Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Research Progress in Elucidating the Mechanisms Underlying Resveratrol Action on Lung Cancer

Author(s): Rui Xin, Biao Shen, Zhong-Yan Huang, Ji-Bin Liu, Sha Li, Geng-Xi Jiang, Jie Zhang, Ya-Hong Cao, Da-Zhi Zou, Wen Li, Chun-Guang Li*, Yu-Shui Ma* and Da Fu*

Volume 24, Issue 3, 2023

Published on: 22 September, 2022

Page: [427 - 437] Pages: 11

DOI: 10.2174/1389201023666220818085945

Price: $65

Abstract

Resveratrol has several functions, including protection of the heart and nervous system and exerts antidiabetic, anti-inflammatory, anti-aging, and antitumor effects. It is reported to impede the occurrence and development of tumors in cancer cell lines, animal models, and clinical studies. In vitro and in vivo experiments show that it exerts preventive or adjuvant therapeutic effects in pancreatic, colorectal, prostate, liver, and lung cancers. Mechanistic research reports show that resveratrol can induce tumor cell apoptosis and autophagy, inhibit cell cycle and angiogenesis, regulate nuclear factors and cyclooxygenase signal transduction pathways, and inhibit carcinogens' metabolic activation and alter tumor-related expression patterns; anti-oxidation affects tumor cell proliferation, metastasis, and apoptosis. However, the exact mechanism underlying its action remains unclear. This review highlights multiple aspects of the biological impacts and mechanisms underlying resveratrol action on the occurrence and development of lung cancer.

Keywords: Resveratrol, lung cancer, occurrence, development, anti-tumor activity, treatment.

Graphical Abstract

[1]
Dowling, C.M.; Zhang, H.; Chonghaile, T.N.; Wong, K.K. Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(1), 188462.
[http://dx.doi.org/10.1016/j.bbcan.2020.188462] [PMID: 33130228]
[2]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[3]
Zhou, J.; Wang, H.; Sun, Q.; Liu, X.; Wu, Z.; Wang, X.; Fang, W.; Ma, Z. miR-224-5p-enriched exosomes promote tumorigenesis by directly targeting androgen receptor in non-small cell lung cancer. Mol. Ther. Nucleic Acids, 2021, 23, 1217-1228.
[http://dx.doi.org/10.1016/j.omtn.2021.01.028] [PMID: 33664999]
[4]
Yang, Y.; Yang, J.; Shen, L.; Chen, J.; Xia, L.; Ni, B.; Ge, L.; Wang, Y.; Lu, S. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PDL1 immunotherapy in advanced stage non-small-cell lung cancer. Am. J. Transl. Res., 2021, 13(2), 743-756.
[PMID: 33594323]
[5]
Mohebati, A.; Knutson, A.; Zhou, X.K.; Smith, J.J.; Brown, P.H.; Dannenberg, A.J.; Szabo, E. A web-based screening and accrual strategy for a cancer prevention clinical trial in healthy smokers. Contemp. Clin. Trials, 2012, 33(5), 942-948.
[http://dx.doi.org/10.1016/j.cct.2012.07.004] [PMID: 22771576]
[6]
Hamada, K.; Tian, Y.; Fujimoto, M.; Takahashi, Y.; Kohno, T.; Tsuta, K.; Watanabe, S.I.; Yoshida, T.; Asamura, H.; Kanai, Y.; Arai, E. DNA hypermethylation of the ZNF132 gene participates in the clinicopathological aggressiveness of ‘pan-negative’-type lung adenocarcinomas. Carcinogenesis, 2021, 42(2), 169-179.
[http://dx.doi.org/10.1093/carcin/bgaa115] [PMID: 33152763]
[7]
Sharifi, S.; Moghaddam, F.A.; Abedi, A.; Maleki Dizaj, S.; Ahmadian, S.; Abdolahinia, E.D.; Khatibi, S.M.H.; Samiei, M. Phytochemicals impact on osteogenic differentiation of mesenchymal stem cells. Biofactors, 2020, 46(6), 874-893.
[http://dx.doi.org/10.1002/biof.1682] [PMID: 33037744]
[8]
Wen, Z.; Huang, Y.; Ling, Z.; Chen, J.; Wei, X.; Su, R.; Tang, Z.; Wen, Z.; Deng, Y.; Hu, Z. Lack of efficacy of combined carbohydrate antigen markers for lung cancer diagnosis. Dis. Markers, 2020, 2020, 4716793.
[http://dx.doi.org/10.1155/2020/4716793] [PMID: 33488842]
[9]
Knekt, P.; Järvinen, R.; Seppänen, R.; Hellövaara, M.; Teppo, L.; Pukkala, E.; Aromaa, A. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am. J. Epidemiol., 1997, 146(3), 223-230.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009257] [PMID: 9247006]
[10]
Del Valle, L.; Dai, L.; Lin, H.Y.; Lin, Z.; Chen, J.; Post, S.R.; Qin, Z. Role of EIF4G1 network in non-small cell lung cancers (NSCLC) cell survival and disease progression. J. Cell. Mol. Med., 2021, 25(6), 2795-2805.
[http://dx.doi.org/10.1111/jcmm.16307] [PMID: 33539648]
[11]
Garufi, A.; Giorno, E.; Gilardini Montani, M.S.; Pistritto, G.; Crispini, A.; Cirone, M.; D’Orazi, G. P62/SQSTM1/Keap1/NRF2 axis reduces cancer cells death-sensitivity in response to Zn(II)-curcumin complex. Biomolecules, 2021, 11(3), 348.
[http://dx.doi.org/10.3390/biom11030348] [PMID: 33669070]
[12]
Zou, L.; Liu, X.; Li, J.; Li, W.; Zhang, L.; Fu, C.; Zhang, J.; Gu, Z. Redox-sensitive carrier-free nanoparticles self-assembled by disulfide-linked paclitaxel-tetramethylpyrazine conjugate for combination cancer chemotherapy. Theranostics, 2021, 11(9), 4171-4186.
[http://dx.doi.org/10.7150/thno.42260] [PMID: 33754055]
[13]
Li, K.X.; Ji, M.J.; Sun, H.J. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene, 2021, 780, 145532.
[http://dx.doi.org/10.1016/j.gene.2021.145532] [PMID: 33631244]
[14]
Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr., 2018, 58(9), 1428-1447.
[http://dx.doi.org/10.1080/10408398.2016.1263597] [PMID: 28001084]
[15]
Yousef, M.; Vlachogiannis, I.A.; Tsiani, E. Effects of resveratrol against lung cancer: In vitro and in vivo studies. Nutrients, 2017, 9(11), E1231.
[http://dx.doi.org/10.3390/nu9111231] [PMID: 29125563]
[16]
Li, W.; Li, C.; Ma, L.; Jin, F. Resveratrol inhibits viability and induces apoptosis in the small cell lung cancer H446 cell line via the PI3K/Akt/c Myc pathway. Oncol. Rep., 2020, 44(5), 1821-1830.
[http://dx.doi.org/10.3892/or.2020.7747] [PMID: 32901891]
[17]
Zhang, J.; Chiu, J.; Zhang, H.; Qi, T.; Tang, Q.; Ma, K.; Lu, H.; Li, G. Autophagic cell death induced by resveratrol depends on the Ca2+/AMPK/mTOR pathway in A549 cells. Biochem. Pharmacol., 2013, 86(2), 317-328.
[http://dx.doi.org/10.1016/j.bcp.2013.05.003] [PMID: 23680031]
[18]
Wang, J.; Li, J.; Cao, N.; Li, Z.; Han, J.; Li, L. Resveratrol, an activator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK. OncoTargets Ther., 2018, 11, 7777-7786.
[http://dx.doi.org/10.2147/OTT.S159095] [PMID: 30464525]
[19]
Fan, Y.; Li, J.; Yang, Y.; Zhao, X.; Liu, Y.; Jiang, Y.; Zhou, L.; Feng, Y.; Yu, Y.; Cheng, Y. Resveratrol modulates the apoptosis and autophagic death of human lung adenocarcinoma A549 cells via a p53 dependent pathway: Integrated bioinformatics analysis and experimental validation. Int. J. Oncol., 2020, 57(4), 925-938.
[http://dx.doi.org/10.3892/ijo.2020.5107] [PMID: 32945383]
[20]
Hu, S.; Li, X.; Xu, R.; Ye, L.; Kong, H.; Zeng, X.; Wang, H.; Xie, W. The synergistic effect of resveratrol in combination with cisplatin on apoptosis via modulating autophagy in A549 cells. Acta Biochim. Biophys. Sin. (Shanghai), 2016, 48(6), 528-535.
[http://dx.doi.org/10.1093/abbs/gmw026] [PMID: 27084520]
[21]
Zhang, J.; Ma, K.; Qi, T.; Wei, X.; Zhang, Q.; Li, G.; Chiu, J.F. Correction: P62 regulates resveratrol-mediated Fas/Cav-1 complex formation and transition from autophagy to apoptosis. Oncotarget, 2021, 12(23), 2320.
[http://dx.doi.org/10.18632/oncotarget.27449] [PMID: 34786185]
[22]
Gu, S.; Chen, C.; Jiang, X.; Zhang, Z. ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction underlie apoptosis induced by resveratrol and arsenic trioxide in A549 cells. Chem. Biol. Interact., 2016, 245, 100-109.
[http://dx.doi.org/10.1016/j.cbi.2016.01.005] [PMID: 26772155]
[23]
Li, X.; Wang, D.; Zhao, Q.C.; Shi, T.; Chen, J. Resveratrol inhibited non-small cell lung cancer through inhibiting STAT-3 signaling. Am. J. Med. Sci., 2016, 352(5), 524-530.
[http://dx.doi.org/10.1016/j.amjms.2016.08.027] [PMID: 27865301]
[24]
Lucas, I.K.; Kolodziej, H. Trans-resveratrol induces apoptosis through ROS-triggered mitochondria-dependent pathways in A549 human lung adenocarcinoma epithelial cells. Planta Med., 2015, 81(12-13), 1038-1044.
[http://dx.doi.org/10.1055/s-0035-1546129] [PMID: 26085046]
[25]
Kong, F.; Zhang, R.; Zhao, X.; Zheng, G.; Wang, Z.; Wang, P. Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression. Korean J. Physiol. Pharmacol., 2017, 21(5), 465-474.
[http://dx.doi.org/10.4196/kjpp.2017.21.5.465] [PMID: 28883751]
[26]
Wang, X.; Wang, D.; Zhao, Y. Effect and mechanism of resveratrol on the apoptosis of lung adenocarcinoma cell line A549. Cell Biochem. Biophys., 2015, 73(2), 527-531.
[http://dx.doi.org/10.1007/s12013-015-0696-3] [PMID: 27352348]
[27]
Dasari, S.K.; Bialik, S.; Levin-Zaidman, S.; Levin-Salomon, V.; Merrill, A.H., Jr; Futerman, A.H.; Kimchi, A. Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death. Cell Death Differ., 2017, 24(7), 1288-1302.
[http://dx.doi.org/10.1038/cdd.2017.80] [PMID: 28574511]
[28]
Muqbil, I.; Beck, F.W.; Bao, B.; Sarkar, F.H.; Mohammad, R.M.; Hadi, S.M.; Azmi, A.S. Old wine in a new bottle: The Warburg effect and anticancer mechanisms of resveratrol. Curr. Pharm. Des., 2012, 18(12), 1645-1654.
[http://dx.doi.org/10.2174/138161212799958567] [PMID: 22288443]
[29]
Zunino, S.J.; Storms, D.H. Resveratrol-induced apoptosis is enhanced in acute lymphoblastic leukemia cells by modulation of the mitochondrial permeability transition pore. Cancer Lett., 2006, 240(1), 123-134.
[http://dx.doi.org/10.1016/j.canlet.2005.09.001] [PMID: 16226372]
[30]
Rodríguez-Enríquez, S.; Pacheco-Velázquez, S.C.; Marín-Hernández, Á.; Gallardo-Pérez, J.C.; Robledo-Cadena, D.X.; Hernández-Reséndiz, I.; García-García, J.D.; Belmont-Díaz, J.; López-Marure, R.; Hernández-Esquivel, L.; Sánchez-Thomas, R.; Moreno-Sánchez, R. Resveratrol inhibits cancer cell proliferation by impairing oxidative phosphorylation and inducing oxidative stress. Toxicol. Appl. Pharmacol., 2019, 370, 65-77.
[http://dx.doi.org/10.1016/j.taap.2019.03.008] [PMID: 30878505]
[31]
Li, W.; Ma, X.; Li, N.; Liu, H.; Dong, Q.; Zhang, J.; Yang, C.; Liu, Y.; Liang, Q.; Zhang, S.; Xu, C.; Song, W.; Tan, S.; Rong, P.; Wang, W. Resveratrol inhibits Hexokinases II mediated glycolysis in non-small cell lung cancer via targeting Akt signaling pathway. Exp. Cell Res., 2016, 349(2), 320-327.
[http://dx.doi.org/10.1016/j.yexcr.2016.11.002] [PMID: 27829129]
[32]
Hu, Y.; Rahlfs, S.; Mersch-Sundermann, V.; Becker, K. Resveratrol modulates mRNA transcripts of genes related to redox metabolism and cell proliferation in non-small-cell lung carcinoma cells. Biol. Chem., 2007, 388(2), 207-219.
[http://dx.doi.org/10.1515/BC.2007.023] [PMID: 17261084]
[33]
Bellance, N.; Benard, G.; Furt, F.; Begueret, H.; Smolková, K.; Passerieux, E.; Delage, J.P.; Baste, J.M.; Moreau, P.; Rossignol, R. Bioenergetics of lung tumors: Alteration of mitochondrial biogenesis and respiratory capacity. Int. J. Biochem. Cell Biol., 2009, 41(12), 2566-2577.
[http://dx.doi.org/10.1016/j.biocel.2009.08.012] [PMID: 19712747]
[34]
Tulchinsky, E.; Demidov, O.; Kriajevska, M.; Barlev, N.A.; Imyanitov, E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(1), 29-39.
[http://dx.doi.org/10.1016/j.bbcan.2018.10.003] [PMID: 30419315]
[35]
Cilibrasi, C.; Riva, G.; Romano, G.; Cadamuro, M.; Bazzoni, R.; Butta, V.; Paoletta, L.; Dalprà, L.; Strazzabosco, M.; Lavitrano, M.; Giovannoni, R.; Bentivegna, A. Resveratrol impairs glioma stem cells proliferation and motility by modulating the wnt signaling pathway. PLoS One, 2017, 12(1), e0169854.
[http://dx.doi.org/10.1371/journal.pone.0169854] [PMID: 28081224]
[36]
Lin, C.; Ren, Z.; Yang, X.; Yang, R.; Chen, Y.; Liu, Z.; Dai, Z.; Zhang, Y.; He, Y.; Zhang, C.; Wang, X.; Cao, W.; Ji, T. Nerve growth factor (NGF)-TrkA axis in head and neck squamous cell carcinoma triggers EMT and confers resistance to the EGFR inhibitor erlotinib. Cancer Lett., 2020, 472, 81-96.
[http://dx.doi.org/10.1016/j.canlet.2019.12.015] [PMID: 31838083]
[37]
Wang, H.; Zhang, H.; Tang, L.; Chen, H.; Wu, C.; Zhao, M.; Yang, Y.; Chen, X.; Liu, G. Resveratrol inhibits TGF-β1-induced epithelial-to-mesenchymal transition and suppresses lung cancer invasion and metastasis. Toxicology, 2013, 303, 139-146.
[http://dx.doi.org/10.1016/j.tox.2012.09.017] [PMID: 23146760]
[38]
Liu, P.L.; Tsai, J.R.; Charles, A.L.; Hwang, J.J.; Chou, S.H.; Ping, Y.H.; Lin, F.Y.; Chen, Y.L.; Hung, C.Y.; Chen, W.C.; Chen, Y.H.; Chong, I.W. Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol. Nutr. Food Res., 2010, 54(Suppl. 2), S196-S204.
[http://dx.doi.org/10.1002/mnfr.200900550] [PMID: 20461740]
[39]
Lin, Y.S.; Hsieh, C.Y.; Kuo, T.T.; Lin, C.C.; Lin, C.Y.; Sher, Y.P. Resveratrol-mediated ADAM9 degradation decreases cancer progression and provides synergistic effects in combination with chemotherapy. Am. J. Cancer Res., 2020, 10(11), 3828-3837.
[PMID: 33294270]
[40]
Wang, H.; Li, Y.; Shi, G.; Wang, Y.; Lin, Y.; Wang, Q.; Zhang, Y.; Yang, Q.; Dai, L.; Cheng, L.; Su, X.; Yang, Y.; Zhang, S.; Li, Z.; Li, J.; Wei, Y.; Yu, D.; Deng, H. A novel antitumor strategy: Simultaneously inhibiting angiogenesis and complement by targeting VEGFA/PIGF and C3b/C4b. Mol. Ther. Oncolytics, 2019, 16, 20-29.
[http://dx.doi.org/10.1016/j.omto.2019.12.004] [PMID: 31909182]
[41]
Wang, H.; Zhou, H.; Zou, Y.; Liu, Q.; Guo, C.; Gao, G.; Shao, C.; Gong, Y. Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem. Pharmacol., 2010, 80(9), 1386-1395.
[http://dx.doi.org/10.1016/j.bcp.2010.07.034] [PMID: 20696143]
[42]
Wu, H.; Wei, M.; Jiang, X.; Tan, J.; Xu, W.; Fan, X.; Zhang, R.; Ding, C.; Zhao, F.; Shao, X.; Zhang, Z.; Shi, R.; Zhang, W.; Wu, G. lncRNA PVT1 promotes tumorigenesis of colorectal cancer by Stabilizing miR-16-5p and interacting with the VEGFA/VEGFR1/AKT axis. Mol. Ther. Nucleic Acids, 2020, 20, 438-450.
[http://dx.doi.org/10.1016/j.omtn.2020.03.006] [PMID: 32276209]
[43]
He, L.; Fan, F.; Hou, X.; Gao, C.; Meng, L.; Meng, S.; Huang, S.; Wu, H. Resveratrol suppresses pulmonary tumor metastasis by inhibiting platelet-mediated angiogenic responses. J. Surg. Res., 2017, 217, 113-122.
[http://dx.doi.org/10.1016/j.jss.2017.05.009] [PMID: 28629815]
[44]
Kimura, Y.; Okuda, H. Resveratrol isolated from Polygonum cuspidatum root prevents tumor growth and metastasis to lung and tumor-induced neovascularization in Lewis lung carcinoma-bearing mice. J. Nutr., 2001, 131(6), 1844-1849.
[http://dx.doi.org/10.1093/jn/131.6.1844] [PMID: 11385077]
[45]
Sahin, E.; Baycu, C.; Koparal, A.T.; Burukoglu Donmez, D.; Bektur, E. Resveratrol reduces IL-6 and VEGF secretion from cocultured A549 lung cancer cells and adipose-derived mesenchymal stem cells. Tumour Biol., 2016, 37(6), 7573-7582.
[http://dx.doi.org/10.1007/s13277-015-4643-0] [PMID: 26687643]
[46]
Lee, E.O.; Lee, H.J.; Hwang, H.S.; Ahn, K.S.; Chae, C.; Kang, K.S.; Lu, J.; Kim, S.H. Potent inhibition of Lewis lung cancer growth by heyneanol A from the roots of Vitis amurensis through apoptotic and anti-angiogenic activities. Carcinogenesis, 2006, 27(10), 2059-2069.
[http://dx.doi.org/10.1093/carcin/bgl055] [PMID: 16675471]
[47]
Kang, M.; Tang, B.; Li, J.; Zhou, Z.; Liu, K.; Wang, R.; Jiang, Z.; Bi, F.; Patrick, D.; Kim, D.; Mitra, A.K.; Yang-Hartwich, Y. Identification of miPEP133 as a novel tumor-suppressor microprotein encoded by miR-34a pri-miRNA. Mol. Cancer, 2020, 19(1), 143.
[http://dx.doi.org/10.1186/s12943-020-01248-9] [PMID: 32928232]
[48]
Takagawa, Y.; Gen, Y.; Muramatsu, T.; Tanimoto, K.; Inoue, J.; Harada, H.; Inazawa, J. miR-1293, a candidate for miRNA-based cancer therapeutics, simultaneously targets BRD4 and the DNA repair pathway. Mol. Ther., 2020, 28(6), 1494-1505.
[http://dx.doi.org/10.1016/j.ymthe.2020.04.001] [PMID: 32320642]
[49]
Xue, X.Y.; Liu, Y.X.; Wang, C.; Gu, X.J.; Xue, Z.Q.; Zang, X.L.; Ma, X.D.; Deng, H.; Liu, R.; Pan, L.; Liu, S.H. Identification of exosomal miRNAs as diagnostic biomarkers for cholangiocarcinoma and gallbladder carcinoma. Signal Transduct. Target. Ther., 2020, 5(1), 77.
[http://dx.doi.org/10.1038/s41392-020-0162-6] [PMID: 32527999]
[50]
Cui, Y.; Wan, H.; Zhang, X. miRNA in food simultaneously controls animal viral disease and human tumorigenesis. Mol. Ther. Nucleic Acids, 2021, 23, 995-1006.
[http://dx.doi.org/10.1016/j.omtn.2021.01.011] [PMID: 33614246]
[51]
Bae, S.; Lee, E.M.; Cha, H.J.; Kim, K.; Yoon, Y.; Lee, H.; Kim, J.; Kim, Y.J.; Lee, H.G.; Jeung, H.K.; Min, Y.H.; An, S. Resveratrol alters microRNA expression profiles in A549 human non-small cell lung cancer cells. Mol. Cells, 2011, 32(3), 243-249.
[http://dx.doi.org/10.1007/s10059-011-1037-z] [PMID: 21887509]
[52]
Qi, H.; Wang, H.; Pang, D. miR-448 promotes progression of non-small-cell lung cancer via targeting SIRT1. Exp. Ther. Med., 2019, 18(3), 1907-1913.
[http://dx.doi.org/10.3892/etm.2019.7738] [PMID: 31410153]
[53]
Han, Z.; Yang, Q.; Liu, B.; Wu, J.; Li, Y.; Yang, C.; Jiang, Y. MicroRNA-622 functions as a tumor suppressor by targeting K-Ras and enhancing the anticarcinogenic effect of resveratrol. Carcinogenesis, 2012, 33(1), 131-139.
[http://dx.doi.org/10.1093/carcin/bgr226] [PMID: 22016468]
[54]
Yu, Y.H.; Chen, H.A.; Chen, P.S.; Cheng, Y.J.; Hsu, W.H.; Chang, Y.W.; Chen, Y.H.; Jan, Y.; Hsiao, M.; Chang, T.Y.; Liu, Y.H.; Jeng, Y.M.; Wu, C.H.; Huang, M.T.; Su, Y.H.; Hung, M.C.; Chien, M.H.; Chen, C.Y.; Kuo, M.L.; Su, J.L. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene, 2013, 32(4), 431-443.
[http://dx.doi.org/10.1038/onc.2012.74] [PMID: 22410781]
[55]
Bai, T.; Dong, D.S.; Pei, L. Synergistic antitumor activity of resveratrol and miR-200c in human lung cancer. Oncol. Rep., 2014, 31(5), 2293-2297.
[http://dx.doi.org/10.3892/or.2014.3090] [PMID: 24647918]
[56]
Lu, M.; Liu, B.; Xiong, H.; Wu, F.; Hu, C.; Liu, P. Trans-3,5,4´-trimethoxystilbene reduced gefitinib resistance in NSCLCs via suppressing MAPK/Akt/Bcl-2 pathway by upregulation of miR-345 and miR-498. J. Cell. Mol. Med., 2019, 23(4), 2431-2441.
[http://dx.doi.org/10.1111/jcmm.14086] [PMID: 30701693]
[57]
Hong, M.; Li, J.; Li, S.; Almutairi, M.M. Resveratrol derivative, trans-3, 5, 4′-trimethoxystilbene, prevents the developing of atherosclerotic lesions and attenuates cholesterol accumulation in macrophage foam cells. Mol. Nutr. Food Res., 2020, 64(6), e1901115.
[http://dx.doi.org/10.1002/mnfr.201901115] [PMID: 31965713]
[58]
Chen, C.; Liu, W.R.; Zhang, B.; Zhang, L.M.; Li, C.G.; Liu, C.; Zhang, H.; Huo, Y.S.; Ma, Y.C.; Tian, P.F.; Qi, Q.; Li, J.J.; Tang, Z.; Zhang, Z.F.; Giaccone, G.; Yue, D.S.; Wang, C.L. LncRNA H19 downregulation confers erlotinib resistance through upregulation of PKM2 and phosphorylation of AKT in EGFR-mutant lung cancers. Cancer Lett., 2020, 486, 58-70.
[http://dx.doi.org/10.1016/j.canlet.2020.05.009] [PMID: 32439420]
[59]
Xu, L.; Liao, W.L.; Lu, Q.J.; Zhang, P.; Zhu, J.; Jiang, G.N. Hypoxic tumor-derived exosomal circular RNA SETDB1 promotes invasive growth and EMT via the miR-7/Sp1 axis in lung adenocarcinoma. Mol. Ther. Nucleic Acids, 2021, 23, 1078-1092.
[http://dx.doi.org/10.1016/j.omtn.2021.01.019] [PMID: 33614250]
[60]
Guo, Q.; Yan, J.; Song, T.; Zhong, C.; Kuang, J.; Mo, Y.; Tan, J.; Li, D.; Sui, Z.; Cai, K.; Zhang, J. microRNA-130b-3p contained in msc-derived evs promotes lung cancer progression by regulating the FOXO3/NFE2L2/TXNRD1 Axis. Mol. Ther. Oncolytics, 2020, 20, 132-146.
[http://dx.doi.org/10.1016/j.omto.2020.09.005] [PMID: 33575477]
[61]
Ran, J.; Li, Y.; Liu, L.; Zhu, Y.; Ni, Y.; Huang, H.; Liu, Z.; Miao, Z.; Zhang, L. Apelin enhances biological functions in lung cancer A549 cells by downregulating exosomal miR-15a-5p. Carcinogenesis, 2021, 42(2), 243-253.
[http://dx.doi.org/10.1093/carcin/bgaa089] [PMID: 32808032]
[62]
Le Corre, L.; Chalabi, N.; Delort, L.; Bignon, Y.J.; Bernard-Gallon, D.J. Resveratrol and breast cancer chemoprevention: Molecular mechanisms. Mol. Nutr. Food Res., 2005, 49(5), 462-471.
[http://dx.doi.org/10.1002/mnfr.200400094] [PMID: 15786518]
[63]
Raimundo, L.; Ramos, H.; Loureiro, J.B.; Calheiros, J.; Saraiva, L. BRCA1/P53: Two strengths in cancer chemoprevention. Biochim. Biophys. Acta Rev. Cancer, 2020, 1873(1), 188339.
[http://dx.doi.org/10.1016/j.bbcan.2020.188339] [PMID: 31917206]
[64]
Ye, Q.; Yang, Y.; Tang, X.; Li, J.; Li, X.; Zhang, Y. Neoadjuvant chemotherapy followed by radical surgery versus radiotherapy (with or without chemotherapy) in patients with stage IB2, IIA, or IIB cervical cancer: A systematic review and meta-analysis. Dis. Markers, 2020, 2020, 7415056.
[http://dx.doi.org/10.1155/2020/7415056] [PMID: 32802215]
[65]
Kobashi, M.; Kanzaki, H.; Okada, H. Perforation of gastric metastasis during chemotherapy with ramucirumab. Curr. Probl. Cancer, 2021, 45(2), 100666.
[http://dx.doi.org/10.1016/j.currproblcancer.2020.100666] [PMID: 33129565]
[66]
Wang, B.; Jing, T.; Jin, W.; Chen, J.; Wu, C.; Wang, M.; Liu, Y. KIAA1522 potentiates TNFα-NFκB signaling to antagonize platinum-based chemotherapy in lung adenocarcinoma. J. Exp. Clin. Cancer Res., 2020, 39(1), 170.
[http://dx.doi.org/10.1186/s13046-020-01684-x] [PMID: 32854746]
[67]
Olesch, C.; Sirait-Fischer, E.; Berkefeld, M.; Fink, A.F.; Susen, R.M.; Ritter, B.; Michels, B.E.; Steinhilber, D.; Greten, F.R.; Savai, R.; Takeda, K.; Brüne, B.; Weigert, A. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. J. Clin. Invest., 2020, 130(10), 5461-5476.
[http://dx.doi.org/10.1172/JCI136928] [PMID: 32663191]
[68]
Lumeau, A.; Cordelier, P. One two punch: Combination chemotherapy knocks out pancreatic cancer. Mol. Ther., 2020, 28(8), 1751-1752.
[http://dx.doi.org/10.1016/j.ymthe.2020.07.014] [PMID: 32702289]
[69]
Lung, R.W.; Tong, J.H.; Ip, L.M.; Lam, K.H.; Chan, A.W.; Chak, W.P.; Chung, L.Y.; Yeung, W.W.; Hau, P.M.; Chau, S.L.; Tsao, S.W.; Lau, K.M.; Lo, K.W.; To, K.F. EBV-encoded miRNAs can sensitize nasopharyngeal carcinoma to chemotherapeutic drugs by targeting BRCA1. J. Cell. Mol. Med., 2020, 24(22), 13523-13535.
[http://dx.doi.org/10.1111/jcmm.16007] [PMID: 33074587]
[70]
Ayhan, M.; Turan, N.; Köstek, O.; Tufan, G.; Tataroğlu Özyükseler, D.; Odabas, H.; Sakin, A.; Turan, M.; Sürmeli, H.; Yıldırım, M.E. Does the efficacy of regorafenib differ in chemotherapy refractory metastatic colorectal cancer patients who had mucinous pathology compared to those who had non-mucinous pathology? Curr. Probl. Cancer, 2021, 45(3), 100670.
[http://dx.doi.org/10.1016/j.currproblcancer.2020.100670] [PMID: 33129567]
[71]
Bahrami, A.; Fereidouni, M.; Pirro, M.; Bianconi, V.; Sahebkar, A. Modulation of regulatory T cells by natural products in cancer. Cancer Lett., 2019, 459, 72-85.
[http://dx.doi.org/10.1016/j.canlet.2019.06.001] [PMID: 31176742]
[72]
Song, Y.; Ye, M.; Zhou, J.; Wang, Z.W.; Zhu, X. Restoring ecadherin expression by natural compounds for anticancer therapies in genital and urinary cancers. Mol. Ther. Oncolytics, 2019, 14, 130-138.
[http://dx.doi.org/10.1016/j.omto.2019.04.005] [PMID: 31194121]
[73]
Shen, L.; Xiao, Y.; Xie, H.; Zhao, H.; Luo, T.; Liu, L.; Pan, X. A naturally derived small molecule NDSM253 inhibits IKK1 to suppress inflammation response and promote bone healing after fracture. Am. J. Transl. Res., 2021, 13(1), 24-37.
[PMID: 33527006]
[74]
Gupta, N.; Malviya, R. Understanding and advancement in gold nanoparticle targeted photothermal therapy of cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188532.
[http://dx.doi.org/10.1016/j.bbcan.2021.188532] [PMID: 33667572]
[75]
Chen, X.; Wang, Y.; Ma, N.; Tian, J.; Shao, Y.; Zhu, B.; Wong, Y.K.; Liang, Z.; Zou, C.; Wang, J. Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification. Signal Transduct. Target. Ther., 2020, 5(1), 72.
[http://dx.doi.org/10.1038/s41392-020-0186-y] [PMID: 32435053]
[76]
Malhotra, A.; Bath, S.; Elbarbry, F. An organ system approach to explore the antioxidative, anti-inflammatory, and cytoprotective actions of resveratrol. Oxid. Med. Cell. Longev., 2015, 2015, 803971.
[http://dx.doi.org/10.1155/2015/803971] [PMID: 26180596]
[77]
Cocetta, V.; Quagliariello, V.; Fiorica, F.; Berretta, M.; Montopoli, M. Resveratrol as chemosensitizer agent: State of art and future perspectives. Int. J. Mol. Sci., 2021, 22(4), 2049.
[http://dx.doi.org/10.3390/ijms22042049] [PMID: 33669559]
[78]
Maj, E.; Maj, B.; Bobak, K.; Gos, M.; Chodyński, M.; Kutner, A.; Wietrzyk, J. Differential response of lung cancer cells, with various driver mutations, to plant polyphenol resveratrol and vitamin D active metabolite PRI-2191. Int. J. Mol. Sci., 2021, 22(5), 2354.
[http://dx.doi.org/10.3390/ijms22052354] [PMID: 33652978]
[79]
Ma, L.; Li, W.; Wang, R.; Nan, Y.; Wang, Q.; Liu, W.; Jin, F. Resveratrol enhanced anticancer effects of cisplatin on non-small cell lung cancer cell lines by inducing mitochondrial dysfunction and cell apoptosis. Int. J. Oncol., 2015, 47(4), 1460-1468.
[http://dx.doi.org/10.3892/ijo.2015.3124] [PMID: 26314326]
[80]
Liu, Y.N.; Tsai, M.F.; Wu, S.G.; Chang, T.H.; Tsai, T.H.; Gow, C.H.; Wang, H.Y.; Shih, J.Y. miR-146b-5p enhances the sensitivity of NSCLC to EGFR tyrosine kinase inhibitors by regulating the IRAK1/NF-κB pathway. Mol. Ther. Nucleic Acids, 2020, 22, 471-483.
[http://dx.doi.org/10.1016/j.omtn.2020.09.015] [PMID: 33230450]
[81]
Zhang, K.; Ma, Y.; Guo, Y.; Sun, T.; Wu, J.; Pangeni, R.P.; Lin, M.; Li, W.; Horne, D.; Raz, D.J. Cetuximab-triptolide conjugate suppresses the growth of EGFR-overexpressing lung cancers through targeting RNA polymerase II. Mol. Ther. Oncolytics, 2020, 18, 304-316.
[http://dx.doi.org/10.1016/j.omto.2020.07.001] [PMID: 32775615]
[82]
Jao, T.M.; Fang, W.H.; Ciou, S.C.; Yu, S.L.; Hung, Y.L.; Weng, W.T.; Lin, T.Y.; Tsai, M.H.; Yang, Y.C. PCDH10 exerts tumorsuppressor functions through modulation of EGFR/AKT axis in colorectal cancer. Cancer Lett., 2021, 499, 290-300.
[http://dx.doi.org/10.1016/j.canlet.2020.11.017] [PMID: 33271263]
[83]
Saeed, M.E.M.; Rahama, M.; Kuete, V.; Dawood, M.; Elbadawi, M.; Sugimoto, Y.; Efferth, T. Collateral sensitivity of drug-resistant ABCB5- and mutation-activated EGFR overexpressing cells towards resveratrol due to modulation of SIRT1 expression. Phytomedicine, 2019, 59, 152890.
[http://dx.doi.org/10.1016/j.phymed.2019.152890] [PMID: 30921566]
[84]
Jeong, H.; Phan, A.N.H.; Choi, J.W. Anti-cancer effects of polyphenolic compounds in epidermal growth factor receptor tyrosine kinase inhibitor-resistant non-small cell lung cancer. Pharmacogn. Mag., 2017, 13(52), 595-599.
[http://dx.doi.org/10.4103/pm.pm_535_16] [PMID: 29200719]
[85]
Qin, S.H.; Lau, A.T.Y.; Liang, Z.L.; Tan, H.W.; Ji, Y.C.; Zhong, Q.H.; Zhao, X.Y.; Xu, Y.M. Resveratrol promotes tumor microvessel growth via endoglin and extracellular signal-regulated kinase signaling pathway and enhances the anticancer efficacy of gemcitabine against lung cancer. Cancers (Basel), 2020, 12(4), E974.
[http://dx.doi.org/10.3390/cancers12040974] [PMID: 32326402]
[86]
Zhao, W.; Bao, P.; Qi, H.; You, H. Resveratrol down-regulates survivin and induces apoptosis in human multidrug-resistant SPCA-1/CDDP cells. Oncol. Rep., 2010, 23(1), 279-286.
[PMID: 19956893]
[87]
Sun, X.; Fu, P.; Xie, L.; Chai, S.; Xu, Q.; Zeng, L.; Wang, X.; Jiang, N.; Sang, M. Resveratrol inhibits the progression of cervical cancer by suppressing the transcription and expression of HPV E6 and E7 genes. Int. J. Mol. Med., 2021, 47(1), 335-345.
[http://dx.doi.org/10.3892/ijmm.2020.4789] [PMID: 33236130]
[88]
Xiong, L.; Nie, J.H.; Lin, X.M.; Wu, J.B.; Chen, Z.; Xu, B.; Liu, J. Biological implications of PTEN upregulation and altered sodium/iodide symporter intracellular distribution in resveratrolsuppressed anaplastic thyroid cancer cells. J. Cancer, 2020, 11(23), 6883-6891.
[http://dx.doi.org/10.7150/jca.48180] [PMID: 33123279]
[89]
Zeng, Z.; Cao, Z.; Tang, Y. Identification of diagnostic and prognostic biomarkers, and candidate targeted agents for hepatitis B virus-associated early stage hepatocellular carcinoma based on RNAsequencing data. Oncol. Lett., 2020, 20(5), 231.
[http://dx.doi.org/10.3892/ol.2020.12094] [PMID: 32968453]
[90]
Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215, 9-15.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05842.x] [PMID: 21261636]
[91]
Neves, A.R.; Martins, S.; Segundo, M.A.; Reis, S. Nanoscale delivery of resveratrol towards enhancement of supplements and nutraceuticals. Nutrients, 2016, 8(3), 131.
[http://dx.doi.org/10.3390/nu8030131] [PMID: 26950147]
[92]
Banerjee, B.; Chakraborty, S.; Ghosh, D.; Raha, S.; Sen, P.C.; Jana, K. Benzo(a)pyrene induced p53 mediated male germ cell apoptosis: Synergistic protective effects of curcumin and resveratrol. Front. Pharmacol., 2016, 7, 245.
[http://dx.doi.org/10.3389/fphar.2016.00245] [PMID: 27551266]
[93]
NavaneethaKrishnan, S.; Rosales, J.L.; Lee, K.Y. ROS-mediated cancer cell killing through dietary phytochemicals. Oxid. Med. Cell. Longev., 2019, 2019, 9051542.
[http://dx.doi.org/10.1155/2019/9051542] [PMID: 31217841]
[94]
Gambini, J.; Inglés, M.; Olaso, G.; Lopez-Grueso, R.; Bonet-Costa, V.; Gimeno-Mallench, L.; Mas-Bargues, C.; Abdelaziz, K.M.; Gomez-Cabrera, M.C.; Vina, J.; Borras, C. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015, 2015, 837042.
[http://dx.doi.org/10.1155/2015/837042] [PMID: 26221416]
[95]
Chatterjee, K.; Mukherjee, S.; Vanmanen, J.; Banerjee, P.; Fata, J.E. Dietary polyphenols, resveratrol and pterostilbene exhibit antitumor activity on an HPV E6-positive cervical cancer model: An in vitro and in vivo analysis. Front. Oncol., 2019, 9, 352.
[http://dx.doi.org/10.3389/fonc.2019.00352] [PMID: 31143704]
[96]
Chang, H.P.; Lu, C.C.; Chiang, J.H.; Tsai, F.J.; Juan, Y.N.; Tsao, J.W.; Chiu, H.Y.; Yang, J.S. Pterostilbene modulates the suppression of multidrug resistance protein 1 and triggers autophagic and apoptotic mechanisms in cisplatin-resistant human oral cancer CAR cells via AKT signaling. Int. J. Oncol., 2018, 52(5), 1504-1514.
[http://dx.doi.org/10.3892/ijo.2018.4298] [PMID: 29512708]
[97]
Soto, B.L.; Hank, J.A.; Darjatmoko, S.R.; Polans, A.S.; Yanke, E.M.; Rakhmilevich, A.L.; Seo, S.; Kim, K.; Reisfeld, R.A.; Gillies, S.D.; Sondel, P.M. Anti-tumor and immunomodulatory activity of resveratrol in vitro and its potential for combining with cancer immunotherapy. Int. Immunopharmacol., 2011, 11(11), 1877-1886.
[http://dx.doi.org/10.1016/j.intimp.2011.07.019] [PMID: 21854876]
[98]
Mohan, A.; Narayanan, S.; Sethuraman, S.; Krishnan, U.M. Novel resveratrol and 5-fluorouracil coencapsulated in PEGylated nanoliposomes improve chemotherapeutic efficacy of combination against head and neck squamous cell carcinoma. BioMed Res. Int., 2014, 2014, 424239.
[http://dx.doi.org/10.1155/2014/424239] [PMID: 25114900]
[99]
Ge, S.; Yin, T.; Xu, B.; Gao, S.; Hu, M. Curcumin affects phase II disposition of resveratrol through inhibiting efflux transporters MRP2 and BCRP. Pharm. Res., 2016, 33(3), 590-602.
[http://dx.doi.org/10.1007/s11095-015-1812-1] [PMID: 26502886]
[100]
Song, Z.; Shi, Y.; Han, Q.; Dai, G. Endothelial growth factor receptor-targeted and reactive oxygen species-responsive lung cancer therapy by docetaxel and resveratrol encapsulated lipid-polymer hybrid nanoparticles. Biomed. Pharmacother., 2018, 105, 18-26.
[http://dx.doi.org/10.1016/j.biopha.2018.05.095] [PMID: 29843041]
[101]
Liu, D.; He, B.; Lin, L.; Malhotra, A.; Yuan, N. Potential of curcumin and resveratrol as biochemical and biophysical modulators during lung cancer in rats. Drug Chem. Toxicol., 2019, 42(3), 328-334.
[http://dx.doi.org/10.1080/01480545.2018.1523921] [PMID: 30484721]
[102]
Wang, X.; Parvathaneni, V.; Shukla, S.K.; Kanabar, D.D.; Muth, A.; Gupta, V. Cyclodextrin complexation for enhanced stability and non-invasive pulmonary delivery of resveratrol-applications in non-small cell lung cancer treatment. AAPS PharmSciTech, 2020, 21(5), 183.
[http://dx.doi.org/10.1208/s12249-020-01724-x] [PMID: 32632576]
[103]
Xie, J.; Zhang, W.; Liang, X.; Shuai, C.; Zhou, Y.; Pan, H.; Yang, Y.; Han, W. RPL32 promotes lung cancer progression by facilitating p53 degradation. Mol. Ther. Nucleic Acids, 2020, 21, 75-85.
[http://dx.doi.org/10.1016/j.omtn.2020.05.019] [PMID: 32516735]
[104]
Tsai, Y.T.; Liang, C.H.; Yu, J.H.; Huang, K.C.; Tung, C.H.; Wu, J.E.; Wu, Y.Y.; Chang, C.H.; Hong, T.M.; Chen, Y.L. A DNA aptamer targeting galectin-1 as a novel immunotherapeutic strategy for lung cancer. Mol. Ther. Nucleic Acids, 2019, 18, 991-998.
[http://dx.doi.org/10.1016/j.omtn.2019.10.029] [PMID: 31778957]
[105]
Xu, F.; Chen, J.X.; Yang, X.B.; Hong, X.B.; Li, Z.X.; Lin, L.; Chen, Y.S. Analysis of lung adenocarcinoma subtypes based on immune signatures identifies clinical implications for cancer therapy. Mol. Ther. Oncolytics, 2020, 17, 241-249.
[http://dx.doi.org/10.1016/j.omto.2020.03.021] [PMID: 32346613]
[106]
Shen, Z.H.; Hu, X.Q.; Hu, M.J.; Pan, X.K.; Lu, H.G.; Chen, B.; Wu, B.; Chen, G. Activation of AKT signaling via small molecule natural compound prevents against osteoblast apoptosis and osteonecrosis of the femoral head. Am. J. Transl. Res., 2020, 12(11), 7211-7222.
[PMID: 33312361]
[107]
Ma, B.N.; Li, X.J. Resveratrol extracted from Chinese herbal medicines: A novel therapeutic strategy for lung diseases. Chin. Herb. Med., 2020, 12(4), 349-358.
[http://dx.doi.org/10.1016/j.chmed.2020.07.003] [PMID: 32963508]
[108]
Liang, Z.J.; Wan, Y.; Zhu, D.D.; Wang, M.X.; Jiang, H.M.; Huang, D.L.; Luo, L.F.; Chen, M.J.; Yang, W.P.; Li, H.M.; Wei, C.Y. Resveratrol mediates the apoptosis of triple negative breast cancer cells by reducing POLD1 expression. Front. Oncol., 2021, 11, 569295.
[http://dx.doi.org/10.3389/fonc.2021.569295] [PMID: 33747905]
[109]
Oczkowski, M.; Dziendzikowska, K.; Pasternak-Winiarska, A.; Włodarek, D.; Gromadzka-Ostrowska, J. Dietary factors and prostate cancer development, progression, and reduction. Nutrients, 2021, 13(2), 496.
[http://dx.doi.org/10.3390/nu13020496] [PMID: 33546190]
[110]
Ashrafizadeh, M.; Rafiei, H.; Mohammadinejad, R.; Farkhondeh, T.; Samarghandian, S. Anti-tumor activity of resveratrol against gastric cancer: A review of recent advances with an emphasis on molecular pathways. Cancer Cell Int., 2021, 21(1), 66.
[http://dx.doi.org/10.1186/s12935-021-01773-7] [PMID: 33478512]
[111]
Xie, L.X.; Williams, K.J.; He, C.H.; Weng, E.; Khong, S.; Rose, T.E.; Kwon, O.; Bensinger, S.J.; Marbois, B.N.; Clarke, C.F. Resveratrol and para-coumarate serve as ring precursors for coenzyme Q biosynthesis. J. Lipid Res., 2015, 56(4), 909-919.
[http://dx.doi.org/10.1194/jlr.M057919] [PMID: 25681964]
[112]
Sinico, C.; Pireddu, R.; Pini, E.; Valenti, D.; Caddeo, C.; Fadda, A.M.; Lai, F. Enhancing topical delivery of resveratrol through a nanosizing approach. Planta Med., 2017, 83(5), 476-481.
[http://dx.doi.org/10.1055/s-0042-103688] [PMID: 27220078]
[113]
Jeandet, P.; Sobarzo-Sánchez, E.; Uddin, M.S.; Bru, R.; Clément, C.; Jacquard, C.; Nabavi, S.F.; Khayatkashani, M.; Batiha, G.E.; Khan, H.; Morkunas, I.; Trotta, F.; Matencio, A.; Nabavi, S.M. Resveratrol and cyclodextrins, an easy alliance: Applications in nanomedicine, green chemistry and biotechnology. Biotechnol. Adv., 2021, 53, 107844.
[http://dx.doi.org/10.1016/j.biotechadv.2021.107844] [PMID: 34626788]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy