Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management

Author(s): Priyanka Vasant Lawand and Shivani Desai*

Volume 10, Issue 4, 2022

Published on: 10 October, 2022

Page: [279 - 288] Pages: 10

DOI: 10.2174/2211738510666220802111315

Price: $65

Abstract

Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.

Keywords: Nanocarriers, Type 1 diabetes, Immunotherapy, Autoimmunity, Stem cell, Tolerance

[1]
Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 2010; 464(7293): 1293-300.
[http://dx.doi.org/10.1038/nature08933] [PMID: 20432533]
[2]
Barrett EJ, Liu Z, Khamaisi M, et al. Diabetic microvascular disease: An endocrine society scientific statement. J Clin Endocrinol Metab 2017; 102(12): 4343-410.
[http://dx.doi.org/10.1210/jc.2017-01922] [PMID: 29126250]
[3]
Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep 2011; 11(6): 533-42.
[http://dx.doi.org/10.1007/s11892-011-0223-x] [PMID: 21912932]
[4]
Mobasseri M, Shirmohammadi M, Amiri T, Vahed N, Hosseini Fard H, Ghojazadeh M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot Perspect 2020; 10(2): 98-115.
[http://dx.doi.org/10.34172/hpp.2020.18] [PMID: 32296622]
[5]
Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 2010; 39(3): 481-97.
[http://dx.doi.org/10.1016/j.ecl.2010.05.011] [PMID: 20723815]
[6]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[7]
Talamini L, Matsuura E, De Cola L, Muller S. Immunologically inert nanostructures as selective therapeutic tools in inflammatory diseases. Cells 2021; 10(3): 707.
[http://dx.doi.org/10.3390/cells10030707] [PMID: 33806746]
[8]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019; 25(1): 1-15.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[9]
Primavera R, Kevadiya BD, Swaminathan G, et al. Emerging nano- and micro-technologies used in the treatment of type-1 diabetes. Nanomaterials (Basel) 2020; 10(4): 789.
[http://dx.doi.org/10.3390/nano10040789] [PMID: 7221526]
[10]
Dinnyes A, Schnur A, Muenthaisong S, et al. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment. Cell Prolif 2020; 53(5): e12785.
[http://dx.doi.org/10.1111/cpr.12785] [PMID: 32339373]
[11]
Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2020; 11(1): 275.
[http://dx.doi.org/10.1186/s13287-020-01793-6] [PMID: 32641151]
[12]
Kopan C, Tucker T, Alexander M, Mohammadi MR, Pone EJ, Lakey JRT. Approaches in immunotherapy, regenerative medicine, and bioengineering for type 1 diabetes. Front Immunol 2018; 9: 1354.
[http://dx.doi.org/10.3389/fimmu.2018.01354] [PMID: 29963051]
[13]
Xu D, Prasad S, Miller SD. Inducing immune tolerance: A focus on Type 1 diabetes mellitus. Diabetes Manag (Lond) 2013; 3(5): 415-26.
[http://dx.doi.org/10.2217/dmt.13.36] [PMID: 24505231]
[14]
Arif S, Gomez-Tourino I, Kamra Y, et al. GAD-alum immunotherapy in type 1 diabetes expands bifunctional Th1/Th2 autoreactive CD4 T cells. Diabetologia 2020; 63(6): 1186-98.
[http://dx.doi.org/10.1007/s00125-020-05130-7] [PMID: 32248243]
[15]
Creusot RJ, Fathman CG. Gene therapy for type 1 diabetes: A novel approach for targeted treatment of autoimmunity. J Clin Invest 2004; 114(7): 892-4.
[http://dx.doi.org/10.1172/JCI23168] [PMID: 15467826]
[16]
Vantyghem M-C, de Koning EJP, Pattou F, Rickels MR. Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet 2019; 394(10205): 1274-85.
[http://dx.doi.org/10.1016/S0140-6736(19)31334-0] [PMID: 31533905]
[17]
Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 2013; 19(8): 998-1004.
[http://dx.doi.org/10.1038/nm.3267] [PMID: 23921754]
[18]
Chauhan PS, Yadav D, Tayal S, Jin J-O. Therapeutic advancements in the management of diabetes mellitus with special reference to nanotechnology. Curr Pharm Des 2020; 26(38): 4909-16.
[http://dx.doi.org/10.2174/1381612826666200826135401] [PMID: 32851952]
[19]
Ramirez DG, Abenojar E, Hernandez C, et al. Contrast-enhanced ultrasound with sub-micron sized contrast agents detects insulitis in mouse models of type1 diabetes. Nat Commun 2020; 11(1): 2238.
[http://dx.doi.org/10.1038/s41467-020-15957-8] [PMID: 32382089]
[20]
Dong Y, Wu X, Chen X, Zhou P, Xu F, Liang W. Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomed Pharmacother 137(December 2020): 111236.2021;
[21]
Zhang Y, Wu M, Dai W, et al. High drug-loading gold nanoclusters for responsive glucose control in type 1 diabetes. J Nanobiotechnology 2019; 17(1): 74.
[http://dx.doi.org/10.1186/s12951-019-0505-z] [PMID: 31159842]
[22]
Pujol-Autonell I, Serracant-Prat A, Cano-Sarabia M, et al. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes. PLoS One 2015; 10(6): e0127057.
[http://dx.doi.org/10.1371/journal.pone.0127057] [PMID: 26039878]
[23]
Tang L, Li K, Zhang Y, et al. Quercetin liposomes ameliorate streptozotocin-induced diabetic nephropathy in diabetic rats. Sci Rep 2020; 10(1): 2440.
[http://dx.doi.org/10.1038/s41598-020-59411-7] [PMID: 32051470]
[24]
Kumar V, Choudhry I, Namdev A, et al. Oral insulin: Myth or reality. Curr Diabetes Rev 2018; 14(6): 497-508.
[http://dx.doi.org/10.2174/1573399813666170621122742] [PMID: 28637407]
[25]
Chono S, Fukuchi R, Seki T, Morimoto K. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery. J Control Release 2009; 137(2): 104-9.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.019] [PMID: 19351549]
[26]
Zhang Y, Wu M, Tan D, et al. A dissolving and glucose-responsive insulin-releasing microneedle patch for type 1 diabetes therapy. J Mater Chem B Mater Biol Med 2021; 9(3): 648-57.
[http://dx.doi.org/10.1039/D0TB02133D] [PMID: 33306077]
[27]
Makaram P, Owens D, Aceros J. Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics (Basel) 2014; 4(2): 27-46.
[http://dx.doi.org/10.3390/diagnostics4020027] [PMID: 26852676]
[28]
Srivastava R, Jayant RD, Chaudhary A, McShane MJ. “Smart tattoo” glucose biosensors and effect of coencapsulated anti-inflammatory agents. J Diabetes Sci Technol 2011; 5(1): 76-85.
[http://dx.doi.org/10.1177/193229681100500111] [PMID: 21303628]
[29]
Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat Rev Drug Discov 2015; 14(1): 45-57.
[http://dx.doi.org/10.1038/nrd4477] [PMID: 25430866]
[30]
Bonner-Weir S, Guo L, Li W-C, et al. Islet neogenesis: A possible pathway for beta-cell replenishment. Rev Diabet Stud 2012; 9(4): 407-16.
[http://dx.doi.org/10.1900/RDS.2012.9.407] [PMID: 23804276]
[31]
Buteau J, Foisy S, Joly E, Prentki M. Glucagon-like peptide 1 induces pancreatic beta-cell proliferation via transactivation of the epidermal growth factor receptor. Diabetes 2003; 52(1): 124-32.
[http://dx.doi.org/10.2337/diabetes.52.1.124] [PMID: 12502502]
[32]
Buteau J, Foisy S, Rhodes CJ, Carpenter L, Biden TJ, Prentki M. Protein kinase Czeta activation mediates glucagon-like peptide-1-induced pancreatic beta-cell proliferation. Diabetes 2001; 50(10): 2237-43.
[http://dx.doi.org/10.2337/diabetes.50.10.2237] [PMID: 11574404]
[33]
Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes 2000; 49(5): 741-8.
[http://dx.doi.org/10.2337/diabetes.49.5.741] [PMID: 10905482]
[34]
Miao C, Chang J, Zhang G, Fang Y. MicroRNAs in type 1 diabetes: New research progress and potential directions. Biochem Cell Biol 2018; 96(5): 498-506.
[http://dx.doi.org/10.1139/bcb-2018-0027] [PMID: 29554441]
[35]
Wang P, Liu Q, Zhao H, et al. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep 2020; 10(1): 5302.
[http://dx.doi.org/10.1038/s41598-020-62269-4] [PMID: 32210316]
[36]
Li YZ, Di Cristofano A, Woo M. Metabolic role of PTEN in insulin signaling and resistance. Cold Spring Harb Perspect Med 2020; 10(8): a036137.
[http://dx.doi.org/10.1101/cshperspect.a036137] [PMID: 31964643]
[37]
Xia F, Cao H, Du J, Liu X, Liu Y, Xiang M. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model. J Leukoc Biol 2016; 99(6): 1131-40.
[http://dx.doi.org/10.1189/jlb.3A0815-371RRR] [PMID: 26667474]
[38]
Matsuda E, Obama Y, Kosai K-I. Safe and low-dose but therapeutically effective adenovirus-mediated hepatocyte growth factor gene therapy for type 1 diabetes in mice. Life Sci 2021; 268: 119014.
[http://dx.doi.org/10.1016/j.lfs.2020.119014] [PMID: 33412216]
[39]
Niu L, Xu Y-C, Dai Z, Tang H-Q. Gene therapy for type 1 diabetes mellitus in rats by gastrointestinal administration of chitosan nanoparticles containing human insulin gene. World J Gastroenterol 2008; 14(26): 4209-15.
[http://dx.doi.org/10.3748/wjg.14.4209] [PMID: 18636668]
[40]
Hayashi K, Ito M. Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol Pharm Bull 2002; 25(2): 188-92.
[http://dx.doi.org/10.1248/bpb.25.188] [PMID: 11853163]
[41]
Lee H-W, Park Y-S, Choi J-W, Yi S-Y, Shin W-S. Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats. Biol Pharm Bull 2003; 26(8): 1100-3.
[http://dx.doi.org/10.1248/bpb.26.1100] [PMID: 12913258]
[42]
Cho YM, Kieffer TJ. K-cells and glucose-dependent insulinotropic polypeptide in health and disease. Vitam Horm 2010; 84: 111-50.
[http://dx.doi.org/10.1016/B978-0-12-381517-0.00004-7] [PMID: 21094898]
[43]
Heidarisasan S, Ziamajidi N, Karimi J, Abbasalipourkabir R. Effects of insulin-loaded chitosan-alginate nanoparticles on RAGE expression and oxidative stress status in the kidney tissue of rats with type 1 diabetes. Iran J Basic Med Sci 2018; 21(10): 1035-42.
[PMID: 30524677]
[44]
Ghavimishamekh A, Ziamajidi N, Dehghan A, Goodarzi MT, Abbasalipourkabir R. Study of insulin-loaded chitosan nanoparticle effects on TGF-β1 and fibronectin expression in kidney tissue of type 1 diabetic rats. Indian J Clin Biochem 2019; 34(4): 418-26.
[http://dx.doi.org/10.1007/s12291-018-0771-9] [PMID: 31686728]
[45]
Wang Z, Ruan J, Cui D. Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett 2009; 4(7): 593-605.
[http://dx.doi.org/10.1007/s11671-009-9292-z] [PMID: 20596412]
[46]
Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest 2015; 125(6): 2228-33.
[http://dx.doi.org/10.1172/JCI78088] [PMID: 25893595]
[47]
Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harb Perspect Med 2012; 2(1): a007732.
[http://dx.doi.org/10.1101/cshperspect.a007732] [PMID: 22315720]
[48]
Tabatabaie T, Vasquez-Weldon A, Moore DR, Kotake Y. Free radicals and the pathogenesis of type 1 diabetes: Beta-cell cytokine-mediated free radical generation via cyclooxygenase-2. Diabetes 2003; 52(8): 1994-9.
[http://dx.doi.org/10.2337/diabetes.52.8.1994] [PMID: 12882915]
[49]
Cnop M, Welsh N, Jonas J-C, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes 2005; 54 (Suppl. 2): S97-S107.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S97] [PMID: 16306347]
[50]
Krischer JP, Schatz DA, Bundy B, Skyler JS, Greenbaum CJ. Effect of oral insulin on prevention of diabetes in relatives of patients with type 1 diabetes: A randomized clinical trial. JAMA 2017; 318(19): 1891-902.
[http://dx.doi.org/10.1001/jama.2017.17070] [PMID: 29164254]
[51]
Harrison LC, Honeyman MC, Steele CE, et al. Pancreatic beta-cell function and immune responses to insulin after administration of intranasal insulin to humans at risk for type 1 diabetes. Diabetes Care 2004; 27(10): 2348-55.
[http://dx.doi.org/10.2337/diacare.27.10.2348] [PMID: 15451899]
[52]
Villalba A, Rodriguez-Fernandez S, Ampudia R-M, et al. Preclinical evaluation of antigen-specific nanotherapy based on phosphatidylserine-liposomes for type 1 diabetes. Artif Cells Nanomed Biotechnol 2020; 48(1): 77-83.
[http://dx.doi.org/10.1080/21691401.2019.1699812] [PMID: 31852325]
[53]
Cavallari JF, Anhê FF, Foley KP, et al. Targeting macrophage scavenger receptor 1 promotes insulin resistance in obese male mice. Physiol Rep 2018; 6(22): e13930.
[http://dx.doi.org/10.14814/phy2.13930] [PMID: 30485705]
[54]
Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010; 236: 219-42.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00923.x] [PMID: 20636820]
[55]
Prasad S, Xu D, Miller SD. Tolerance strategies employing antigen-coupled apoptotic cells and carboxylated PLG nanoparticles for the treatment of type 1 diabetes. Rev Diabet Stud 2012; 9(4): 319-27.
[http://dx.doi.org/10.1900/RDS.2012.9.319] [PMID: 23804269]
[56]
Podojil JR, Miller SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev 2009; 229(1): 337-55.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00773.x] [PMID: 19426232]
[57]
Workman CJ, Szymczak-Workman AL, Collison LW, Pillai MR, Vignali DAA. The development and function of regulatory T cells. Cell Mol Life Sci 2009; 66(16): 2603-22.
[http://dx.doi.org/10.1007/s00018-009-0026-2] [PMID: 19390784]
[58]
Mendelsohn A, Desai T. Inorganic nanoporous membranes for immunoisolated cell-based drug delivery. Adv Exp Med Biol 2010; 670: 104-25.
[http://dx.doi.org/10.1007/978-1-4419-5786-3_10] [PMID: 20384222]
[59]
Ernst AU, Bowers DT, Wang L, et al. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 116-38.
[http://dx.doi.org/10.1016/j.addr.2019.01.013]
[60]
Eve DJ, Marty PJ, McDermott RJ, Klasko SK, Sanberg PR. Stem cell research and health education. Am J Health Educ 2008; 39(3): 167-79.
[http://dx.doi.org/10.1080/19325037.2008.10599033] [PMID: 19672471]
[61]
Arana M, Kumar A, Ashwathnarayan A, Atari M, Barajas M. Type 1 diabetes treatments based on stem cells. Curr Diabetes Rev 2018; 14(1): 14-23.
[PMID: 28595528]
[62]
Reddi AS, Kothari N, Kuppasani K, Ende N. Human umbilical cord blood cells and diabetes mellitus: Recent advances. Curr Stem Cell Res Ther 2015; 10(3): 266-70.
[http://dx.doi.org/10.2174/1574888X10666141212122421] [PMID: 25506777]
[63]
Chhabra P, Brayman KL. Stem cell therapy to cure type 1 diabetes: From hype to hope. Stem Cells Transl Med 2013; 2(5): 328-36.
[http://dx.doi.org/10.5966/sctm.2012-0116] [PMID: 23572052]
[64]
Hmadcha A, Domínguez-Bendala J, Wakeman J, Arredouani M, Soria B. The immune boundaries for stem cell based therapies: Problems and prospective solutions. J Cell Mol Med 2009; 13(8A): 1464-75.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00837.x] [PMID: 19583810]
[65]
Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular vesicles derived from mesenchymal stem cells (MSC) in regenerative medicine: applications in skin wound healing. Front Bioeng Biotechnol 2020; 8: 146.
[http://dx.doi.org/10.3389/fbioe.2020.00146] [PMID: 32195233]
[66]
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(2) (Suppl. 2): 789-92.
[http://dx.doi.org/10.1038/s41409-019-0616-z] [PMID: 31431712]
[67]
Volarevic V, Markovic BS, Gazdic M, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci 2018; 15(1): 36-45.
[http://dx.doi.org/10.7150/ijms.21666] [PMID: 29333086]
[68]
Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol 2019; 9: 297.
[http://dx.doi.org/10.3389/fonc.2019.00297] [PMID: 31069169]
[69]
Qu Y, Shi H, Liu M, et al. In vivo insulin peptide autoantigen delivery by mannosylated sodium alginate nanoparticles delayed but could not prevent the onset of type 1 diabetes in nonobese diabetic mice. Mol Pharm 2021; 18(4): 1806-18.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00054] [PMID: 33734705]
[70]
Khurana A, Tekula S, Godugu C. Nanoceria suppresses multiple low doses of streptozotocin-induced Type 1 diabetes by inhibition of Nrf2/NF-κB pathway and reduction of apoptosis. Nanomedicine (Lond) 2018; 13(15): 1905-22.
[http://dx.doi.org/10.2217/nnm-2018-0085] [PMID: 30152716]
[71]
Tavoosi S, Baghsheikhi AH, Shetab-Boushehri SV, et al. Cerium and yttrium oxide nanoparticles and nano-selenium produce protective effects against H2O2-induced oxidative stress in pancreatic beta cells by modulating mitochondrial dysfunction. Pharm Nanotechnol 2020; 8(1): 63-75.
[http://dx.doi.org/10.2174/2211738507666191002154659] [PMID: 31577213]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy