Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Mini-Review Article

Artificial Intelligence in Accelerating Drug Discovery and Development

Author(s): Anushree Tripathi*, Krishna Misra*, Richa Dhanuka and Jyoti Prakash Singh

Volume 17, Issue 1, 2023

Published on: 05 September, 2022

Page: [9 - 23] Pages: 15

DOI: 10.2174/1872208316666220802151129

Price: $65

Abstract

Drug discovery and development are critical processes that enable the treatment of wide variety of health-related problems. These are time-consuming, tedious, complicated, and costly processes. Numerous difficulties arise throughout the entire process of drug discovery, from design to testing. Corona Virus Disease 2019 (COVID-19) has recently posed a significant threat to global public health. SARS-Cov-2 and its variants are rapidly spreading in humans due to their high transmission rate. To effectively treat COVID-19, potential drugs and vaccines must be developed quickly. The advancement of artificial intelligence has shifted the focus of drug development away from traditional methods and toward bioinformatics tools. Computer-aided drug design techniques have demonstrated tremendous utility in dealing with massive amounts of biological data and developing efficient algorithms. Artificial intelligence enables more effective approaches to complex problems associated with drug discovery and development through the use of machine learning. Artificial intelligence-based technologies improve the pharmaceutical industry's ability to discover effective drugs. This review summarizes significant challenges encountered during the drug discovery and development processes, as well as the applications of artificial intelligence-based methods to overcome those obstacles in order to provide effective solutions to health problems. This may provide additional insight into the mechanism of action, resulting in the development of vaccines and potent substitutes for repurposed drugs that can be used to treat not only COVID-19 but also other ailments.

Keywords: Drug design, bioinformatics, artificial intelligence (AI), pharmaceutical applications, COVID-19, machine learning (ML).

Graphical Abstract

[1]
Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimers Dement 2017; 3(4): 651-7.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[2]
Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. P&T 2015; 40(4): 277-83.
[PMID: 25859123]
[3]
Lai CC, Chen SY, Ko WC, Hsueh PR. Increased antimicrobial resistance during the COVID-19 pandemic. Int J Antimicrob Agents 2021; 57(4): 106324.
[http://dx.doi.org/10.1016/j.ijantimicag.2021.106324] [PMID: 33746045]
[4]
Ukuhor HO. The interrelationships between antimicrobial resistance, COVID-19, past, and future pandemics. J Infect Public Health 2021; 14(1): 53-60.
[http://dx.doi.org/10.1016/j.jiph.2020.10.018] [PMID: 33341485]
[5]
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 2019; 40(8): 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[6]
Melo MCR, Maasch JRMA, Fuente NC. Accelerating antibiotic discovery through artificial intelligence. Commun Biol 2021; 4(1): 1050.
[http://dx.doi.org/10.1038/s42003-021-02586-0] [PMID: 34504303]
[7]
Umashankar V, Gurunathan S. Drug discovery: An appraisal. Int J Pharm Pharm Sci 2015; 7(4): 59-66.
[8]
Hung CL, Chen CC. Computational approaches for drug discovery. Drug Dev Res 2014; 75(6): 412-8.
[http://dx.doi.org/10.1002/ddr.21222] [PMID: 25195585]
[9]
Sabe VT, Ntombela T, Jhamba LA, et al. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur J Med Chem 2021; 224: 113705.
[http://dx.doi.org/10.1016/j.ejmech.2021.113705] [PMID: 34303871]
[10]
Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med 2021; 137: 104851.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104851] [PMID: 34520990]
[11]
Wang Y, Zhang S, Li F, et al. Therapeutic target database 2020: Enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Res 2020; 48(D1): D1031-41.
[PMID: 31691823]
[12]
Katara P. Role of bioinformatics and pharmacogenomics in drug discovery and development process. Netw Model Anal Health Inform Bioinform 2013; 2(4): 225-30.
[http://dx.doi.org/10.1007/s13721-013-0039-5]
[13]
Xia X. Bioinformatics and drug discovery. Curr Top Med Chem 2017; 17(15): 1709-26.
[http://dx.doi.org/10.2174/1568026617666161116143440] [PMID: 27848897]
[14]
Ahmad S, Qazi S, Raza K. Translational bioinformatics methods for drug discovery and drug repurposing Translational bioinformatics in healthcare and medicine. Academic Press 2021; Volume 13 Chapter 10: pp. 127-39.

[15]
Lik YN, Fah KC, Nishanth G. Chemmangattuvalappil. Challenges and opportunities in computer-aided molecular design. Comput Chem Eng 2015; 81: 115-29.
[http://dx.doi.org/10.1016/j.compchemeng.2015.03.009]
[16]
Lin X, Li X, Lin X. A review on applications of computational methods in drug screening and design. Molecules 2020; 25(6): 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[17]
Sams DF. Strategies to optimize the validity of disease models in the drug discovery process. Drug Discov Today 2006; 11(7-8): 355-63.
[http://dx.doi.org/10.1016/j.drudis.2006.02.005] [PMID: 16580978]
[18]
Munteanu CR, Fernández BE, Seoane JA, et al. Drug discovery and design for complex diseases through QSAR computational methods. Curr Pharm Des 2010; 16(24): 2640-55.
[http://dx.doi.org/10.2174/138161210792389252] [PMID: 20642425]
[19]
Tripathi A, Misra K. Molecular docking: A structure-based drug designing approach. JSM Chem 2017; 5(2): 1042.
[20]
Russell S, Norvig P. Artificial intelligence: A modern approach. Third Edition. Artificial Intelligence 2011; 175: pp. 935-7.
[21]
Smith JS, Roitberg AE, Isayev O. Transforming computational drug discovery with machine learning and AI. ACS Med Chem Lett 2018; 9(11): 1065-9.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00437] [PMID: 30429945]
[22]
Malik P, Pathania M, Rathaur VK. Overview of artificial intelligence in medicine. J Family Med Prim Care 2019; 8(7): 2328-31.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_440_19] [PMID: 31463251]
[23]
Moingeon P, Kuenemann M, Guedj M. Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine. Drug Discov Today 2022; 27(1): 215-22.
[http://dx.doi.org/10.1016/j.drudis.2021.09.006] [PMID: 34555509]
[24]
Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discov Today 2019; 24(3): 773-80.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[25]
Hu S, Zhang C, Chen P, Gu P, Zhang J, Wang B. Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks. BMC Bioinformatics Chem Rev 2019; 119(18): 10520-94.
[PMID: 31294972]
[26]
Hu S, Zhang C, Chen P, Gu P, Zhang J. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 2019; 119(18): 10520-94.
[27]
Peiretti F, Brunel JM. Artificial intelligence: The future for organic chemistry? ACS Omega 2018; 3(10): 13263-6.
[http://dx.doi.org/10.1021/acsomega.8b01773] [PMID: 31458044]
[28]
Gromski PS, Granda JM, Cronin L. Universal chemical synthesis and discovery with ‘The Chemputer’. Trends Chem 2020; 2(1): 4-12.
[http://dx.doi.org/10.1016/j.trechm.2019.07.004]
[29]
Mohanty S, Harun RM, Mridul M, Mohanty C, Swayamsiddha S. Application of artificial intelligence in COVID-19 drug repurposing. Diabetes Metab Syndr 2020; 14(5): 1027-31.
[http://dx.doi.org/10.1016/j.dsx.2020.06.068] [PMID: 32634717]
[30]
Zhou Y, Wang F, Tang J, Nussinov R, Cheng F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit Health 2020; 2(12): e667-76.
[http://dx.doi.org/10.1016/S2589-7500(20)30192-8]
[31]
Ng YL, Salim CK, Chu JJH. Drug repurposing for COVID-19: Approaches, challenges and promising candidates. Pharmacol Ther 2021; 228: 107930.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107930] [PMID: 34174275]
[32]
Morselli Gysi. Do Valle IF, Zitnik M, et al Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc Natl Acad Sci 2021; 118(19): e2025581118.
[http://dx.doi.org/10.1073/pnas.2025581118] [PMID: 33906951]
[33]
Alimadadi A, Aryal S, Manandhar I, Munroe PB, Joe B, Cheng X. Artificial intelligence and machine learning to fight COVID-19. Physiol Genomics 2020; 52(4): 200-2.
[http://dx.doi.org/10.1152/physiolgenomics.00029.2020] [PMID: 32216577]
[34]
Mbunge E, Akinnuwesi B, Fashoto SG, Metfula AS, Mashwama P. A critical review of emerging technologies for tackling COVID-19 pandemic. Hum Behav Emerg Technol 2020; 3(1): 25-39.
[http://dx.doi.org/10.1002/hbe2.237] [PMID: 33363278]
[35]
Lalmuanawma S, Hussain J, Chhakchhuak L. Applications of machine learning and artificial intelligence for COVID-19 (SARS-CoV-2) pandemic: A review. Chaos Solitons Fractals 2020; 139: 110059.
[http://dx.doi.org/10.1016/j.chaos.2020.110059] [PMID: 32834612]
[36]
Jamshidi MB, Lalbakhsh A, Talla J, et al. Artificial intelligence and COVID-19: Deep learning approaches for diagnosis and treatment. IEEE Access 2008; 8: 109581-95.
[http://dx.doi.org/10.1109/ACCESS.2020.3001973] [PMID: 34192103]
[37]
Chen J, Wang R, Gilby NB, Wei GW. Omicron (B11529): Infectivity, vaccine breakthrough, and antibody resistance. Preprint. ArXiv 2021.
[38]
Dhanuka R, Singh JP. Protein function prediction using functional inter-relationship. Comput Biol Chem 2021; 95: 107593.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107593] [PMID: 34736126]
[39]
Jiménez LJ, Grisoni F, Weskamp N, Schneider G. Artificial intelligence in drug discovery: Recent advances and future perspectives. Expert Opin Drug Discov 2021; 16(9): 949-59.
[http://dx.doi.org/10.1080/17460441.2021.1909567] [PMID: 33779453]
[40]
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[41]
Vijayan RSK, Kihlberg J, Cross JB, Poongavanam V. Enhancing preclinical drug discovery with artificial intelligence Drug Discov Today 2021 2022; 27(4): 967-84.Epub 2021 Nov 25..
[http://dx.doi.org/10.1016/j.drudis.2021.11.023] [PMID: 34838731]
[42]
Liu Z, Roberts RA, Lal-Nag M, Chen X, Huang R, Tong W. AI-based language models powering drug discovery and development. Drug Discov Today 2021; 26(11): 2593-607.
[http://dx.doi.org/10.1016/j.drudis.2021.06.009] [PMID: 34216835]
[43]
David L, Thakkar A, Mercado R, Engkvist O. Molecular representations in AI-driven drug discovery: A review and practical guide. J Cheminform 2020; 12(1): 56.
[http://dx.doi.org/10.1186/s13321-020-00460-5] [PMID: 33431035]
[44]
Walters WP, Barzilay R. Critical assessment of AI in drug discovery. Expert Opin Drug Discov 2021; 16(9): 937-47.
[http://dx.doi.org/10.1080/17460441.2021.1915982] [PMID: 33870801]
[45]
Smalley E. AI-powered drug discovery captures pharma interest. Nat Biotechnol 2017; 35(7): 604-5.
[http://dx.doi.org/10.1038/nbt0717-604] [PMID: 28700560]
[46]
Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 2020; 60(1): 573-89.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023324] [PMID: 31518513]
[47]
Bajorath J, Kearnes S, Walters WP, Meanwell NA, Georg GI, Wang S. Artificial intelligence in drug discovery: Into the great wide open. J Med Chem 2020; 63(16): 8651-2.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01077] [PMID: 32639156]
[48]
Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell 2020; 2(10): 573-84.
[http://dx.doi.org/10.1038/s42256-020-00236-4]
[49]
Díaz Ó, Dalton JAR, Giraldo J. Artificial intelligence: A novel approach for drug discovery. Trends Pharmacol Sci 2019; 40(8): 550-1.
[http://dx.doi.org/10.1016/j.tips.2019.06.005] [PMID: 31279568]
[50]
Jing Y, Bian Y, Hu Z, Wang L, Xie XQ. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J 2018; 20(4): 79.
[http://dx.doi.org/10.1208/s12248-018-0243-4] [PMID: 29943256]
[51]
Sellwood MA, Ahmed M, Segler MH, Brown N. Artificial intelligence in drug discovery. Future Med Chem 2018; 10(17): 2025-8.
[http://dx.doi.org/10.4155/fmc-2018-0212] [PMID: 30101607]
[52]
Dong J, Yao ZJ, Zhu MF, et al. ChemSAR: An online pipelining platform for molecular SAR modeling. J Cheminform 2017; 9(1): 27.
[http://dx.doi.org/10.1186/s13321-017-0215-1] [PMID: 29086046]
[53]
Soufan O, Ba-Alawi W, Magana-Mora A, Essack M, Bajic VB. DPubChem: A web tool for QSAR modeling and high-throughput virtual screening. Sci Rep 2018; 8(1): 9110.
[http://dx.doi.org/10.1038/s41598-018-27495-x] [PMID: 29904147]
[54]
Liu Z, Du J, Fang J, Yin Y, Xu G, Xie L. Deep-screening: A deep learning-based screening web server for accelerating drug discovery. Database 2019; 2019: baz104.
[http://dx.doi.org/10.1093/database/baz104] [PMID: 31608949]
[55]
Korkmaz S, Zararsiz G, Goksuluk D. MLViS: A web tool for machine learning-based virtual screening in early-phase of drug discovery and development. PLoS One 2015; 10(4): e0124600.
[http://dx.doi.org/10.1371/journal.pone.0124600] [PMID: 25928885]
[56]
Awale M, Reymond JL. Polypharmacology browser PPB2: Target prediction combining nearest neighbors with machine learning. J Chem Inf Model 2019; 59(1): 10-7.
[http://dx.doi.org/10.1021/acs.jcim.8b00524] [PMID: 30558418]
[57]
Lee K, Lee M, Kim D. Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server. BMC Bioinformatics 2017; 18(16): 567.
[http://dx.doi.org/10.1186/s12859-017-1960-x] [PMID: 29297315]
[58]
Wu J, Zhang Q, Wu W, et al. WDL-RF: Predicting bioactivities of ligand molecules acting with G protein-coupled receptors by combining weighted deep learning and random forest. Bioinformatics 2018; 34(13): 2271-82.
[http://dx.doi.org/10.1093/bioinformatics/bty070] [PMID: 29432522]
[59]
Bai Q, Ma J, Liu S, et al. WADDAICA: A webserver for aiding protein drug design by artificial intelligence and classical algorithm. Comput Struct Biotechnol J 2021; 19: 3573-9.
[http://dx.doi.org/10.1016/j.csbj.2021.06.017] [PMID: 34194678]
[60]
Lian W, Yonggang Z, Dongguang W, et al. Artificial intelligence for COVID-19: A systematic review. Front Med 2021; 1457.
[61]
Haas Q, Alvarez DV, Borissov N, et al. Utilizing artificial intelligence to manage COVID-19 scientific evidence torrent with risklick AI: A critical tool for pharmacology and therapy development. Pharmacology 2021; 106(5-6): 244-53.
[http://dx.doi.org/10.1159/000515908] [PMID: 33910199]
[62]
Li WT, Ma J, Shende N, et al. Using machine learning of clinical data to diagnose COVID-19: A systematic review and meta-analysis. BMC Med Inform Decis Mak 2020; 20(1): 1-13.
[http://dx.doi.org/10.1186/s12911-020-01266-z] [PMID: 31906929]
[63]
Brinati D, Campagner A, Ferrari D, Locatelli M, Banfi G, Cabitza F. Detection of COVID-19 infection from routine blood exams with machine learning: A feasibility study. J Med Syst 2020; 44(8): 135.
[http://dx.doi.org/10.1007/s10916-020-01597-4] [PMID: 32607737]
[64]
Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci 2019; 40(9): 624-35.
[http://dx.doi.org/10.1016/j.tips.2019.07.005] [PMID: 31383376]
[65]
Danysz K, Cicirello S, Mingle E, et al. Artificial intelligence and the future of the drug safety professional. Drug Saf 2019; 42(4): 491-7.
[http://dx.doi.org/10.1007/s40264-018-0746-z] [PMID: 30343417]
[66]
Hauben M, Hartford CG. Artificial intelligence in pharmacovigilance: Scoping points to consider. Clin Ther 2021; 43(2): 372-9.
[http://dx.doi.org/10.1016/j.clinthera.2020.12.014] [PMID: 33478803]
[67]
Luo Y, Peng J, Ma J. Next decade’s AI-based drug development features tight integration of data and computation. Health Data Sci 2022 2022.
[68]
Chen Z, Liu X, Hogan W, Shenkman E, Bian J. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today 2021; 26(5): 1256-64.
[http://dx.doi.org/10.1016/j.drudis.2020.12.013] [PMID: 33358699]
[69]
Lam WY, Fresco P. Medication adherence measures: An overview. BioMed Res Int 2015; 2015: 217047.
[http://dx.doi.org/10.1155/2015/217047] [PMID: 26539470]
[70]
Saravanan S, Ramkumar K, Adalarasu K, et al. A systematic review of artificial intelligence (AI) based approaches for the diagnosis of Parkinson’s disease. Arch Comput Methods Eng 2022; 1-15.
[http://dx.doi.org/10.1007/s11831-022-09710-1]
[71]
Fu W, Xu L, Yu Q, et al. Artificial intelligent olfactory system for the diagnosis of Parkinson’s disease. ACS Omega 2022; 7(5): 4001-10.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy