Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Asymmetric Synthesis of 3-Pyrrole Substituted β-Lactams Through p-Toluene Sulphonic Acid-catalyzed Reaction of Azetidine-2,3-diones with Hydroxyprolines

Author(s): Ram Naresh Yadav, Aarif Latif Shaikh, Aparna Das, Devalina Ray and Bimal Krishna Banik*

Volume 9, Issue 4, 2022

Published on: 27 October, 2022

Page: [337 - 345] Pages: 9

DOI: 10.2174/2213337209666220802105301

Price: $65

Abstract

Aims: The aim of this study is to investigate the p-toluene sulphonic acid (p-Ts.OH)- catalyzed reaction of racemic-azetidine-2,3-diones with enantiomerically pure cis and trans-4- hydroxy-L-proline in refluxing ethanol culminating in a synthesis of substituted novel 3-(pyrrol-1- yl)-azetidin-2-ones at the C-3 position.

Methods: This work describes an alternative synthetic route enabling the tandem transformation of proline to pyrrole, followed by intramolecular chirality transfer to the β -lactams ring.

Results: All four diastereomers of 3-(pyrrol-1-yl)-azetidin-2-ones could be achieved in good to excellent yield with high diastereoselectivity in a single-pot operation.

Conclusion: This method can be applied to other activated carbonyl compounds and functionalized pyrroles can be obtained through an expeditious process.

Keywords: -lactam, L-proline, Staudinger reaction, Pyrrole, Anti-cancer

Graphical Abstract

[1]
Donowitz, G.R.; Mandell, G.L. Beta-Lactam antibiotics (1). N. Engl. J. Med., 1988, 318(7), 419-426.
[http://dx.doi.org/10.1056/NEJM198802183180706] [PMID: 3277053]
[2]
Page, M.I. The mechanisms of reactions of β-lactam antibiotics. Acc. Chem. Res., 1987, 17(4), 144-151.
[http://dx.doi.org/10.1021/ar00100a005]
[3]
Carcione, D.; Siracusa, C.; Sulejmani, A.; Leoni, V.; Intra, J. Old and new beta-lactamase inhibitors: Molecular structure, mechanism of action, and clinical use. Antibiotics (Basel), 2021, 10(8), 995.
[http://dx.doi.org/10.3390/antibiotics10080995] [PMID: 34439045]
[4]
Rolinson, G.N. Forty years of β-lactam research. J. Antimicrob. Chemother., 1998, 41(6), 589-603.
[http://dx.doi.org/10.1093/jac/41.6.589] [PMID: 9687097]
[5]
Neu, H.C. Relation of structural properties of beta-lactam antibiotics to antibacterial activity. Am. J. Med., 1985, 79(2A), 2-13.
[http://dx.doi.org/10.1016/0002-9343(85)90254-2] [PMID: 3895915]
[6]
Xing, B.; Rao, J.; Liu, R. Novel beta-lactam antibiotics derivatives: Their new applications as gene reporters, antitumor prodrugs and en-zyme inhibitors. Mini Rev. Med. Chem., 2008, 8(5), 455-471.
[http://dx.doi.org/10.2174/138955708784223558] [PMID: 18473935]
[7]
Banik, I.; Becker, F.F.; Banik, B.K. Stereoselective synthesis of β-lactams with polyaromatic imines: Entry to new and novel anticancer agents. J. Med. Chem., 2003, 46(1), 12-15.
[http://dx.doi.org/10.1021/jm0255825] [PMID: 12502355]
[8]
Smith, D.M.; Kazi, A.; Smith, L.; Long, T.E.; Heldreth, B.; Turos, E.; Dou, Q.P. A novel β-lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Mol. Pharmacol., 2002, 61(6), 1348-1358.
[http://dx.doi.org/10.1124/mol.61.6.1348] [PMID: 12021396]
[9]
Miller, T.M.; Cleveland, D.W. Treating neurodegenerative diseases with antibiotics. Science, 2005, 307, 361-362.
[http://dx.doi.org/10.1126/science.1109027]
[10]
Shepherd, T.A.; Jungheim, L.N.; Meyer, D.L.; Starling, J.J. A novel targeted delivery system utilizing a cephalosporin-oncolytic prodrug activated by an antibody β-lactamase conjugate for the treatment of cancer. Bioorg. Med. Chem. Lett., 1991, 1(1), 21-26.
[http://dx.doi.org/10.1016/S0960-894X(01)81083-0]
[11]
Sherwood, R.F. Advanced drug delivery reviews: Enzyme prodrug therapy. Adv. Drug Deliv. Rev., 1996, 22(3), 269-288.
[http://dx.doi.org/10.1016/S0169-409X(96)00450-4]
[12]
Viscoli, C.; Cometta, A.; Kern, W.V.; Bock, R.; Paesmans, M.; Crokaert, F.; Glauser, M.P.; Calandra, T.; Akan, H.; Marchetti, O.; Vander-cam, B.; Aoun, M.; Skoutelis, A.; Drgona, L.; Schaffner, A.; Pichna, P.; Korten, V.; Akova, M.; Petrikkos, G.; Powles, R.; Caballero, D.; Hatziyanni, M.; Van Lint, M.; Garaventa, A.; Shapiro, M.; Cavalli, F.; Engelhard, D.; Jacobs, F. Piperacillin-tazobactam monotherapy in high-risk febrile and neutropenic cancer patients. Clin. Microbiol. Infect., 2006, 12(3), 212-216.
[http://dx.doi.org/10.1111/j.1469-0691.2005.01297.x] [PMID: 16451406]
[13]
Chen, D.; Falsetti, S.C.; Frezza, M.; Milacic, V.; Kazi, A.; Cui, Q.C.; Long, T.E.; Turos, E.; Dou, Q.P. Anti-tumor activity of N-thiolated β-lactam antibiotics. Cancer Lett., 2008, 268(1), 63-69.
[http://dx.doi.org/10.1016/j.canlet.2008.03.047] [PMID: 18468785]
[14]
Zhou, X.; Zhang, Y.; Li, Y.; Hao, X.; Liu, X.; Wang, Y. Azithromycin synergistically enhances anti-proliferative activity of vincristine in cervical and gastric cancer cells. Cancers (Basel), 2012, 4(4), 1318-1332.
[http://dx.doi.org/10.3390/cancers4041318] [PMID: 24213508]
[15]
Ojima, I. Recent advances in the β-lactam synthon method. Acc. Chem. Res., 1995, 28(9), 383-389.
[http://dx.doi.org/10.1021/ar00057a004]
[16]
Banik, B.K.; Manhas, M.S.; Bose, A.K. Studies on Lactams. Part 89. Versatile β-lactam synthons: Enantiospecific synthesis of (-)-polyoxamic acid. J. Org. Chem., 1993, 58(2), 307-309.
[http://dx.doi.org/10.1021/jo00054a007]
[17]
Frezza, M.; Garay, J.; Chen, D.; Cui, C.; Turos, E.; Dou, Q.P. Induction of tumor cell apoptosis by a novel class of N-thiolated β-lactam antibiotics with structural modifications at N1 and C3 of the lactam ring. Int. J. Mol. Med., 2008, 21(6), 689-695.
[http://dx.doi.org/10.3892/ijmm.21.6.689] [PMID: 18506361]
[18]
Hamilton-Miller, J.M.T. β-lactams: Variations on a chemical theme, with some surprising biological results. J. Antimicrob. Chemother., 1999, 44(6), 729-734.
[http://dx.doi.org/10.1093/jac/44.6.729] [PMID: 10590272]
[19]
Veinberg, G.; Potorocina, I.; Vorona, M. Recent trends in the design, synthesis and biological exploration of β-lactams. Curr. Med. Chem., 2014, 21(4), 393-416.
[http://dx.doi.org/10.2174/09298673113206660268] [PMID: 24059230]
[20]
Palomo, C.; Oiarbide, M.; Landa, A. A strategy for the asymmetric aminohomologation of α, β-dihydroxy aldehydes: Application to the synthesis of the southwest tripeptide segment of echinocandin B. J. Org. Chem., 2000, 65(1), 41-46.
[http://dx.doi.org/10.1021/jo990964c] [PMID: 10813893]
[21]
Chincholkar, P.M.; Kale, A.S.; Gumaste, V.K.; Deshmukh, A.R.A.S. An efficient formal synthesis of (S)-dapoxetine from enantiopure 3-hydroxy azetidin-2-one. Tetrahedron, 2009, 65(12), 2605-2609.
[http://dx.doi.org/10.1016/j.tet.2008.11.042]
[22]
Momoi, Y.; Okuyama, K.; Toya, H.; Sugimoto, K.; Okano, K.; Tokuyama, H. Total synthesis of (-)-haouamine B pentaacetate and struc-tural revision of haouamine B. Angew. Chem. Int. Ed. Engl., 2014, 53(48), 13215-13219.
[http://dx.doi.org/10.1002/anie.201407686] [PMID: 25284461]
[23]
Palomo, C.; Arrieta, A.; Cossío, F.P.; Aizpurua, J.M.; Mielgo, A.; Aurrekoetxea, N. Highly stereoselective synthesis of α-hydroxy β-amino acids through β-lactams: Application to the synthesis of the taxol and bestatin side chains and related systems. Tetrahedron Lett., 1990, 31(44), 6429-6432.
[http://dx.doi.org/10.1016/S0040-4039(00)97083-7]
[24]
Decuyper, L.; Jukič, M.; Sosič, I.; Žula, A.; D’hooghe, M.; Gobec, S. Antibacterial and β-lactamase inhibitory activity of monocyclic β-lactams. Med. Res. Rev., 2018, 38(2), 426-503.
[http://dx.doi.org/10.1002/med.21443] [PMID: 28815732]
[25]
Deketelaere, S.; Van Nguyen, T.; Stevens, C.V.; D’hooghe, M. Synthetic approaches toward monocyclic 3-amino-β-lactams. ChemistryOpen, 2017, 6(3), 301-319.
[http://dx.doi.org/10.1002/open.201700051] [PMID: 28638759]
[26]
Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23(1), 160-201.
[http://dx.doi.org/10.1128/CMR.00037-09] [PMID: 20065329]
[27]
Banik, B.K.; Becker, F.F. Selective anticancer activity of β-lactams derived from polyaromatic compound. Mol. Med. Rep., 2010, 3(2), 315-316.
[http://dx.doi.org/10.3892/mmr_000000257] [PMID: 21472239]
[28]
Banik, B.K.; Becker, F.F.; Banik, I. Synthesis of anticancer β-lactams: Mechanism of action. Bioorg. Med. Chem., 2004, 12(10), 2523-2528.
[http://dx.doi.org/10.1016/j.bmc.2004.03.033] [PMID: 15110834]
[29]
Becker, F.F.; Banik, B.K. Polycyclic aromatic compounds as anticancer agents: Synthesis and biological evaluation of methoxy dibenzo-fluorene derivatives. Front Chem., 2014, 2, 55.
[http://dx.doi.org/10.3389/fchem.2014.00055] [PMID: 25136549]
[30]
Banik, B.K.; Samajdar, S.; Becker, F.F. Asymmetric synthesis of anticancer β-lactams via staudinger reaction. Mol. Med. Rep., 2010, 3(2), 319-321.
[http://dx.doi.org/10.3892/mmr_000000259] [PMID: 21472241]
[31]
Banik, B.K.; Becker, F.F. Polycyclic aromatic compounds as anticancer agents: Structure-activity relationships of chrysene and pyrene derivatives. Bioorg. Med. Chem., 2001, 9(3), 593-605.
[http://dx.doi.org/10.1016/S0968-0896(00)00297-2] [PMID: 11310593]
[32]
Bandyopadhyay, D.; Cruz, J.; Yadav, R.N.; Banik, B.K. An expeditious iodine-catalyzed synthesis of 3-pyrrole-substituted 2-azetidinones. Molecules, 2012, 17(10), 11570-11584.
[http://dx.doi.org/10.3390/molecules171011570] [PMID: 23023683]
[33]
Rivera, G.; Bandyopadhyay, D.; Jaggi, S.; Gonzales, R.C.; Banik, B.K. An expeditious synthesis of 3-amino β-lactams derived from poly-aromatic compounds. Heterocycl. Commun., 2009, 15(5), 323-326.
[http://dx.doi.org/10.1515/HC.2009.15.5.323]
[34]
Decuyper, L.; Franceus, J.; Dhaene, S.; Debruyne, M.; Vandoorne, K.; Piens, N.; Dewitte, G.; Desmet, T.; D’hooghe, M. Chemoenzymatic approach toward the synthesis of 3-O-(α/β)-glucosylated 3-hydroxy-β-lactams. ACS Omega, 2018, 3(11), 15235-15245.
[http://dx.doi.org/10.1021/acsomega.8b01969] [PMID: 30556000]
[35]
Piens, N.; Goossens, H.; Hertsen, D.; Deketelaere, S.; Crul, L.; Demeurisse, L.; De Moor, J.; Van den Broeck, E.; Mollet, K.; Van Hecke, K.; Van Speybroeck, V.; D’hooghe, M. Reactivity of 3-Oxo-β-lactams with respect to primary amines-an experimental and computational approach. Chemistry, 2017, 23(71), 18002-18009.
[http://dx.doi.org/10.1002/chem.201703852] [PMID: 29024090]
[36]
Shaikh, A.L.; Banik, B.K. A novel asymmetric synthesis of 3-(1H-pyrrol-1-yl)-substituted β-lactams via a bismuth nitrate-catalyzed reac-tion. Helv. Chim. Acta, 2012, 95(5), 839-844.
[http://dx.doi.org/10.1002/hlca.201100202]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy