Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

GlmU Inhibitors as Promising Antibacterial Agents: A Review

Author(s): Nagarjuna Palathoti and Mohammed Afzal Azam*

Volume 23, Issue 3, 2023

Published on: 19 September, 2022

Page: [343 - 360] Pages: 18

DOI: 10.2174/1389557522666220817114445

Price: $65

Abstract

Bacterial infections are a major cause of mortality and morbidity in humans throughout the world. Infections due to resistant bacterial strains such as methicillin-resistant Staphyloccocusaureus vancomycin, resistant Enterococci, Klebsiella pneumoniae, Staphylococcus aureus, and Mycobacterium are alarming. Hence the development of new antibacterial agents, which act via a novel mechanism of action, became a priority in antibacterial research. One such approach to overcome bacterial resistance is to target novel protein and develop antibacterial agents that act via different mechanisms of action. Bacterial GlmU is one such bifunctional enzyme that catalyzes the two consecutive reactions during the biosynthesis of uridine 5′-diphospho-Nacetylglucosamine, an essential precursor for the biosynthesis of bacterial cell wall peptidoglycan. This enzyme comprises two distinct active sites; acetyltransferase and uridyltransferase and both these active sites act independently during catalytic reactions. GlmU is considered an attractive target for the design and development of newer antibacterial agents due to its important role in bacterial cell wall synthesis and the absence of comparable enzymes in humans. Availability of three dimensions X-crystallographic structures of GlmU and their known catalytic mechanism from different bacterial strains have instigated research efforts for the development of novel antibacterial agents. Several GlmU inhibitors belonging to different chemical classes like 2- phenylbenzofuran derivative, quinazolines, aminoquinazolines, sulfonamides, arylsulfonamide, D-glucopyranoside 6-phosphates, terreic acid, iodoacetamide, N-ethyl maleimide, and Nethylmaleimide etc., have been reported in the literature. In the present review, we present an update on GlmU inhibitors and their associated antibacterial activities. This review may be useful for the design and development of novel GlmU inhibitors with potent antibacterial activity.

Keywords: Haemophilus influenzae, acetyltransferase, uridyltransferase, GlmU inhibitors, quinazolines, 2-phenylbenzofuran, HTVS.

Graphical Abstract

[1]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicinal. Chem., 2014, 6, S14459.
[2]
Centers for Disease Control and Prevention. CDC’s Antibiotic resistance threats in the United States, 2019. Available from: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf [Accessed on: November 14, 2021].
[3]
Antibiotic resistance. World Health Organization, 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance [Accessed on: November 14, 2020].
[4]
Antimicrobial Resistance Threats. National Institute of allergy and Infectious diseases, USA, 2020. Available from: https://www.niaid.nih.gov/research/antimicrobial-resistance-threats
[5]
Hove-Jensen, B.; McSorley, F.R.; Zechel, D.L. Catabolism and detoxification of 1-aminoalkylphosphonic acids: N-acetylation by the phnO gene product. PLoS One, 2012, 7(10), e46416.
[http://dx.doi.org/10.1371/journal.pone.0046416] [PMID: 23056305]
[6]
Mengin-Lecreulx, D.; van Heijenoort, J. Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J. Bacteriol., 1993, 175(19), 6150-6157.
[http://dx.doi.org/10.1128/jb.175.19.6150-6157.1993] [PMID: 8407787]
[7]
Kang, J.; Xu, L.; Yang, S.; Yu, W.; Liu, S.; Xin, Y.; Ma, Y. Effect of phosphoglucosamine mutase on biofilm formation and antimicrobial susceptibilities in M. smegmatis glmM gene knockdown strain. PLoS One, 2013, 8(4), e61589.
[http://dx.doi.org/10.1371/journal.pone.0061589] [PMID: 23593488]
[8]
Butkinaree, C.; Park, K.; Hart, G.W. O-linked β-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta, 2010, 1800(2), 96-106.
[http://dx.doi.org/10.1016/j.bbagen.2009.07.018] [PMID: 19647786]
[9]
Durand, P.; Golinelli-Pimpaneau, B.; Mouilleron, S.; Badet, B.; Badet-Denisot, M.A. Highlights of glucosamine-6P synthase catalysis. Arch. Biochem. Biophys., 2008, 474(2), 302-317.
[http://dx.doi.org/10.1016/j.abb.2008.01.026] [PMID: 18279655]
[10]
Mengin-Lecreulx, D.; van Heijenoort, J. Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: Characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J. Bacteriol., 1994, 176(18), 5788-5795.
[http://dx.doi.org/10.1128/jb.176.18.5788-5795.1994] [PMID: 8083170]
[11]
Mengin-Lecreulx, D.; van Heijenoort, J. Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. J. Biol. Chem., 1996, 271(1), 32-39.
[http://dx.doi.org/10.1074/jbc.271.1.32] [PMID: 8550580]
[12]
Gehring, A.M.; Lees, W.J.; Mindiola, D.J.; Walsh, C.T.; Brown, E.D. Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry, 1996, 35(2), 579-585.
[http://dx.doi.org/10.1021/bi952275a] [PMID: 8555230]
[13]
Singh, V.K.; Das, K.; Seshadri, K. Kinetic modelling of GlmU reactions - prioritization of reaction for therapeutic application. PLoS One, 2012, 7(8), e43969.
[http://dx.doi.org/10.1371/journal.pone.0043969] [PMID: 22952829]
[14]
Rodríguez-Díaz, J.; Rubio-del-Campo, A.; Yebra, M.J. Metabolic engineering of Lactobacillus casei for production of UDP-N-acetylglucosamine. Biotechnol. Bioeng., 2012, 109(7), 1704-1712.
[http://dx.doi.org/10.1002/bit.24475] [PMID: 22383248]
[15]
Mio, T.; Yabe, T.; Arisawa, M.; Yamada-Okabe, H. The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases. Gene cloning, protein expression, and catalytic mechanism. J. Biol. Chem., 1998, 273(23), 14392-14397.
[http://dx.doi.org/10.1074/jbc.273.23.14392] [PMID: 9603950]
[16]
Peneff, C.; Mengin-Lecreulx, D.; Bourne, Y. The crystal structures of Apo and complexed Saccharomyces cerevisiae GNA1 shed light on the catalytic mechanism of an amino-sugar N-acetyltransferase. J. Biol. Chem., 2001, 276(19), 16328-16334. [a
[http://dx.doi.org/10.1074/jbc.M009988200] [PMID: 11278591]
[17]
Peneff, C.; Ferrari, P.; Charrier, V.; Taburet, Y.; Monnier, C.; Zamboni, V.; Winter, J.; Harnois, M.; Fassy, F.; Bourne, Y. Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: Role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J., 2001, 20(22), 6191-6202. [b
[http://dx.doi.org/10.1093/emboj/20.22.6191] [PMID: 11707391]
[18]
Zhang, W.; Jones, V.C.; Scherman, M.S.; Mahapatra, S.; Crick, D.; Bhamidi, S.; Xin, Y.; McNeil, M.R.; Ma, Y. Expression, essentiality, and a microtiter plate assay for mycobacterial GlmU, the bifunctional glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase. Int. J. Biochem. Cell Biol., 2008, 40(11), 2560-2571.
[http://dx.doi.org/10.1016/j.biocel.2008.05.003] [PMID: 18573680]
[19]
Mochalkin, I.; Lightle, S.; Zhu, Y.; Ohren, J.F.; Spessard, C.; Chirgadze, N.Y.; Banotai, C.; Melnick, M.; McDowell, L. Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Protein Sci., 2007, 16(12), 2657-2666.
[http://dx.doi.org/10.1110/ps.073135107] [PMID: 18029420]
[20]
Olsen, L.R.; Roderick, S.L. Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry, 2001, 40(7), 1913-1921.
[http://dx.doi.org/10.1021/bi002503n] [PMID: 11329257]
[21]
Olsen, L.R.; Vetting, M.W.; Roderick, S.L. Structure of the E. coli bifunctional GlmU acetyltransferase active site with substrates and products. Protein Sci., 2007, 16(6), 1230-1235.
[http://dx.doi.org/10.1110/ps.072779707] [PMID: 17473010]
[22]
Otterbein, L.; Breed, J.; Ogg, D.J.S. pneumoniae GlmU in complex with an antibacterial inhibitor. Bioorg. Med. Chem. Lett., 2012, 22, 1510.
[23]
Zhang, Z.; Squire, C.J.; Baker, E.N. N-acetyl glucosamine 1-phosphate uridyltransferase from Mycobacterium tuberculosis complex with N-acetyl glucosamine 1-phosphate. Acta Crystallogr. D Biol. Crystallogr., 2009, 65, 275-283.
[http://dx.doi.org/10.1107/S0907444909001036] [PMID: 19237750]
[24]
Mochalkin, I.; Lightle, S.; Narasimhan, L.; Bornemeier, D.; Melnick, M.; Vanderroest, S.; McDowell, L. Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site. Protein Sci., 2008, 17(3), 577-582.
[http://dx.doi.org/10.1110/ps.073271408] [PMID: 18218712]
[25]
Verma, S.K.; Jaiswal, M.; Kumar, N.; Parikh, A.; Nandicoori, V.K.; Prakash, B. Structure of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Mycobacterium tuberculosis in a cubic space group. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2009, 65(Pt 5), 435-439.
[http://dx.doi.org/10.1107/S1744309109010252] [PMID: 19407371]
[26]
Jagtap, P.K.; Verma, S.K.; Vithani, N.; Bais, V.S.; Prakash, B. Crystal structures identify an atypical two-metal-ion mechanism for uridyltransfer in GlmU: Its significance to sugar nucleotidyl transferases. J. Mol. Biol., 2013, 425(10), 1745-1759.
[http://dx.doi.org/10.1016/j.jmb.2013.02.019] [PMID: 23485416]
[27]
Vithani, N.; Bais, V.; Prakash, B. GlmU (N-acetylglucosamine-1-phosphate uridyltransferase) bound to three magnesium ions and ATP at the active site. Acta Crystallogr. F Struct. Biol. Commun., 2014, 70(Pt 6), 703-708.
[http://dx.doi.org/10.1107/S2053230X14008279] [PMID: 24915076]
[28]
Sulzenbacher, G.; Gal, L.; Peneff, C.; Fassy, F.; Bourne, Y. Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture. J. Biol. Chem., 2001, 276(15), 11844-11851.
[http://dx.doi.org/10.1074/jbc.M011225200] [PMID: 11118459]
[29]
Kostrewa, D.; D’Arcy, A.; Takacs, B.; Kamber, M. Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 A resolution and in complex with UDP-N-acetylglucosamine and Mg(2+) at 1.96 A resolution. J. Mol. Biol., 2001, 305(2), 279-289.
[http://dx.doi.org/10.1006/jmbi.2000.4296] [PMID: 11124906]
[30]
Pompeo, F.; van Heijenoort, J.; Mengin-Lecreulx, D. Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: Site-directed mutagenesis and characterization of the mutant enzymes. J. Bacteriol., 1998, 180(18), 4799-4803.
[http://dx.doi.org/10.1128/JB.180.18.4799-4803.1998] [PMID: 9733680]
[31]
Sarvas, M. Mutant of Escherichia coli K-12 defective in D-glucosamine biosynthesis. J. Bacteriol., 1971, 105(2), 467-471.
[http://dx.doi.org/10.1128/jb.105.2.467-471.1971] [PMID: 5541524]
[32]
Rolls, J.P.; Shuster, C.W. Amino sugar assimilation by Escherichia coli. J. Bacteriol., 1972, 112(2), 894-902.
[http://dx.doi.org/10.1128/jb.112.2.894-902.1972] [PMID: 4563983]
[33]
Wu, H.C.; Wu, T.C. Isolation and characterization of a glucosamine-requiring mutant of Escherichia coli K-12 defective in glucosamine-6-phosphate synthetase. J. Bacteriol., 1971, 105(2), 455-466.
[http://dx.doi.org/10.1128/jb.105.2.455-466.1971] [PMID: 5541523]
[34]
Vertesy, L.; Kurz, M.; Markus-Erb, A.; Toti, L. 2- Phenylbenzofuran derivatives, a process for preparing them, and their use. U.S. Patent 0,137,254, 2004.
[35]
Pereira, M.P.; Blanchard, J.E.; Murphy, C.; Roderick, S.L.; Brown, E.D. High-throughput screening identifies novel inhibitors of the acetyltransferase activity of Escherichia coli GlmU. Antimicrob. Agents Chemother., 2009, 53(6), 2306-2311.
[http://dx.doi.org/10.1128/AAC.01572-08] [PMID: 19349513]
[36]
Buurman, E.T.; Andrews, B.; Gao, N.; Hu, J.; Keating, T.A.; Lahiri, S.; Otterbein, L.R.; Patten, A.D.; Stokes, S.S.; Shapiro, A.B. In vitro validation of acetyltransferase activity of GlmU as an antibacterial target in Haemophilus influenzae. J. Biol. Chem., 2011, 286(47), 40734-40742.
[http://dx.doi.org/10.1074/jbc.M111.274068] [PMID: 21984832]
[37]
Li, Y.; Zhou, Y.; Ma, Y.; Li, X. Design and synthesis of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU. Carbohydr. Res., 2011, 346(13), 1714-1720.
[http://dx.doi.org/10.1016/j.carres.2011.05.024] [PMID: 21704310]
[38]
Green, O.M.; McKenzie, A.R.; Shapiro, A.B.; Otterbein, L.; Ni, H.; Patten, A.; Stokes, S.; Albert, R.; Kawatkar, S.; Breed, J. Inhibitors of acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 1: Hit to lead evaluation of a novel arylsulfonamide series. Bioorg. Med. Chem. Lett., 2012, 22(4), 1510-1519.
[http://dx.doi.org/10.1016/j.bmcl.2012.01.016] [PMID: 22297115]
[39]
Stokes, S.S.; Albert, R.; Buurman, E.T.; Andrews, B.; Shapiro, A.B.; Green, O.M.; McKenzie, A.R.; Otterbein, L.R. Inhibitors of the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridylyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 2: Optimization of physical properties leading to antibacterial aryl sulfonamides. Bioorg. Med. Chem. Lett., 2012, 22(23), 7019-7023.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.003] [PMID: 23099094]
[40]
Larsen, N.A.; Nash, T.J.; Morningstar, M.; Shapiro, A.B.; Joubran, C.; Blackett, C.J.; Patten, A.D.; Boriack-Sjodin, P.A.; Doig, P. An aminoquinazoline inhibitor of the essential bacterial cell wall synthetic enzyme GlmU has a unique non-protein-kinase-like binding mode. Biochem. J., 2012, 446(3), 405-413.
[http://dx.doi.org/10.1042/BJ20120596] [PMID: 22721802]
[41]
Doig, P.; Boriack-Sjodin, P.A.; Dumas, J.; Hu, J.; Itoh, K.; Johnson, K.; Kazmirski, S.; Kinoshita, T.; Kuroda, S.; Sato, T.O.; Sugimoto, K.; Tohyama, K.; Aoi, H.; Wakamatsu, K.; Wang, H. Rational design of inhibitors of the bacterial cell wall synthetic enzyme GlmU using virtual screening and lead-hopping. Bioorg. Med. Chem., 2014, 22(21), 6256-6269.
[http://dx.doi.org/10.1016/j.bmc.2014.08.017] [PMID: 25262942]
[42]
Tran, A.T.; Wen, D.; West, N.P.; Baker, E.N.; Britton, W.J.; Payne, R.J. Inhibition studies on Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Org. Biomol. Chem., 2013, 11(46), 8113-8126.
[http://dx.doi.org/10.1039/c3ob41896k] [PMID: 24158720]
[43]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03425.x] [PMID: 12657046]
[44]
Soni, V.; Suryadevara, P.; Sriram, D.; Kumar, S.; Nandicoori, V.K.; Yogeeswari, P. Structure-based design of diverse inhibitors of Mycobacterium tuberculosis N-acetylglucosamine-1-phosphate uridyltransferase: Combined molecular docking, dynamic simulation, and biological activity. J. Mol. Model., 2015, 21(7), 174. [a
[http://dx.doi.org/10.1007/s00894-015-2704-3] [PMID: 26078037]
[45]
Soni, V.; Upadhayay, S.; Suryadevara, P.; Samla, G.; Singh, A.; Yogeeswari, P.; Sriram, D.; Nandicoori, V.K. Depletion of M. tuberculosis GlmU from infected murine lungs effects the clearance of the pathogen. PLoS Pathog., 2015, 11(10), e1005235. [b
[http://dx.doi.org/10.1371/journal.ppat.1005235] [PMID: 26489015]
[46]
Rani, C.; Mehra, R.; Sharma, R.; Chib, R.; Wazir, P.; Nargotra, A.; Khan, I.A. High-throughput screen identifies small molecule inhibitors targeting acetyltransferase activity of Mycobacterium tuberculosis GlmU. Tuberculosis (Edinb.), 2015, 95(6), 664-677.
[http://dx.doi.org/10.1016/j.tube.2015.06.003] [PMID: 26318557]
[47]
Mehra, R.; Sharma, R.; Khan, I.A.; Nargotra, A. Identification and optimization of Escherichia coli GlmU inhibitors: An in silico approach with validation thereof. Eur. J. Med. Chem., 2015, 92, 78-90.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.030] [PMID: 25544688]
[48]
Mehra, R.; Rani, C.; Mahajan, P.; Vishwakarma, R.A.; Khan, I.A.; Nargotra, A. Computationally guided identification of novel Mycobacterium tuberculosis GlmU inhibitory leads, their optimization, and in vitro validation. ACS Comb. Sci., 2016, 18(2), 100-116.
[http://dx.doi.org/10.1021/acscombsci.5b00019] [PMID: 26812086]
[49]
Qi, X.; Deng, W.; Gao, M.; Mao, B.; Xu, S.; Chen, C.; Zhang, Q. Novel lead compound optimization and synthesized based on the target structure of Xanthomonas oryzae pv. oryzae GlmU. Pestic. Biochem. Physiol., 2015, 122, 22-28.
[http://dx.doi.org/10.1016/j.pestbp.2015.01.005] [PMID: 26071803]
[50]
Min, J.; Lin, D.; Zhang, Q.; Zhang, J.; Yu, Z. Structure-based virtual screening of novel inhibitors of the uridyltransferase activity of Xanthomonas oryzae pv. oryzae GlmU. Eur. J. Med. Chem., 2012, 53, 150-158.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.051] [PMID: 22521370]
[51]
Sharma, R.; Rani, C.; Mehra, R.; Nargotra, A.; Chib, R.; Rajput, V.S.; Kumar, S.; Singh, S.; Sharma, P.R.; Khan, I.A. Identification and characterization of novel small molecule inhibitors of the acetyltransferase activity of Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Appl. Microbiol. Biotechnol., 2016, 100(7), 3071-3085.
[http://dx.doi.org/10.1007/s00253-015-7123-y] [PMID: 26563552]
[52]
Yamamoto, H.; Moriyama, K.; Jinnouchi, H.; Yagishita, K. Studies on terreic acid. Jpn. J. Antibiot., 1980, 33(3), 320-328.
[PMID: 7190624]
[53]
Sharma, R.; Lambu, M.R.; Jamwal, U.; Rani, C.; Chib, R.; Wazir, P.; Mukherjee, D.; Chaubey, A.; Khan, I.A. Escherichia coli N-acetylglucosamine-1-phosphate-uridyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU) inhibitory activity of terreic acid isolated from Aspergillus terreus. J. Biomol. Screen., 2016, 21(4), 342-353.
[http://dx.doi.org/10.1177/1087057115625308] [PMID: 26762501]
[54]
Zhou, Y.; Xin, Y.; Sha, S.; Ma, Y. Kinetic properties of Mycobacterium tuberculosis bifunctional GlmU. Arch. Microbiol., 2011, 193(10), 751-757.
[http://dx.doi.org/10.1007/s00203-011-0715-8] [PMID: 21594607]
[55]
Chen, C.; Han, X.; Yan, Q.; Wang, C.; Jia, L.; Taj, A.; Zhao, L.; Ma, Y. The inhibitory effect of GlmU acetyltransferase inhibitor TPSA on Mycobacterium tuberculosis may be affected due to its methylation by methyltransferase Rv0560c. Front. Cell. Infect. Microbiol., 2019, 9, 251.
[http://dx.doi.org/10.3389/fcimb.2019.00251] [PMID: 31380295]
[56]
Hall, M.J.; Middleton, R.F.; Westmacott, D. The Fractional Inhibitory Concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother., 1983, 11(5), 427-433.
[http://dx.doi.org/10.1093/jac/11.5.427] [PMID: 6874629]
[57]
Sukheja, P.; Kumar, P.; Mittal, N.; Li, S.G.; Singleton, E.; Russo, R.; Perryman, A.L.; Shrestha, R.; Awasthi, D.; Husain, S.; Soteropoulos, P.; Brukh, R.; Connell, N.; Freundlich, J.S.; Alland, D. A novel small-molecule inhibitor of the Mycobacterium tuberculosis demethylmenaquinone methyltransferase MenG is bactericidal to both growing and nutritionally deprived persister cells. MBio, 2017, 8(1), e02022-e02038.
[http://dx.doi.org/10.1128/mBio.02022-16] [PMID: 28196957]
[58]
Janardhan, S.; John, L.; Prasanthi, M.; Poroikov, V.; Narahari Sastry, G.A. QSAR and molecular modelling study towards new lead finding: Polypharmacological approach to Mycobacterium tuberculosis. SAR QSAR Environ. Res., 2017, 28(10), 815-832.
[http://dx.doi.org/10.1080/1062936X.2017.1398782] [PMID: 29183232]
[59]
Singla, D.; Anurag, M.; Dash, D.; Raghava, G.P.S. A web server for predicting inhibitors against bacterial target GlmU protein. BMC Pharmacol., 2011, 11(1), 5.
[http://dx.doi.org/10.1186/1471-2210-11-5] [PMID: 21733180]
[60]
Achinas, S.; Charalampogiannis, N.; Euverink, G.J.W. A brief recap of microbial adhesion and biofilms. Appl. Sci. (Basel), 2019, 9(14), 2801.
[http://dx.doi.org/10.3390/app9142801]
[61]
Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond risk: Bacterial biofilms and their regulating approaches. Front. Microbiol., 2020, 11, 928.
[http://dx.doi.org/10.3389/fmicb.2020.00928] [PMID: 32508772]
[62]
Chung, P.Y.; Toh, Y.S. Anti-biofilm agents: Recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog. Dis., 2014, 70(3), 231-239.
[http://dx.doi.org/10.1111/2049-632X.12141] [PMID: 24453168]
[63]
Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol., 2018, 9, 898.
[http://dx.doi.org/10.3389/fmicb.2018.00898] [PMID: 29867809]
[64]
Zentz, F.; Valla, A.; Le Guillou, R.; Labia, R.; Mathot, A.G.; Sirot, D. Synthesis and antimicrobial activities of N-substituted imides. Farmaco, 2002, 57(5), 421-426.
[http://dx.doi.org/10.1016/S0014-827X(02)01217-X] [PMID: 12058815]
[65]
Burton, E.; Gawande, P.V.; Yakandawala, N.; LoVetri, K.; Zhanel, G.G.; Romeo, T.; Friesen, A.D.; Madhyastha, S. Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob. Agents Chemother., 2006, 50(5), 1835-1840.
[http://dx.doi.org/10.1128/AAC.50.5.1835-1840.2006] [PMID: 16641457]
[66]
Suman, E.; D’souza, S.J.; Jacob, P.; Sushruth, M.R.; Kotian, M.S. Anti-biofilm and anti-adherence activity of Glm-U inhibitors. Indian J. Med. Sci., 2011, 65(9), 387-392.
[http://dx.doi.org/10.4103/0019-5359.108954] [PMID: 23508481]
[67]
Vaara, M. Agents that increase the permeability of the outer membrane. Microbiol. Rev., 1992, 56(3), 395-411.
[http://dx.doi.org/10.1128/mr.56.3.395-411.1992] [PMID: 1406489]
[68]
Corbett, D.; Wise, A.; Langley, T.; Skinner, K.; Trimby, E.; Birchall, S.; Dorali, A.; Sandiford, S.; Williams, J.; Warn, P.; Vaara, M.; Lister, T. Potentiation of antibiotic activity by a novel cationic peptide: Potency and spectrum of activity of SPR741. Antimicrob. Agents Chemother., 2017, 61(8), e00200-e00217.
[http://dx.doi.org/10.1128/AAC.00200-17] [PMID: 28533232]
[69]
Zurawski, D.V.; Reinhart, A.A.; Alamneh, Y.A.; Pucci, M.J.; Si, Y.; Abu-Taleb, R.; Shearer, J.P.; Demons, S.T.; Tyner, S.D.; Lister, T. SPR741, an antibiotic adjuvant, potentiates the in vitro and in vivo activity of rifampin against clinically relevant extensively drug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother., 2017, 61(12), e01239-e17.
[http://dx.doi.org/10.1128/AAC.01239-17] [PMID: 28947471]
[70]
Page, M.G. Siderophore conjugates. Ann. N. Y. Acad. Sci., 2013, 1277(1), 115-126.
[http://dx.doi.org/10.1111/nyas.12024] [PMID: 23346861]
[71]
Wittmann, S.; Schnabelrauch, M.; Scherlitz-Hofmann, I.; Möllmann, U.; Ankel-Fuchs, D.; Heinisch, L. New synthetic siderophores and their beta-lactam conjugates based on diamino acids and dipeptides. Bioorg. Med. Chem., 2002, 10(6), 1659-1670.
[http://dx.doi.org/10.1016/S0968-0896(02)00044-5] [PMID: 11937324]
[72]
Górska, A.; Sloderbach, A. Marszałł; M.P. Siderophore-drug complexes: Potential medicinal applications of the ‘Trojan horse’ strategy. Trends Pharmacol. Sci., 2014, 35(9), 442-449.
[http://dx.doi.org/10.1016/j.tips.2014.06.007] [PMID: 25108321]
[73]
Wencewicz, T.A.; Long, T.E.; Möllmann, U.; Miller, M.J. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus. Bioconjug. Chem., 2013, 24(3), 473-486.
[http://dx.doi.org/10.1021/bc300610f] [PMID: 23350642]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy