Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Letter Article

Mechanism-Based Inhibition of CYP3A Subfamilies by Macrolide Antibiotics and Piperine

Author(s): Toshiro Niwa* and Risa Ishii

Volume 15, Issue 2, 2022

Published on: 15 September, 2022

Page: [75 - 80] Pages: 6

DOI: 10.2174/2949681015666220804103005

Price: $65

Abstract

Objective: The mechanism-based inhibition of macrolide antibiotics, such as erythromycin and clarithromycin, and piperine on testosterone 6β-hydroxylation activities by cytochrome P450 (CYP) 3A4, polymorphically expressed CYP3A5, and fetal CYP3A7 were compared.

Methods: 6β-Hydroxy testosterone was determined by high-performance liquid chromatography.

Results: Although preincubation with erythromycin and clarithromycin decreased CYP3A4- mediated testosterone 6β- hydroxylation in a time-dependent manner, and the estimated maximum inactivation rate constant (k inact) and the inactivation rate constant reaching half of k inact (K i) for erythromycin were approximately 1/2 and 1/5, respectively, of those for clarithromycin. Obvious preincubation time-dependent inhibition of erythromycin against CYP3A5 and CYP3A7 was not observed. Piperine exhibited preincubation time-dependent inhibition and the calculated K i and k inact values for CYP3A4 were approximately 1/7 and 1/2, respectively, of those for CYP3A5.

Conclusion: It is speculated that the preincubation-dependent inhibition by piperine would be more potent in CYP3A5 non-expressors than CYP3A5-expressors.

Keywords: CYP3A4, CYP3A5, CYP3A7, macrolide antibiotics, piperine.

Graphical Abstract

[1]
Shimada, T.; Yamazaki, H.; Mimura, M.; Inui, Y.; Guengerich, F.P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther., 1994, 270(1), 414-423.
[PMID: 8035341]
[2]
Williams, J.A.; Hyland, R.; Jones, B.C.; Smith, D.A.; Hurst, S.; Goosen, T.C.; Peterkin, V.; Koup, J.R.; Ball, S.E. Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab. Dispos., 2004, 32(11), 1201-1208.
[http://dx.doi.org/10.1124/dmd.104.000794] [PMID: 15304429]
[3]
Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.A.; Hall, S.D.; Maurel, P.; Relling, M.; Brimer, C.; Yasuda, K.; Venkataramanan, R.; Strom, S.; Thummel, K.; Boguski, M.S.; Schuetz, E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet., 2001, 27(4), 383-391.
[http://dx.doi.org/10.1038/86882] [PMID: 11279519]
[4]
Niwa, T.; Murayama, N.; Emoto, C.; Yamazaki, H. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr. Drug Metab., 2008, 9(1), 20-33.
[http://dx.doi.org/10.2174/138920008783331121] [PMID: 18220568]
[5]
Niwa, T.; Murayama, N.; Yamazaki, H. Comparison of the contributions of cytochrome P450 3A4 and 3A5 in drug oxidation rates and substrate inhibition. J. Health Sci., 2010, 56(3), 239-256.
[http://dx.doi.org/10.1248/jhs.56.239]
[6]
Daly, A.K. Significance of the minor cytochrome P450 3A isoforms. Clin. Pharmacokinet., 2006, 45(1), 13-31.
[http://dx.doi.org/10.2165/00003088-200645010-00002] [PMID: 16430309]
[7]
Kitada, M.; Kamataki, T.; Itahashi, K.; Rikihisa, T.; Kato, R.; Kanakubo, Y. Purification and properties of cytochrome P-450 from homogenates of human fetal livers. Arch. Biochem. Biophys., 1985, 241(1), 275-280.
[http://dx.doi.org/10.1016/0003-9861(85)90383-2] [PMID: 4026319]
[8]
Li, H.; Lampe, J.N. Neonatal cytochrome P450 CYP3A7: A comprehensive review of its role in development, disease, and xenobiotic metabolism. Arch. Biochem. Biophys., 2019, 673, 108078.
[http://dx.doi.org/10.1016/j.abb.2019.108078] [PMID: 31445893]
[9]
Komori, M.; Nishio, K.; Ohi, H.; Kitada, M.; Kamataki, T. Molecular cloning and sequence analysis of cDNA containing the entire coding region for human fetal liver cytochrome P-450. J. Biochem., 1989, 105(2), 161-163.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a122632] [PMID: 2722762]
[10]
Zhou, S.; Yung Chan, S.; Cher Goh, B.; Chan, E.; Duan, W.; Huang, M.; McLeod, H.L. Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs. Clin. Pharmacokinet., 2005, 44(3), 279-304.
[http://dx.doi.org/10.2165/00003088-200544030-00005] [PMID: 15762770]
[11]
Cui, T.; Wang, Q.; Tian, X.; Zhang, K.; Peng, Y.; Zheng, J. Piperine is a mechanism-based inactivator of CYP3A. Drug Metab. Dispos., 2020, 48(2), 123-134.
[http://dx.doi.org/10.1124/dmd.119.088955] [PMID: 31748224]
[12]
Rendic, S. Summary of information on human CYP enzymes: Human P450 metabolism data. Drug Metab. Rev., 2002, 34(1-2), 83-448.
[http://dx.doi.org/10.1081/DMR-120001392] [PMID: 11996015]
[13]
Niwa, T.; Murayama, N.; Imagawa, Y.; Yamazaki, H. Regioselective hydroxylation of steroid hormones by human cytochromes P450. Drug Metab. Rev., 2015, 47(2), 89-110.
[http://dx.doi.org/10.3109/03602532.2015.1011658] [PMID: 25678418]
[14]
U.S. Food and Drug Administration. Drug development and drug interactions: Table of substrates, inhibitors and inducers Available from: http://www.fda.gov/Drugs/DevelopmentApprovalProcess/DevelopmentResources/DrugInteractionsLabeling/ucm093664.htm#4 (Accessed on March 27, 2022).
[15]
European Medicines Agency. Guideline on the investigation of drug interactions., 2012. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf#search='European+Medicines+Agency%2C+drug+interaction' (Accessed on March 27, 2022).
[16]
Pharmaceuticals and Medical Devices Agency. Methods of drug interaction studies (PMSB/ELD Notification No. 813; June 4, 2001)., Available from: http://www.nihs.go.jp/phar/pdf/DiGlEngFinal 011209.pdf (Accessed on March 27, 2022).
[17]
Niwa, T.; Narita, K.; Okamoto, A.; Murayama, N.; Yamazaki, H. Comparison of steroid hormone hydroxylations by and docking to human cytochromes P450 3A4 and 3A5. J. Pharm. Pharm. Sci., 2019, 22(1), 332-339.
[http://dx.doi.org/10.18433/jpps30558] [PMID: 31339834]
[18]
Niwa, T.; Okamoto, A.; Narita, K.; Toyota, M.; Kato, K.; Kobayashi, K.; Sasaki, S. Comparison of steroid hormone hydroxylation mediated by cytochrome P450 3A subfamilies. Arch. Biochem. Biophys., 2020, 682, 108283.
[http://dx.doi.org/10.1016/j.abb.2020.108283] [PMID: 32001245]
[19]
Cypex. Human CYPs.. Available from: https://cypex.co.uk/products/human-cyps/ (Accessed on March 27, 2022).
[20]
Niwa, T.; Inoue, S.; Shiraga, T.; Takagi, A. No inhibition of cytochrome P450 activities in human liver microsomes by sulpiride, an antipsychotic drug. Biol. Pharm. Bull., 2005, 28(1), 188-191.
[http://dx.doi.org/10.1248/bpb.28.188] [PMID: 15635191]
[21]
Yamaoka, K.; Tanigawara, Y.; Nakagawa, T.; Uno, T. A pharmacokinetic analysis program (multi) for microcomputer. J. Pharmacobiodyn., 1981, 4(11), 879-885.
[http://dx.doi.org/10.1248/bpb1978.4.879] [PMID: 7328489]
[22]
Ito, K.; Ogihara, K.; Kanamitsu, S.; Itoh, T. Prediction of the in vivo interaction between midazolam and macrolides based on in vitro studies using human liver microsomes. Drug Metab. Dispos., 2003, 31(7), 945-954.
[http://dx.doi.org/10.1124/dmd.31.7.945] [PMID: 12814973]
[23]
Westphal, J.F. Macrolide - induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: An update focused on clarithromycin, azithromycin and dirithromycin. Br. J. Clin. Pharmacol., 2000, 50(4), 285-295.
[http://dx.doi.org/10.1046/j.1365-2125.2000.00261.x] [PMID: 11012550]
[24]
McConn, D.J., II; Lin, Y.S.; Allen, K.; Kunze, K.L.; Thummel, K.E. Differences in the inhibition of cytochromes P450 3A4 and 3A5 by metabolite-inhibitor complex-forming drugs. Drug Metab. Dispos., 2004, 32(10), 1083-1091.
[http://dx.doi.org/10.1124/dmd.32.10.1083] [PMID: 15377640]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy