: Towards waterborne physically crosslinked thermoresponsive particles. Polym. Chem., 2017, 8(14), 2244-2256.
[http://dx.doi.org/10.1039/C7PY00221A]
[27]
Buwalda, S.J.; Vermonden, T.; Hennink, W.E. Hydrogels for therapeutic delivery: Current developments and future directions. Biomacromolecules, 2017, 18(2), 316-330.
[http://dx.doi.org/10.1021/acs.biomac.6b01604] [PMID: 28027640]
[28]
Wang, J.; Wang, X.; Yan, G.; Fu, S.; Tang, R. pH-sensitive nanogels with ortho ester linkages prepared via thiol-ene click chemistry for efficient intracellular drug release. J. Colloid Interface Sci., 2017, 508, 282-290.
[http://dx.doi.org/10.1016/j.jcis.2017.08.051] [PMID: 28843107]
[29]
Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; Choudhury, H.; Pandey, M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract., 2018, 136, 52-77.
[http://dx.doi.org/10.1016/j.diabres.2017.11.018] [PMID: 29196152]
[30]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[31]
Jiang, Y.; Chen, J.; Deng, C.; Suuronen, E.J.; Zhong, Z. Click hydrogels, microgels and nanogels: Emerging platforms for drug delivery and tissue engineering. Biomaterials, 2014, 35(18), 4969-4985.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.001] [PMID: 24674460]
[32]
Yin, Y.; Hu, B.; Yuan, X.; Cai, L.; Gao, H.; Yang, Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics, 2020, 12(3), 290.
[http://dx.doi.org/10.3390/pharmaceutics12030290] [PMID: 32210184]
[33]
Neamtu, I.; Rusu, A.G.; Diaconu, A.; Nita, L.E.; Chiriac, A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv., 2017, 24(1), 539-557.
[http://dx.doi.org/10.1080/10717544.2016.1276232] [PMID: 28181831]
[34]
Samadian, H.; Maleki, H.; Allahyari, Z.; Jaymand, M. Natural polymers-based light-induced hydrogels: Promising biomaterials for biomedical applications. Coord. Chem. Rev., 2020, 420, 213432.
[http://dx.doi.org/10.1016/j.ccr.2020.213432]
[35]
Ahmed, S.; Alhareth, K.; Mignet, N. Advancement in nanogel formulations provides controlled drug release. Int. J. Pharm., 2020, 584, 119435.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119435] [PMID: 32439585]
[36]
Mizrahy, S.; Peer, D. Polysaccharides as building blocks for nanotherapeutics. Chem. Soc. Rev., 2012, 41(7), 2623-2640.
[http://dx.doi.org/10.1039/C1CS15239D] [PMID: 22085917]
[37]
Hajebi, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Roghani-Mamaqani, H.; Tahriri, M.; Tayebi, L.; Hamblin, M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater., 2019, 92, 1-18.
[http://dx.doi.org/10.1016/j.actbio.2019.05.018] [PMID: 31096042]
[38]
Rahimian, K.; Wen, Y.; Oh, J. Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer (Guildf.), 2015, 72, 387-394.
[http://dx.doi.org/10.1016/j.polymer.2015.01.024]
[39]
Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques, 2004, 37(5), 790-796, 798-802.
[http://dx.doi.org/10.2144/04375RV01] [PMID: 15560135]
[40]
Zhang, X.; Malhotra, S.; Molina, M.; Haag, R. Micro- and nanogels with labile crosslinks-from synthesis to biomedical applications. Chem. Soc. Rev., 2015, 44(7), 1948-1973.
[http://dx.doi.org/10.1039/C4CS00341A] [PMID: 25620415]
[41]
Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Control. Release, 2016, 240, 109-126.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[42]
Tian, Y.; Tian, R.; Chen, L.; Jin, R.; Feng, Y.; Bai, Y.; Chen, X. Redox-responsive nanogel with intracellular reconstruction and programmable drug release for targeted tumor therapy. Macromol. Rapid Commun., 2019, 40(8), e1800824.
[http://dx.doi.org/10.1002/marc.201800824] [PMID: 30779386]
[43]
Ding, L.; Jiang, Y.; Zhang, J.; Klok, H.A.; Zhong, Z. pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: Synthesis and targeted intracellular protein delivery to CD44 positive cancer cells. Biomacromolecules, 2018, 19(2), 555-562.
[http://dx.doi.org/10.1021/acs.biomac.7b01664] [PMID: 29284258]
[44]
Luan, S.; Zhu, Y.; Wu, X.; Wang, Y.; Liang, F.; Song, S. Hyaluronic-acid-based pH-sensitive nanogels for tumor-targeted drug delivery. ACS Biomater. Sci. Eng., 2017, 3(10), 2410-2419.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00444] [PMID: 33445299]
[45]
Li, Z.; Huang, J.; Wu, J. pH-Sensitive nanogels for drug delivery in cancer therapy. Biomater. Sci., 2021, 9(3), 574-589.
[http://dx.doi.org/10.1039/D0BM01729A] [PMID: 33306076]
[46]
Abdallah, D.; Weiss, R. Organogels and low molecular mass organic gelators. Adv. Mater., 2000, 12(17), 1237-1247.
[http://dx.doi.org/10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B]
[47]
Hoffman, A. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev., 2012, 64, 18-23.
[http://dx.doi.org/10.1016/j.addr.2012.09.010] [PMID: 11755703]
[48]
Vintiloiu, A.; Leroux, J.C. Organogels and their use in drug delivery-a review. J. Control. Release, 2008, 125(3), 179-192.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.014] [PMID: 18082283]
[49]
Chang, R.K.; Raw, A.; Lionberger, R.; Yu, L. Generic development of topical dermatologic products: Formulation development, process development, and testing of topical dermatologic products. AAPS J., 2013, 15(1), 41-52.
[http://dx.doi.org/10.1208/s12248-012-9411-0] [PMID: 23054971]
[50]
Chandra, A.; Sharma, U.; Jain, S.; Soni, R. Nanosuspension: An overview. J. Drug Deliv. Ther., 2013, 3(6), 162-167.
[http://dx.doi.org/10.22270/jddt.v3i6.677]
[51]
Lim, C.K.; Singh, A.; Heo, J.; Kim, D.; Lee, K.E.; Jeon, H.; Koh, J.; Kwon, I.C.; Kim, S. Gadolinium-coordinated elastic nanogels for in vivo tumor targeting and imaging. Biomaterials, 2013, 34(28), 6846-6852.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.069] [PMID: 23777911]
[52]
Chacko, R.T.; Ventura, J.; Zhuang, J.; Thayumanavan, S. Polymer nanogels: A versatile nanoscopic drug delivery platform. Adv. Drug Deliv. Rev., 2012, 64(9), 836-851.
[http://dx.doi.org/10.1016/j.addr.2012.02.002] [PMID: 22342438]
[53]
Xing, L.; Fan, Y.T.; Shen, L.J.; Yang, C.X.; Liu, X.Y.; Ma, Y.N.; Qi, L.Y.; Cho, K.H.; Cho, C.S.; Jiang, H.L. pH-sensitive and specific ligand-conjugated chitosan nanogels for efficient drug delivery. Int. J. Biol. Macromol., 2019, 141, 85-97.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.237] [PMID: 31473314]
[54]
Cuggino, J.C.; Blanco, E.R.O.; Gugliotta, L.M.; Alvarez Igarzabal, C.I.; Calderón, M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Release, 2019, 307, 221-246.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.005] [PMID: 31175895]
[55]
Matusiak, M.; Kadlubowski, S.; Rosiak, J. Nanogels synthesized by radiation-induced intramolecular crosslinking of water-soluble polymers. Radiat. Phys. Chem., 2020, 169, 108099.
[http://dx.doi.org/10.1016/j.radphyschem.2018.12.019]
[56]
Shah, S.; Rangaraj, N.; Laxmikeshav, K.; Sampathi, S. “Nanogels as drug carriers-introduction, chemical aspects, release mechanisms and potential applications”. Int. J. Pharm., 2020, 581, 119268.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119268] [PMID: 32240803]
[57]
Qureshi, M.; Khatoon, F. Different types of smart nanogel for targeted delivery. J. Sci.: Adv. Mater. Devices, 2019, 4(2), 201-212.
[58]
Su, S.; Kang, M. P. Recent advances in nanocarrier-assisted therapeutics delivery systems. Pharmaceutics, 2020, 12(9), 837.
[http://dx.doi.org/10.3390/pharmaceutics12090837] [PMID: 32882875]
[59]
Benson, H.; Grice, J.; Mohammed, Y.; Namjoshi, S.; Roberts, M. Topical and transdermal drug delivery: From simple potions to smart technologies. Curr. Drug Deliv., 2019, 16(5), 444-460.
[60]
Moghimi, H.; Shafizade, A.; Kamlinejad, M. Drug delivery systems in Iranian traditional pharmacy (in Persian); Traditional Medicine and Materia Medica Research Center: Tehran, Iran, 2011.
[61]
Asbill, C.S.; Michniak, B.B. Percutaneous penetration enhancers: Local versus transdermal activity. Pharm. Sci. Technol. Today, 2000, 3(1), 36-41.
[http://dx.doi.org/10.1016/S1461-5347(99)00225-4] [PMID: 10637599]
[62]
Balaji, P.; Thirumal, M.; Gowri, R.; Divya, V.; Ramaswamy, V. Design and evaluation of matrix type of transdermal patches of methotrexate. Int. J. Pharm. Chem. Biol. Sci., 2012, 2, 464-471.
[63]
Funke, A.P.; Günther, C.; Müller, R.H.; Lipp, R. In vitro release and transdermal fluxes of a highly lipophilic drug and of enhancers from matrix TDS. J. Control. Release, 2002, 82(1), 63-70.
[http://dx.doi.org/10.1016/S0168-3659(02)00105-0] [PMID: 12106977]
[64]
Hardainiyan, S.; Kumar, K.; Nandy, B.; Saxena, R. Design, formulation and in vitro drug release from transdermal patches containing imipramine hydrochloride as model drug. Int. J. Pharm. Pharm. Sci., 2017, 9(6), 220.
[http://dx.doi.org/10.22159/ijpps.2017v9i6.16851]
[65]
Etropolski, M. Dose conversion between tapentadolimmediateand extended release for low back pain. Pain Physician, 2010, 13(1), 61-70.
[66]
Romoli, M.; Costa, C.; Siliquini, S.; Corbelli, I.; Eusebi, P.; Bedetti, C.; Caproni, S.; Cupini, L.M.; Calabresi, P.; Sarchielli, P. Antiepileptic drugs in migraine and epilepsy: Who is at increased risk of adverse events? Cephalalgia, 2018, 38(2), 274-282.
[http://dx.doi.org/10.1177/0333102416683925] [PMID: 27956547]
[67]
Goyal, N.; Kumar, A. Formulation and in vitro evaluation of salbutamol sulphate and theophylline extended-release tablets using modified polymers. Int. J. Pharm. Pharm. Sci., 2018, 10(8), 67.
[http://dx.doi.org/10.22159/ijpps.2018v10i8.27865]
[68]
Pastore, M.N.; Kalia, Y.N.; Horstmann, M.; Roberts, M.S. Transdermal patches: History, development and pharmacology. Br. J. Pharmacol., 2015, 172(9), 2179-2209.
[http://dx.doi.org/10.1111/bph.13059] [PMID: 25560046]
[69]
Isaac, M.; Holvey, C. Transdermal patches: The emerging mode of drug delivery system in psychiatry. Ther. Adv. Psychopharmacol., 2012, 2(6), 255-263.
[http://dx.doi.org/10.1177/2045125312458311] [PMID: 23983984]
[70]
McAfee, D.A.; Hadgraft, J.; Lane, M.E. Rotigotine: The first new chemical entity for transdermal drug delivery. Eur. J. Pharm. Biopharm., 2014, 88(3), 586-593.
[http://dx.doi.org/10.1016/j.ejpb.2014.08.007] [PMID: 25173087]
[71]
Mofidfar, M.; Prausnitz, M.R. Electrospun transdermal patch for contraceptive hormone delivery. Curr. Drug Deliv., 2019, 16(6), 577-583.
[http://dx.doi.org/10.2174/1567201816666190308112010] [PMID: 30848203]
[72]
Parhi, R.; Suresh, P.; Pattnaik, S. pluronic Lecithin Organogel (PLO) of diltiazem hydrochloride: Effect of solvents/penetration enhancers on ex vivo permeation. Drug Deliv. Transl. Res., 2016, 6(3), 243-253.
[http://dx.doi.org/10.1007/s13346-015-0276-5] [PMID: 26754742]
[73]
Pegoraro, C.; MacNeil, S.; Battaglia, G. Transdermal drug delivery: From micro to nano. Nanoscale, 2012, 4(6), 1881-1894.
[http://dx.doi.org/10.1039/c2nr11606e] [PMID: 22334401]
[74]
Mavuso, S.; Marimuthu, T.; Choonara, Y.E.; Kumar, P.; Du Toit, L.C.; Pillay, V. A review of polymeric colloidal nanogels in transdermal drug delivery. Curr. Pharm. Des., 2015, 21(20), 2801-2813.
[http://dx.doi.org/10.2174/1381612821666150428142920] [PMID: 25925117]
[75]
Donnelly, R.F.; Singh, T.R.; Garland, M.J.; Migalska, K.; Majithiya, R.; McCrudden, C.M.; Kole, P.L.; Mahmood, T.M.; McCarthy, H.O.; Woolfson, A.D. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv. Funct. Mater., 2012, 22(23), 4879-4890.
[http://dx.doi.org/10.1002/adfm.201200864] [PMID: 23606824]
[76]
Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol., 2008, 26(11), 1261-1268.
[http://dx.doi.org/10.1038/nbt.1504] [PMID: 18997767]
[77]
Larrañeta, E.; Lutton, R.; Woolfson, A.; Donnelly, R. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. Rep., 2016, 104, 1-32.
[http://dx.doi.org/10.1016/j.mser.2016.03.001]
[78]
Benson, H.; Watkinson, A. Topical and transdermal drug delivery: Principles and practice; Wiley: Hoboken, NJ, USA, 2012, p. 464.
[79]
Brambilla, D.; Luciani, P.; Leroux, J.C. Breakthrough discoveries in drug delivery technologies: The next 30 years. J. Control. Release, 2014, 190, 9-14.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.056] [PMID: 24794899]
[80]
Gratieri, T.; Alberti, I.; Lapteva, M.; Kalia, Y.N. Next generation intra- and transdermal therapeutic systems: Using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur. J. Pharm. Sci., 2013, 50(5), 609-622.
[http://dx.doi.org/10.1016/j.ejps.2013.03.019] [PMID: 23567467]
[81]
Castañeda, P.S.; Domínguez Delgado, C.L.; Cruz, I.M.R.; Contreras, L.M.M.; Trinidad, E.M.M.; Cervantes, M.L.; Escobar-Chávez, J.J. Development of poly (Methyl vinyl ether-alt-maleic acid) microneedles for transdermal delivery of atorvastatin calcium. Curr. Pharm. Biotechnol., 2020, 21(9), 852-861.
[http://dx.doi.org/10.2174/1389201021666200217103302] [PMID: 32065098]
[82]
Rehman, K.; Zulfakar, M.H. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Dev. Ind. Pharm., 2014, 40(4), 433-440.
[http://dx.doi.org/10.3109/03639045.2013.828219] [PMID: 23937582]
[83]
Špaglová, M.; Čuchorová, M.; Čierna, M.; Poništ, S.; Bauerová, K. Microemulsions as solubilizers and penetration enhancers for minoxidil release from gels. Gels, 2021, 7(1), 26.
[http://dx.doi.org/10.3390/gels7010026] [PMID: 33802416]
[84]
Pinto, T.C.; Martins, A.J.; Pastrana, L.; Pereira, M.C.; Cerqueira, M.A. Oleogel-based systems for the delivery of bioactive compounds in foods. Gels, 2021, 7(3), 86.
[http://dx.doi.org/10.3390/gels7030086] [PMID: 34287270]
[85]
Choudhury, H.; Gorain, B.; Pandey, M.; Chatterjee, L.A.; Sengupta, P.; Das, A.; Molugulu, N.; Kesharwani, P. Recent update on nanoemulgel as topical drug delivery system. J. Pharm. Sci., 2017, 106(7), 1736-1751.
[http://dx.doi.org/10.1016/j.xphs.2017.03.042] [PMID: 28412398]
[86]
Garg, A.; Sharma, G.S.; Goyal, A.K.; Ghosh, G.; Si, S.C.; Rath, G. Recent advances in topical carriers of anti-fungal agents. Heliyon, 2020, 6(8), e04663.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04663] [PMID: 32904164]
[87]
Zagórska-Dziok, M.; Sobczak, M. Hydrogel-based active substance release systems for cosmetology and dermatology application: A review. Pharmaceutics, 2020, 12(5), 396.
[http://dx.doi.org/10.3390/pharmaceutics12050396] [PMID: 32357389]
[88]
Abkin, S.V.; Pankratova, K.M.; Komarova, E.Y.; Guzhova, I.V.; Margulis, B.A. Hsp70 chaperone-based gel composition as a novel immunotherapeutic anti-tumor tool. Cell Stress Chaperones, 2013, 18(3), 391-396.
[http://dx.doi.org/10.1007/s12192-012-0391-x] [PMID: 23233202]
[89]
Mangalathillam, S.; Rejinold, N.S.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale, 2012, 4(1), 239-250.
[http://dx.doi.org/10.1039/C1NR11271F] [PMID: 22080352]
[90]
Sabitha, M.; Sanoj Rejinold, N.; Nair, A.; Lakshmanan, V.K.; Nair, S.V.; Jayakumar, R. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr. Polym., 2013, 91(1), 48-57.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.060] [PMID: 23044104]
[91]
Priya, P.; Mohan Raj, R.; Vasanthakumar, V.; Raj, V. Curcumin-loaded layer-by-layer folic acid and casein coated carboxymethyl cellulose/casein nanogels for treatment of skin cancer. Arab. J. Chem., 2020, 13(1), 694-708.
[http://dx.doi.org/10.1016/j.arabjc.2017.07.010]
[92]
Abandansari, H.; Nabid, M.; Rezaei, S.; Niknejad, H. Ph-sensitive nanogels based on Boltorn® H40 and poly(vinylpyridine) using mini-emulsion polymerization for delivery of hydrophobic anticancer drugs. Polymer (Guildf.), 2014, 55(16), 3579-3590.
[http://dx.doi.org/10.1016/j.polymer.2014.06.037]
[93]
Talele, S.; Nikam, P.; Ghosh, B.; Deore, C.; Jaybhave, A.; Jadhav, A. A research article on nanogel as topical promising drug delivery for diclofenac sodium. Indian J. Pharm. Educ. Res., 2017, 51(4s), s580-s587.
[http://dx.doi.org/10.5530/ijper.51.4s.86]
[94]
Shah, P.P.; Desai, P.R.; Patel, A.R.; Singh, M.S. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials, 2012, 33(5), 1607-1617.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.011] [PMID: 22118820]
[95]
Sivaram, A.J.; Rajitha, P.; Maya, S.; Jayakumar, R.; Sabitha, M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(4), 509-533.
[http://dx.doi.org/10.1002/wnan.1328] [PMID: 25581024]
[96]
Mohammed, N.; Rejinold, N.S.; Mangalathillam, S.; Biswas, R.; Nair, S.V.; Jayakumar, R. Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J. Biomed. Nanotechnol., 2013, 9(9), 1521-1531.
[http://dx.doi.org/10.1166/jbn.2013.1647] [PMID: 23980500]
[97]
Lee, J.; Lee, C.; Kim, T.H.; Lee, E.S.; Shin, B.S.; Chi, S.C.; Park, E.S.; Lee, K.C.; Youn, Y.S. Self-assembled glycol chitosan nanogels containing palmityl-acylated exendin-4 peptide as a long-acting anti-diabetic inhalation system. J. Control. Release, 2012, 161(3), 728-734.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.029] [PMID: 22634071]
[98]
Ashoori, Y.; Mohkam, M.; Heidari, R.; Abootalebi, S.N.; Mousavi, S.M.; Hashemi, S.A.; Golkar, N.; Gholami, A. Development and in vivo characterization of probiotic lysate-treated chitosan nanogel as a novel biocompatible formulation for wound healing. BioMed Res. Int., 2020, 2020, 8868618.
[http://dx.doi.org/10.1155/2020/8868618] [PMID: 33778064]
[99]
Bagheri, F.; Darakhshan, S.; Mazloomi, S.; Shiri Varnamkhasti, B.; Tahvilian, R. Dual loading of Nigella sativa oil-atorvastatin in chitosan-carboxymethyl cellulose nanogel as a transdermal delivery system. Drug Dev. Ind. Pharm., 2021, 47(4), 569-578.
[http://dx.doi.org/10.1080/03639045.2021.1892742] [PMID: 33819116]
[100]
Muzzarelli, R. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym., 2009, 76(2), 167-182.
[http://dx.doi.org/10.1016/j.carbpol.2008.11.002]
[101]
Eming, S.A.; Tomic-Canic, M. Updates in wound healing: Mechanisms and translation. Exp. Dermatol., 2017, 26(2), 97-98.
[http://dx.doi.org/10.1111/exd.13281] [PMID: 28133858]
[102]
Moghaddam, K.M.; Iranshahi, M.; Yazdi, M.C.; Shahverdi, A.R. The combination effect of curcumin with different antibiotics against Staphylococcus aureus. Int. J. Green Pharm, 2009, 3(2), 141-143.
[http://dx.doi.org/10.4103/0973-8258.54906]
[103]
Gopinath, D.; Ahmed, M.R.; Gomathi, K.; Chitra, K.; Sehgal, P.K.; Jayakumar, R. Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials, 2004, 25(10), 1911-1917.
[http://dx.doi.org/10.1016/S0142-9612(03)00625-2] [PMID: 14738855]
[104]
Sankar, P.; Telang, A.G.; Suresh, S.; Kesavan, M.; Kannan, K.; Kalaivanan, R.; Sarkar, S.N. Immunomodulatory effects of nanocurcumin in arsenic-exposed rats. Int. Immunopharmacol., 2013, 17(1), 65-70.
[http://dx.doi.org/10.1016/j.intimp.2013.05.019] [PMID: 23747587]
[105]
Bisht, S.; Feldmann, G.; Soni, S.; Ravi, R.; Karikar, C.; Maitra, A.; Maitra, A. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J. Nanobiotechnol., 2007, 5(1), 3.
[http://dx.doi.org/10.1186/1477-3155-5-3] [PMID: 17439648]
[106]
Jain, K.; Sood, S.; Gowthamarajan, K. Modulation of cerebral malaria by curcumin as an adjunctive therapy. Braz. J. Infect. Dis., 2013, 17(5), 579-591.
[http://dx.doi.org/10.1016/j.bjid.2013.03.004] [PMID: 23906771]
[107]
El-Feky, G.S.; Sharaf, S.S.; El Shafei, A.; Hegazy, A.A. Using chitosan nanoparticles as drug carriers for the development of a silver sulfadiazine wound dressing. Carbohydr. Polym., 2017, 158, 11-19.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.054] [PMID: 28024533]
[108]
Pathan, I.; Munde, S.; Shelke, S.; Ambekar, W.; Mallikarjuna Setty, C. Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex-vivo and in-vivo evaluation. Int. J. Polym. Mater., 2018, 68(4), 165-174.
[http://dx.doi.org/10.1080/00914037.2018.1429437]
[109]
Zhu, J.; Li, F.; Wang, X.; Yu, J.; Wu, D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl. Mater. Interfaces, 2018, 10(16), 13304-13316.
[http://dx.doi.org/10.1021/acsami.7b18927] [PMID: 29607644]
[110]
Sumantri, I.; Mustanti, L. The potency of wound healing of nanogel-containing Mikania micrantha leaves extract in hyperglycemic rats. Pharm. Nanotechnol., 2021, 9(5), 339-346.
[http://dx.doi.org/10.2174/2211738509666211209164105] [PMID: 34886791]
[111]
Thomas, L.; Zakir, F.; Mirza, M.A.; Anwer, M.K.; Ahmad, F.J.; Iqbal, Z. Development of curcumin loaded chitosan polymer based nanoemulsion gel: In vitro, ex vivo evaluation and in vivo wound healing studies. Int. J. Biol. Macromol., 2017, 101, 569-579.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.03.066] [PMID: 28322948]
[112]
Hassanpour, S.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Practice, 2017, 4(4), 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[113]
Seok, H.Y.; Sanoj Rejinold, N.; Lekshmi, K.M.; Cherukula, K.; Park, I.K.; Kim, Y.C. CD44 targeting biocompatible and biodegradable hyaluronic acid cross-linked zein nanogels for curcumin delivery to cancer cells: In vitro and in vivo evaluation. J. Control. Release, 2018, 280, 20-30.
[http://dx.doi.org/10.1016/j.jconrel.2018.04.050] [PMID: 29723613]
[114]
Zhou, W.; Yang, G.; Ni, X.; Diao, S.; Xie, C.; Fan, Q. Recent advances in crosslinked nanogel for multimodal imaging and cancer therapy. Polymers, 2020, 12(9), 1902.
[http://dx.doi.org/10.3390/polym12091902] [PMID: 32846923]
[115]
Wang, X.; Zheng, Y.; Xue, Y.; Wu, Y.; Liu, Y.; Cheng, X.; Tang, R. pH-sensitive and tumor-targeting nanogels based on ortho ester-modified PEG for improving the in vivo anti-tumor efficiency of doxorubicin. Colloids Surf. B Biointerfaces, 2021, 207, 112024.
[http://dx.doi.org/10.1016/j.colsurfb.2021.112024] [PMID: 34384973]
[116]
Liu, W.; Yan, Q.; Xia, C.; Wang, X.; Kumar, A.; Wang, Y.; Liu, Y.; Pan, Y.; Liu, J. Recent advances in cell membrane coated Metal-Organic Frameworks (MOFs) for tumor therapy. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(22), 4459-4474.
[http://dx.doi.org/10.1039/D1TB00453K] [PMID: 33978055]
[117]
Vicario-De-La-Torre, M.; Forcada, J. The potential of stimuli-responsive nanogels in drug and active molecule delivery for targeted therapy. Gels, 2017, 3(2), 16.
[http://dx.doi.org/10.3390/gels3020016] [PMID: 30920515]
[118]
Si, X.; Ma, S.; Xu, Y.; Zhang, D.; Shen, N.; Yu, H.; Zhang, Y.; Song, W.; Tang, Z.; Chen, X. Hypoxia-sensitive supramolecular nanogels for the cytosolic delivery of ribonuclease A as a breast cancer therapeutic. J. Control. Release, 2020, 320, 83-95.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.021] [PMID: 31954730]
[119]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[120]
Shimizu, T.; Kishida, T.; Hasegawa, U.; Ueda, Y.; Imanishi, J.; Yamagishi, H.; Akiyoshi, K.; Otsuji, E.; Mazda, O. Nanogel DDS enables sustained release of IL-12 for tumor immunotherapy. Biochem. Biophys. Res. Commun., 2008, 367(2), 330-335.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.112] [PMID: 18158918]
[121]
Yang, L.; Shi, P.; Zhao, G.; Xu, J.; Peng, W.; Zhang, J.; Zhang, G.; Wang, X.; Dong, Z.; Chen, F.; Cui, H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther., 2020, 5(1), 8.
[http://dx.doi.org/10.1038/s41392-020-0110-5] [PMID: 32296030]
[122]
Zhang, F.; Gong, S.; Wu, J.; Li, H.; Oupicky, D.; Sun, M. CXCR4-targeted and redox responsive dextrin nanogel for metastatic breast cancer therapy. Biomacromolecules, 2017, 18(6), 1793-1802.
[http://dx.doi.org/10.1021/acs.biomac.7b00208] [PMID: 28445650]
[123]
Faraji, N.; Esrafili, A.; Esfandiari, B.; Abednezhad, A.; Naghizadeh, M.; Arasteh, J. Synthesis of pH-sensitive hyaluronic acid nanogels loaded with paclitaxel and interferon gamma: Characterization and effect on the A549 lung carcinoma cell line. Colloids Surf. B Biointerfaces, 2021, 205, 111845.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111845] [PMID: 34015733]
[124]
Yin, Y.; Wang, J.; Yang, M.; Du, R.; Pontrelli, G.; McGinty, S.; Wang, G.; Yin, T.; Wang, Y. Penetration of the blood-brain barrier and the anti-tumour effect of a novel PLGA-lysoGM1/DOX micelle drug delivery system. Nanoscale, 2020, 12(5), 2946-2960.
[http://dx.doi.org/10.1039/C9NR08741A] [PMID: 31994576]
[125]
Aderibigbe, B.A.; Naki, T. Design and efficacy of nanogels formulations for intranasal administration. Molecules, 2018, 23(6), 1241.
[http://dx.doi.org/10.3390/molecules23061241] [PMID: 29789506]
[126]
Pathak, M.; Singhal, R. Therapeutic and diagnostic applications of nanocomposites in the treatment Alzheimer’s disease studies. Biointerface Res. Appl. Chem., 2021, 12(1), 940-960.
[http://dx.doi.org/10.33263/BRIAC121.940960]
[127]
Picone, P.; Sabatino, M.A.; Ditta, L.A.; Amato, A.; San Biagio, P.L.; Mulè, F.; Giacomazza, D.; Dispenza, C.; Di Carlo, M. Nose-to-brain delivery of insulin enhanced by a nanogel carrier. J. Control. Release, 2018, 270, 23-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.040] [PMID: 29196041]
[128]
Khan, N.H.; Mir, M.; Ngowi, E.E.; Zafar, U.; Khakwani, M.M.A.K.; Khattak, S.; Zhai, Y.K.; Jiang, E.S.; Zheng, M.; Duan, S.F.; Wei, J.S.; Wu, D.D.; Ji, X.Y. Nanomedicine: A promising way to manage Alzheimer’s disease. Front. Bioeng. Biotechnol., 2021, 9, 630055.
[http://dx.doi.org/10.3389/fbioe.2021.630055] [PMID: 33996777]
[129]
Jiang, L.; Zhou, Q.; Mu, K.; Xie, H.; Zhu, Y.; Zhu, W.; Zhao, Y.; Xu, H.; Yang, X. pH/temperature sensitive magnetic nanogels conjugated with Cy5.5-labled lactoferrin for MR and fluorescence imaging of glioma in rats. Biomaterials, 2013, 34(30), 7418-7428.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.078] [PMID: 23810255]
[130]
Bagshaw, K.R.; Hanenbaum, C.L.; Carbone, E.J.; Lo, K.W.; Laurencin, C.T.; Walker, J.; Nair, L.S. Pain management via local anesthetics and responsive hydrogels. Ther. Deliv., 2015, 6(2), 165-176.
[http://dx.doi.org/10.4155/tde.14.95] [PMID: 25690085]
[131]
He, Y.; Qin, L.; Huang, Y.; Ma, C. Advances of nano-structured extended-release local anesthetics. Nanoscale Res. Lett., 2020, 15(1), 13.
[http://dx.doi.org/10.1186/s11671-019-3241-2] [PMID: 31950284]
[132]
Jain, S.; Ancheria, R.; Shrivastava, S.; Soni, S.; Sharma, M. An overview of nanogel: Novel drug delivery system. Asian J. Pharm. Res. Dev., 2019, 7(2), 47-55.
[http://dx.doi.org/10.22270/ajprd.v7i2.482]
[133]
Khongkhunthian, S.; Sastraruji, T.; Klayraung, S.; Okonogi, S. Efficacy of anesthetic rice nanogel on pain reduction in human oral cavity. Drug Discov. Ther., 2018, 12(1), 31-36.
[http://dx.doi.org/10.5582/ddt.2018.01003] [PMID: 29553081]
[134]
Alejo, T.; Uson, L.; Landa, G.; Prieto, M.; Yus Argón, C.; Garcia-Salinas, S.; de Miguel, R.; Rodríguez-Largo, A.; Irusta, S.; Sebastian, V.; Mendoza, G.; Arruebo, M. Nanogels with high loading of anesthetic nanocrystals for extended duration of sciatic nerve block. ACS Appl. Mater. Interfaces, 2021, 13(15), 17220-17235.
[http://dx.doi.org/10.1021/acsami.1c00894] [PMID: 33821601]
[135]
Iaquinta, M.R.; Mazzoni, E.; Manfrini, M.; D’Agostino, A.; Trevisiol, L.; Nocini, R.; Trombelli, L.; Barbanti-Brodano, G.; Martini, F.; Tognon, M. Innovative biomaterials for bone regrowth. Int. J. Mol. Sci., 2019, 20(3), 618.
[http://dx.doi.org/10.3390/ijms20030618] [PMID: 30709008]
[136]
Ansari, M. Bone tissue regeneration: Biology, strategies and interface studies. Prog. Biomater., 2019, 8(4), 223-237.
[http://dx.doi.org/10.1007/s40204-019-00125-z] [PMID: 31768895]
[137]
Grimaudo, M.A.; Concheiro, A.; Alvarez-Lorenzo, C. Nanogels for regenerative medicine. J. Control. Release, 2019, 313, 148-160.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.015] [PMID: 31629040]
[138]
Zhang, Q.; Chen, X.; Geng, S.; Wei, L.; Miron, R.J.; Zhao, Y.; Zhang, Y. Nanogel-based scaffolds fabricated for bone regeneration with mesoporous bioactive glass and strontium: In vitro and in vivo characterization. J. Biomed. Mater. Res. A, 2017, 105(4), 1175-1183.
[http://dx.doi.org/10.1002/jbm.a.35980] [PMID: 27998017]
[139]
Gong, T.; Liu, T.; Zhang, L.; Ye, W.; Guo, X.; Wang, L.; Quan, L.; Pan, C. Design redox-sensitive drug-loaded nanofibers for bone reconstruction. ACS Biomater. Sci. Eng., 2018, 4(1), 240-247.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00827] [PMID: 33418691]
[140]
Fujioka-Kobayashi, M.; Ota, M.S.; Shimoda, A.; Nakahama, K.; Akiyoshi, K.; Miyamoto, Y.; Iseki, S. Cholesteryl group- and acryloyl group-bearing pullulan nanogel to deliver BMP2 and FGF18 for bone tissue engineering. Biomaterials, 2012, 33(30), 7613-7620.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.075] [PMID: 22800537]
[141]
Alles, N.; Soysa, N.S.; Hussain, M.D.; Tomomatsu, N.; Saito, H.; Baron, R.; Morimoto, N.; Aoki, K.; Akiyoshi, K.; Ohya, K. Polysaccharide nanogel delivery of a TNF-alpha and RANKL antagonist peptide allows systemic prevention of bone loss. Eur. J. Pharm. Sci., 2009, 37(2), 83-88.
[http://dx.doi.org/10.1016/j.ejps.2009.01.002] [PMID: 19429414]
[142]
Kato, N.; Hasegawa, U.; Morimoto, N.; Saita, Y.; Nakashima, K.; Ezura, Y.; Kurosawa, H.; Akiyoshi, K.; Noda, M. Nanogel-based delivery system enhances PGE2 effects on bone formation. J. Cell. Biochem., 2007, 101(5), 1063-1070.
[http://dx.doi.org/10.1002/jcb.21160] [PMID: 17520665]
[143]
Sharma, A.; Garg, T.; Aman, A.; Panchal, K.; Sharma, R.; Kumar, S.; Markandeywar, T. Nanogel-an advanced drug delivery tool: Current and future. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 165-177.
[http://dx.doi.org/10.3109/21691401.2014.930745] [PMID: 25053442]
[144]
Picone, P.; Ditta, L.A.; Sabatino, M.A.; Militello, V.; San Biagio, P.L.; Di Giacinto, M.L.; Cristaldi, L.; Nuzzo, D.; Dispenza, C.; Giacomazza, D.; Di Carlo, M. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials, 2016, 80, 179-194.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.057] [PMID: 26708643]
[145]
Ashrafi, H.; Azadi, A.; Mohammadi-Samani, S.; Hamidi, M. New candidate delivery system for Alzheimer’s disease: Deferoxamine nanogels. Biointerface Res. Appl. Chem., 2020, 10(6), 7106-7119.
[http://dx.doi.org/10.33263/BRIAC106.71067119]
[146]
Chen, J.; He, H.; Deng, C.; Yin, L.; Zhong, Z. Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. Int. J. Pharm., 2019, 560, 57-64.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.040] [PMID: 30699364]
[147]
Zhang, C.; Li, Q.; Wu, C.; Wang, J.; Su, M.; Deng, J. Hypoxia-responsive nanogel as IL-12 carrier for anti-cancer therapy. Nanotechnology, 2021, 32(9), 095107.
[http://dx.doi.org/10.1088/1361-6528/abcdcc] [PMID: 33238258]
[148]
Howaili, F.; Özliseli, E.; Küçüktürkmen, B.; Razavi, S.M.; Sadeghizadeh, M.; Rosenholm, J.M. Stimuli-responsive, plasmonic nanogel for dual delivery of curcumin and photothermal therapy for cancer treatment. Front Chem., 2021, 8, 602941.
[http://dx.doi.org/10.3389/fchem.2020.602941] [PMID: 33585400]
[149]
Sui, B.; Cheng, C.; Shi, S.; Wang, M.; Xu, P. Esterase-activatable and GSH-responsive triptolide nano-prodrug for the eradication of pancreatic cancer. Adv. Nano. Biomed. Res., 2021, 1(11), 2100040.
[http://dx.doi.org/10.1002/anbr.202100040] [PMID: 34870282]
[150]
Gadhave, D.; Rasal, N.; Sonawane, R.; Sekar, M.; Kokare, C. Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies. Int. J. Biol. Macromol., 2021, 167, 906-920.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.047] [PMID: 33186648]
[151]
Yamaguchi, K.; Hiraike, O.; Iwaki, H.; Matsumiya, K.; Nakamura, N.; Sone, K.; Ohta, S.; Osuga, Y.; Ito, T. Intraperitoneal administration of a cisplatin-loaded nanogel through a hybrid system containing an alginic acid-based nanogel and an in situ cross-linkable hydrogel for peritoneal dissemination of ovarian cancer. Mol. Pharm., 2021, 18(11), 4090-4098.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00514] [PMID: 34662129]
[152]
Xue, Z.; Fu, R.; Duan, Z.; Chi, L.; Zhu, C.; Fan, D. Inhibitory effect of pH-responsive nanogel encapsulating ginsenoside CK against lung cancer. Polymers, 2021, 13(11), 1784.
[http://dx.doi.org/10.3390/polym13111784] [PMID: 34071663]
[153]
Zheng, Y.; Lv, X.; Xu, Y.; Cheng, X.; Wang, X.; Tang, R. pH-sensitive and pluronic-modified pullulan nanogels for greatly improved antitumor in vivo. Int. J. Biol. Macromol., 2019, 139, 277-289.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.220] [PMID: 31377289]
[154]
Cheng, X.; Qin, J.; Wang, X.; Zha, Q.; Yao, W.; Fu, S.; Tang, R. Acid-degradable lactobionic acid-modified soy protein nanogels crosslinked by ortho ester linkage for efficient antitumor in vivo. Eur. J. Pharm. Biopharm., 2018, 128, 247-258.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.011] [PMID: 29730261]
[155]
Vismara, I.; Papa, S.; Veneruso, V.; Mauri, E.; Mariani, A.; De Paola, M.; Affatato, R.; Rossetti, A.; Sponchioni, M.; Moscatelli, D.; Sacchetti, A.; Rossi, F.; Forloni, G.; Veglianese, P. Selective modulation of A1 astrocytes by drug-loaded nano-structured gel in spinal cord injury. ACS Nano, 2020, 14(1), 360-371.
[http://dx.doi.org/10.1021/acsnano.9b05579] [PMID: 31887011]
[156]
Zimmermann, R.; Vieira Alves, Y.; Sperling, L.E.; Pranke, P. Nanotechnology for the treatment of spinal cord injury. Tissue Eng. Part B Rev., 2021, 27(4), 353-365.
[http://dx.doi.org/10.1089/ten.teb.2020.0188] [PMID: 33135599]
[157]
Wang, X.J.; Shu, G.F.; Xu, X.L.; Peng, C.H.; Lu, C.Y.; Cheng, X.Y.; Luo, X.C.; Li, J.; Qi, J.; Kang, X.Q.; Jin, F.Y.; Chen, M.J.; Ying, X.Y.; You, J.; Du, Y.Z.; Ji, J.S. Combinational protective therapy for spinal cord injury medicated by sialic acid-driven and polyethylene glycol based micelles. Biomaterials, 2019, 217, 119326.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119326] [PMID: 31288173]
[158]
Li, J.; Liu, Y.; Xu, H.; Fu, Q. Nanoparticle-delivered IRF5 siRNA facilitates M1 to M2 transition, reduces demyelination and neurofilament loss, and promotes functional recovery after spinal cord injury in mice. Inflammation, 2016, 39(5), 1704-1717.
[http://dx.doi.org/10.1007/s10753-016-0405-4] [PMID: 27435985]
[159]
Manconi, M.; Manca, M.L.; Caddeo, C.; Cencetti, C.; di Meo, C.; Zoratto, N.; Nacher, A.; Fadda, A.M.; Matricardi, P. Preparation of gellan-cholesterol nanohydrogels embedding baicalin and evaluation of their wound healing activity. Eur. J. Pharm. Biopharm., 2018, 127, 244-249.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.015] [PMID: 29499300]
[160]
El-Feky, G.S.; El-Banna, S.T.; El-Bahy, G.S.; Abdelrazek, E.M.; Kamal, M. Alginate coated chitosan nanogel for the controlled topical delivery of silver sulfadiazine. Carbohydr. Polym., 2017, 177, 194-202.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.104] [PMID: 28962758]
[161]
Tang, J.; Cui, X.; Caranasos, T.G.; Hensley, M.T.; Vandergriff, A.C.; Hartanto, Y.; Shen, D.; Zhang, H.; Zhang, J.; Cheng, K. Heart repair using nanogel-encapsulated human cardiac stem cells in mice and pigs with myocardial infarction. ACS Nano, 2017, 11(10), 9738-9749.
[http://dx.doi.org/10.1021/acsnano.7b01008] [PMID: 28929735]
[162]
Aslan, C.; Çelebi, N.; Değim, I.T.; Atak, A.; Özer, Ç. Development of interleukin-2 loaded chitosan-based nanogels using artificial neural networks and investigating the effects on wound healing in rats. AAPS Pharm. Sci. Tech., 2017, 18(4), 1019-1030.
[http://dx.doi.org/10.1208/s12249-016-0662-4] [PMID: 27853994]
[163]
Yang, H.N.; Choi, J.H.; Park, J.S.; Jeon, S.Y.; Park, K.D.; Park, K.H. Differentiation of endothelial progenitor cells into endothelial cells by heparin-modified supramolecular pluronic nanogels encapsulating bFGF and complexed with VEGF165 genes. Biomaterials, 2014, 35(16), 4716-4728.
[http://dx.doi.org/10.1016/j.biomaterials.2014.02.038] [PMID: 24630837]
[164]
Zhang, Y.; Wang, F.; Li, M.; Yu, Z.; Qi, R.; Ding, J.; Zhang, Z.; Chen, X. Self-stabilized hyaluronate nanogel for intracellular codelivery of doxorubicin and cisplatin to osteosarcoma. Adv. Sci. (Weinh.), 2018, 5(5), 1700821.
[http://dx.doi.org/10.1002/advs.201700821] [PMID: 29876208]
[165]
Beiranvand, S.; Karimi, A. Effect of encapsulated artemisia aucheri. L magnetic nanogel extract on shoulder block in rat. Drug Res. (Stuttg.), 2018, 68(2), 65-71.
[http://dx.doi.org/10.1055/s-0043-117180] [PMID: 28847020]
[166]
Rodrigues Da Silva, G.H.; Geronimo, G.; Ribeiro, L.N.M.; Guilherme, V.A.; De Moura, L.D.; Bombeiro, A.L.; Oliveira, J.D.; Breitkreitz, M.C.; De Paula, E. Injectable in situ forming nanogel: A hybrid alginate-NLC formulation extends bupivacaine anesthetic effect. Mater. Sci. Eng. C, 2020, 109, 110608.
[http://dx.doi.org/10.1016/j.msec.2019.110608] [PMID: 32228992]
[167]
Hoare, T.; Young, S.; Lawlor, M.W.; Kohane, D.S. Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater., 2012, 8(10), 3596-3605.
[http://dx.doi.org/10.1016/j.actbio.2012.06.013] [PMID: 22732383]
[168]
Li, B X.; Lv, J.; Zhang, X.; Zhang, C.; Guo, S, Q.; Ma, R, J.; Wang, H.; Zhang, Y, L. Hypoglycemic effect of insulin-loaded hydrogel-nanogel composite on streptozotocin-induced diabetic rats. Int. Res. J. Humanit., Eng. Pharm. Sci., 2021, 76(8), 364-71.
[169]
Tong, M.Q.; Luo, L.Z.; Xue, P.P.; Han, Y.H.; Wang, L.F.; Zhuge, D.L.; Yao, Q.; Chen, B.; Zhao, Y.Z.; Xu, H.L. Glucose-responsive hydrogel enhances the preventive effect of insulin and liraglutide on diabetic nephropathy of rats. Acta Biomater., 2021, 122, 111-132.
[http://dx.doi.org/10.1016/j.actbio.2021.01.007] [PMID: 33444802]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy