Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Prediction and Experimental Evaluation of the hERG Blocking Potential of Drugs Showing Clinical Signs of Cardiotoxicity

Author(s): Svetoslav Slavov*, Jinghua Zhao, Ruili Huang, Menghang Xia and Richard Beger

Volume 20, Issue 11, 2023

Published on: 26 September, 2022

Page: [1757 - 1767] Pages: 11

DOI: 10.2174/1570180819666220804110706

Price: $65

Abstract

Background: A large scale experimental validation conducted at the National Center for Advancing Translational Sciences (NCATS/NIH, USA) confirmed the predictions of our 3D-SDAR model of hERG blockage and phospholipidosis induction. It was demonstrated that both hERG blockage and phospholipidosis induction are driven by a common three-center toxicophore composed of two aromatic rings and an amino group. This work extends our earlier efforts by predicting the hERG blocking potential of pharmaceuticals from two additional datasets: i) one comprised of 106 drugs with reported clinical signs of cardiotoxicity from the AZCERT database and ii) a dataset of 54 FDA-approved tyrosine kinase inhibitors (TKIs).

Methods: A bagging-like 3D-SDAR algorithm aggregating predictions from 100 randomized models was used to predict the hERG blocking potential of all 160 drugs. All 106 drugs from the AZCERT dataset were further evaluated for their hERG inhibition at NCATS using a thallium flux assay.

Results: Comparison of the predicted hERG class against the results of the thallium flux qHTS assay resulted in an overall predictive accuracy of 0.736 and the area under the ROC curve of 0.780. Factors such as the generation of false negatives by the thallium flux assay, proximity to the cut-off, use of conformations that may differ from the biologically relevant ones, and the lack of structurally similar compounds in the modeling set could explain the somewhat reduced predictive performance compared to that of the original model. The original 3D-SDAR model was also used to evaluate the TKIs ability to block hERG. Comparing our predictions to class assignments based on IC50 values with a 30 μM cut-off, an accuracy of 0.850, sensitivity of 0.906, and specificity of 0.625 were achieved.

Conclusion: 3D-SDAR provides a reliable platform for the prediction of hERG blockage. Particular attention should be paid to all investigational new drugs containing our three-center hERG toxicophore, especially those having highly flexible molecules. Particular scrutiny should be given to the tyrosine kinase inhibitors, which represent a therapeutic class possessing all structural characteristics previously associated with an increased potential to block hERG.

Keywords: Marketed drugs, kinase inhibitors, hERG, 3D-SDAR, thallium flux assay, phospholipidosis.

Graphical Abstract

[1]
Yuan, Y.; Bai, X.; Luo, C.; Wang, K.; Zhang, H. The virtual heart as a platform for screening drug cardiotoxicity. Br. J. Pharmacol., 2015, 172(23), 5531-5547.
[http://dx.doi.org/10.1111/bph.12996] [PMID: 25363597]
[2]
Furutani, K.; Tsumoto, K.; Chen, I.S.; Handa, K.; Yamakawa, Y.; Sack, J.T.; Kurachi, Y. Facilitation of IKr current by some hERG channel blockers suppresses early afterdepolarizations. J. Gen. Physiol., 2019, 151(2), 214-230.
[http://dx.doi.org/10.1085/jgp.201812192] [PMID: 30674563]
[3]
Slavov, S.H.; Wilkes, J.G.; Buzatu, D.A.; Kruhlak, N.L.; Willard, J.M.; Hanig, J.P.; Beger, R.D. Computational identification of a phospholipidosis toxicophore using (13)C and (15)N NMR-distance based fingerprints. Bioorg. Med. Chem., 2014, 22(23), 6706-6714.
[http://dx.doi.org/10.1016/j.bmc.2014.08.021] [PMID: 25228124]
[4]
Stoyanova-Slavova, I.B.; Slavov, S.H.; Buzatu, D.A.; Beger, R.D.; Wilkes, J.G. 3D-SDAR modeling of hERG potassium channel affinity: A case study in model design and toxicophore identification. J. Mol. Graph. Model., 2017, 72, 246-255.
[http://dx.doi.org/10.1016/j.jmgm.2017.01.012] [PMID: 28129595]
[5]
Slavov, S.; Stoyanova-Slavova, I.; Li, S.; Zhao, J.; Huang, R.; Xia, M.; Beger, R. Why are most phospholipidosis inducers also hERG blockers? Arch. Toxicol., 2017, 91(12), 3885-3895.
[http://dx.doi.org/10.1007/s00204-017-1995-9] [PMID: 28551711]
[6]
Sun, H.; Xia, M.; Shahane, S.A.; Jadhav, A.; Austin, C.P.; Huang, R. Are hERG channel blockers also phospholipidosis inducers? Bioorg. Med. Chem. Lett., 2013, 23(16), 4587-4590.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.034] [PMID: 23856051]
[7]
Goracci, L.; Buratta, S.; Urbanelli, L.; Ferrara, G.; Di Guida, R.; Emiliani, C.; Cross, S. Evaluating the risk of phospholipidosis using a new multidisciplinary pipeline approach. Eur. J. Med. Chem., 2015, 92, 49-63.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.028] [PMID: 25544686]
[8]
Lepri, S.; Valeri, A.; Buratta, S.; Ceccarelli, M.; Bartolini, D.; Ruzziconi, R.; Goracci, L. Synthesis and phospholipidosis effect of a series of cationic amphiphilic compounds: A case study to evaluate in silico and in vitro assays. Med. Chem. Res., 2018, 27(2), 679-692.
[http://dx.doi.org/10.1007/s00044-017-2093-5]
[9]
Munawar, S.; Windley, M.J.; Tse, E.G.; Todd, M.H.; Hill, A.P.; Vandenberg, J.I.; Jabeen, I. Experimentally validated pharmacoinformatics approach to predict hERG inhibition potential of new chemical entities. Front. Pharmacol., 2018, 9, 1035.
[http://dx.doi.org/10.3389/fphar.2018.01035] [PMID: 30333745]
[10]
Sager, P.T.; Gintant, G.; Turner, J.R.; Pettit, S.; Stockbridge, N. Rechanneling the cardiac proarrhythmia safety paradigm: A meeting report from the cardiac safety research consortium. Am. Heart J., 2014, 167(3), 292-300.
[http://dx.doi.org/10.1016/j.ahj.2013.11.004] [PMID: 24576511]
[11]
Titus, S.A.; Beacham, D.; Shahane, S.A.; Southall, N.; Xia, M.; Huang, R.; Hooten, E.; Zhao, Y.; Shou, L.; Austin, C.P.; Zheng, W. A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel. Anal. Biochem., 2009, 394(1), 30-38.
[http://dx.doi.org/10.1016/j.ab.2009.07.003] [PMID: 19583963]
[12]
Wang, Y.; Jadhav, A.; Southal, N.; Huang, R.; Nguyen, D.T. A grid algorithm for high throughput fitting of dose-response curve data. Curr. Chem. Genomics, 2010, 4, 57-66.
[http://dx.doi.org/10.2174/1875397301004010057] [PMID: 21331310]
[13]
Zou, B.; Yu, H.; Babcock, J.J.; Chanda, P.; Bader, J.S.; McManus, O.B.; Li, M. Profiling diverse compounds by flux- and electrophysiology-based primary screens for inhibition of human Ether-à-go-go related gene potassium channels. Assay Drug Dev. Technol., 2010, 8(6), 743-754.
[http://dx.doi.org/10.1089/adt.2010.0339] [PMID: 21158688]
[14]
Alexandrou, A.J.; Duncan, R.S.; Sullivan, A.; Hancox, J.C.; Leishman, D.J.; Witchel, H.J.; Leaney, J.L. Mechanism of hERG K+ channel blockade by the fluoroquinolone antibiotic moxifloxacin. Br. J. Pharmacol., 2006, 147(8), 905-916.
[http://dx.doi.org/10.1038/sj.bjp.0706678] [PMID: 16474415]
[15]
Han, S.N.; Sun, X.Y.; Zhang, Z.; Zhang, L.R. The protease inhibitor atazanavir blocks hERG K(+) channels expressed in HEK293 cells and obstructs hERG protein transport to cell membrane. Acta Pharmacol. Sin., 2015, 36(4), 454-462.
[http://dx.doi.org/10.1038/aps.2014.165] [PMID: 25832426]
[16]
Rajamani, S.; Shryock, J.C.; Belardinelli, L. Rapid kinetic interactions of ranolazine with HERG K+ current. J. Cardiovasc. Pharmacol., 2008, 51(6), 581-589.
[http://dx.doi.org/10.1097/FJC.0b013e3181799690] [PMID: 18520952]
[17]
Démolis, J.L.; Vacheron, F.; Cardus, S.; Funck-Brentano, C. Effect of single and repeated oral doses of telithromycin on cardiac QT interval in healthy subjects. Clin. Pharmacol. Ther., 2003, 73(3), 242-252.
[http://dx.doi.org/10.1067/mcp.2003.4] [PMID: 12621389]
[18]
Minematsu, T.; Ohtani, H.; Yamada, Y.; Sawada, Y.; Sato, H.; Iga, T. Quantitative relationship between myocardial concentration of tacrolimus and QT prolongation in guinea pigs: Pharmacokinetic/pharmacodynamic model incorporating a site of adverse effect. J. Pharmacokinet. Pharmacodyn., 2001, 28(6), 533-554.
[http://dx.doi.org/10.1023/A:1014460404352] [PMID: 11999291]
[19]
Akers, W.S.; Flynn, J.D.; Davis, G.A.; Green, A.E.; Winstead, P.S.; Strobel, G. Prolonged cardiac repolarization after tacrolimus and haloperidol administration in the critically ill patient. Pharmacotherapy, 2004, 24(3), 404-408.
[http://dx.doi.org/10.1592/phco.24.4.404.33172] [PMID: 15040655]
[20]
Hoffmann, P.; Warner, B. Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. J. Pharmacol. Toxicol. Methods, 2006, 53(2), 87-105.
[http://dx.doi.org/10.1016/j.vascn.2005.07.003] [PMID: 16289936]
[21]
Li, Z.; Dutta, S.; Sheng, J.; Tran, P.N.; Wu, W.; Chang, K.; Mdluli, T.; Strauss, D.G.; Colatsky, T. Improving the in silico assessment of proarrhythmia risk by combining hERG (human ether-à-go-go-related gene) channel–drug binding kinetics and multichannel pharmacology. Circ. Arrhythm. Electrophysiol., 2017, 10(2), e004628.
[http://dx.doi.org/10.1161/CIRCEP.116.004628] [PMID: 28202629]
[22]
Wiśniowska, B.; Mendyk, A.; Fijorek, K.; Glinka, A.; Polak, S. Predictive model for L-type channel inhibition: Multichannel block in QT prolongation risk assessment. J. Appl. Toxicol., 2012, 32(10), 858-866.
[http://dx.doi.org/10.1002/jat.2784] [PMID: 22761000]
[23]
Kramer, J.; Obejero-Paz, C.A.; Myatt, G.; Kuryshev, Y.A.; Bruening-Wright, A.; Verducci, J.S.; Brown, A.M. MICE models: Superior to the HERG model in predicting torsade de pointes. Sci. Rep., 2013, 3(1), 2100.
[http://dx.doi.org/10.1038/srep02100] [PMID: 23812503]
[24]
Yang, B.; Papoian, T. Preclinical approaches to assess potential kinase inhibitor-induced cardiac toxicity: Past, present and future. J. Appl. Toxicol., 2018, 38(6), 790-800.
[http://dx.doi.org/10.1002/jat.3584] [PMID: 29369373]
[25]
Bains, W.; Basman, A.; White, C. HERG binding specificity and binding site structure: Evidence from a fragment-based evolutionary computing SAR study. Prog. Biophys. Mol. Biol., 2004, 86(2), 205-233.
[http://dx.doi.org/10.1016/j.pbiomolbio.2003.09.001] [PMID: 15288759]
[26]
Broccatelli, F.; Mannhold, R.; Moriconi, A.; Giuli, S.; Carosati, E. QSAR modeling and data mining link Torsades de Pointes risk to the interplay of extent of metabolism, active transport, and HERG liability. Mol. Pharm., 2012, 9(8), 2290-2301.
[http://dx.doi.org/10.1021/mp300156r] [PMID: 22742658]
[27]
Li, Q.; Jørgensen, F.S.; Oprea, T.; Brunak, S.; Taboureau, O. hERG classification model based on a combination of support vector machine method and GRIND descriptors. Mol. Pharm., 2008, 5(1), 117-127.
[http://dx.doi.org/10.1021/mp700124e] [PMID: 18197627]
[28]
Thai, K.M.; Ecker, G.F. A binary QSAR model for classification of hERG potassium channel blockers. Bioorg. Med. Chem., 2008, 16(7), 4107-4119.
[http://dx.doi.org/10.1016/j.bmc.2008.01.017] [PMID: 18243713]
[29]
Tobita, M.; Nishikawa, T.; Nagashima, R. A discriminant model constructed by the support vector machine method for HERG potassium channel inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(11), 2886-2890.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.080] [PMID: 15911273]
[30]
Doddareddy, M.R.; Klaasse, E.C. Shagufta; Ijzerman, A.P.; Bender, A. Prospective validation of a comprehensive in silico hERG model and its applications to commercial compound and drug databases. ChemMedChem, 2010, 5(5), 716-729.
[http://dx.doi.org/10.1002/cmdc.201000024] [PMID: 20349498]
[31]
Fioravanzo, E.; Cazzolla, N.; Durando, L.; Ferrari, C.; Mabilia, M.; Ombrato, R.; Parenti, M.D. General and independent approaches to predict HERG affinity values. Internet Electron. J. Mol. Des., 2005, 4, 625-646.
[32]
Waring, M.J.; Johnstone, C. A quantitative assessment of hERG liability as a function of lipophilicity. Bioorg. Med. Chem. Lett., 2007, 17(6), 1759-1764.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.061] [PMID: 17239590]
[33]
Sun, H. An accurate and interpretable bayesian classification model for prediction of HERG liability. ChemMedChem, 2006, 1(3), 315-322.
[http://dx.doi.org/10.1002/cmdc.200500047] [PMID: 16892366]
[34]
Aronov, A.M.; Goldman, B.B. A model for identifying HERG K+ channel blockers. Bioorg. Med. Chem., 2004, 12(9), 2307-2315.
[http://dx.doi.org/10.1016/j.bmc.2004.02.003] [PMID: 15080928]
[35]
Su, B.H.; Shen, M.Y.; Esposito, E.X.; Hopfinger, A.J.; Tseng, Y.J. in silico binary classification QSAR models based on 4D-fingerprints and MOE descriptors for prediction of hERG blockage. J. Chem. Inf. Model., 2010, 50(7), 1304-1318.
[http://dx.doi.org/10.1021/ci100081j] [PMID: 20565102]
[37]
Dong, Q.; Fu, X.X.; Du, L.L.; Zhao, N.; Xia, C.K.; Yu, K.W.; Cheng, L.X.; Du, Y.M. Blocking of the human ether-a-go-go-related gene channel by imatinib mesylate. Biol. Pharm. Bull., 2012, b12-b00778.
[PMID: 23196655]

© 2025 Bentham Science Publishers | Privacy Policy