Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

COVID-19: Pathophysiology, Transmission, and Drug Development for Therapeutic Treatment and Vaccination Strategies

Author(s): Vishal Kumar Singh, Himani Chaurasia, Richa Mishra, Ritika Srivastava, Aditya K. Yadav, Jayati Dwivedi, Prashant Singh and Ramendra K. Singh*

Volume 28, Issue 27, 2022

Published on: 12 August, 2022

Page: [2211 - 2233] Pages: 23

DOI: 10.2174/1381612828666220729093340

Price: $65

Abstract

COVID-19, a dreaded and highly contagious pandemic, is flagrantly known for its rapid prevalence across the world. Till date, none of the treatments are distinctly accessible for this life-threatening disease. Under the prevailing conditions of a medical emergency, one creative strategy for the identification of novel and potential antiviral agents gaining momentum in research institutions and progressively being leveraged by pharmaceutical companies is target-based drug repositioning/repurposing. Continuous monitoring and recording of results offer anticipation that this strategy may help to reveal new medications for viral infections. This review recapitulates the neoteric illation of COVID-19, its genomic dispensation, molecular evolution via phylogenetic assessment, drug targets, the most frequently worldwide used repurposed drugs and their therapeutic applications, and a recent update on vaccine management strategies. The available data from solidarity trials exposed that the treatment with several known drugs, viz. lopinavir-ritonavir, chloroquine, hydroxychloroquine, etc. had displayed various antagonistic effects along with no impactful result in the diminution of mortality rate. The drugs, like remdesivir, favipiravir, and ribavirin, have proved to be quite safer therapeutic options for treatment against COVID-19. Similarly, dexamethasone, convalescent plasma therapy and oral administration of 2DG are expected to reduce the mortality rate of COVID-19 patients.

Keywords: COVID-19, pandemic, antiviral, repurposing, vaccine, vaccination strategies.

[1]
Huang P, Liu T, Huang L, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology 2020; 295(1): 22-3.
[http://dx.doi.org/10.1148/radiol.2020200330] [PMID: 32049600]
[2]
Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med 2020; 27(2): taaa021.
[http://dx.doi.org/10.1093/jtm/taaa021]
[3]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[4]
Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. Vaccines 2021; 6(1): 1-17.
[http://dx.doi.org/10.1038/s41541-021-00292-w] [PMID: 35062662]
[5]
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV- A target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226-36.
[http://dx.doi.org/10.1038/nrmicro2090] [PMID: 19198616]
[6]
World Health Organization. SARS-CoV-2 Variants. 2020. Available from: https://www.who.int/csr/don/31-december-2020-sars-cov2- ariants/en/ (Accessed on January 05, 2021).
[7]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Computer aided identification of potential SARS-CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. J Biomol Struct Dyn 2022; 40(6): 2647-62.
[http://dx.doi.org/10.1080/07391102.2020.1841680] [PMID: 33140695]
[8]
Singh VK, Chaurasia H, Kumari P, et al. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2. J Biomol Struct Dyn 2021; 1-24.
[http://dx.doi.org/10.1080/07391102.2021.1946716] [PMID: 34253149]
[9]
Joshi N, Gothalwa R, Singh M, Dave K. Novel sulphur-oxidizing bacteria consummate sulphur deficiency in oil seed crop. Arch Microbiol 2021; 203: 1-6.
[http://dx.doi.org/10.1007/s00203-020-02009-4] [PMID: 32757115]
[10]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92(4): 418-23.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[11]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[12]
Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2021; 54(2): 159-63.
[http://dx.doi.org/10.1016/j.jmii.2020.03.022] [PMID: 32265180]
[13]
Chen P, Nirula A, Heller B, et al. SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with COVID-19. N Engl J Med 2021; 384(3): 229-37.
[http://dx.doi.org/10.1056/NEJMoa2029849] [PMID: 33113295]
[14]
Guan GW, Gao L, Wang JW, et al. Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia. Zhonghua Gan Zang Bing Za Zhi 2020; 28(2): E002-2.
[http://dx.doi.org/10.3760/cma.j.issn.1007-3418.2020.02.002] [PMID: 32077659]
[15]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[16]
Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24(6): 490-502.
[http://dx.doi.org/10.1016/j.tim.2016.03.003] [PMID: 27012512]
[17]
Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020; 92(4): 441-7.
[http://dx.doi.org/10.1002/jmv.25689] [PMID: 31994742]
[18]
Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 2020; 158(6): 1831-1833.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.02.055] [PMID: 32142773]
[19]
High KP, High KP. Nutritional strategies to boost immunity and prevent infection in elderly individuals. Clin Infect Dis 2001; 33(11): 1892-900.
[http://dx.doi.org/10.1086/324509] [PMID: 11692301]
[20]
Bárcena M, Oostergetel GT, Bartelink W, et al. Cryo-electron tomography of mouse hepatitis virus: Insights into the structure of the coronavirion. Proc Natl Acad Sci 2009; 106(2): 582-7.
[http://dx.doi.org/10.1073/pnas.0805270106] [PMID: 19124777]
[21]
Neuman BW, Adair BD, Yoshioka C, et al. Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy. J Virol 2006; 80(16): 7918-28.
[http://dx.doi.org/10.1128/JVI.00645-06] [PMID: 16873249]
[22]
Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol 2006; 13(8): 751-2.
[http://dx.doi.org/10.1038/nsmb1123] [PMID: 16845391]
[23]
Delmas B, Laude H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J Virol 1990; 64(11): 5367-75.
[http://dx.doi.org/10.1128/jvi.64.11.5367-5375.1990] [PMID: 2170676]
[24]
Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J Virol 2003; 77(16): 8801-11.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[25]
Collins AR, Knobler RL, Powell H, Buchmeier MJ. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell-cell fusion. Virology 1982; 119(2): 358-71.
[http://dx.doi.org/10.1016/0042-6822(82)90095-2] [PMID: 6281979]
[26]
de Groot RJ, Luytjes W, Horzinek MC, van der Zeijst BAM, Spaan WJM, Lenstra JA. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J Mol Biol 1987; 196(4): 963-6.
[http://dx.doi.org/10.1016/0022-2836(87)90422-0] [PMID: 3681988]
[27]
Neuman BW, Kiss G, Kunding AH, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011; 174(1): 11-22.
[http://dx.doi.org/10.1016/j.jsb.2010.11.021] [PMID: 21130884]
[28]
Hurst KR, Koetzner CA, Masters PS. Characterization of a critical interaction between the coronavirus nucleocapsid protein and nonstructural protein 3 of the viral replicase-transcriptase complex. J Virol 2013; 87(16): 9159-72.
[http://dx.doi.org/10.1128/JVI.01275-13] [PMID: 23760243]
[29]
Hurst KR, Koetzner CA, Masters PS. Identification of in vivo -interacting domains of the murine coronavirus nucleocapsid protein. J Virol 2009; 83(14): 7221-34.
[http://dx.doi.org/10.1128/JVI.00440-09] [PMID: 19420077]
[30]
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[31]
Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob Chall 2017; 1(1): 33-46.
[http://dx.doi.org/10.1002/gch2.1018] [PMID: 31565258]
[32]
Korber B, Fischer WM, Gnanakaran S, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases nfectivity of the COVID-19 virus. Cell 2020; 182(4): 812-827.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.043] [PMID: 32697968]
[33]
Koyama T, Platt D, Parida L. Variant analysis of SARS-CoV-2 genomes. Bull World Health Organ 2020; 98(7): 495-504.
[http://dx.doi.org/10.2471/BLT.20.253591] [PMID: 32742035]
[34]
Rambaut A, Loman N, Pybus O, Barclay W, Barrett J, Carabelli A. Preliminary genomic characterisation of an emergent SARSCoV- 2 lineage in the UK defined by a novel set of spike mutations. ARTIC Netw 2020. Available from: https://virological.org/t/preliminarygenomic- characterisation-of-an-emergent-sars-cov-2-lineage-in-the-ukdefined- by-a-novel-set-of-spike-mutations/563 (Accessed on January 5, 2021).
[35]
Fernández A. Structural impact of mutation D614G in SARS-CoV-2 spike protein: Enhanced infectivity and therapeutic opportunity. ACS Med Chem Lett 2020; 11(9): 1667-70.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00410] [PMID: 32934770]
[36]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[37]
Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020; 581(7807): 215-20.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[38]
Hoffmann M, Kleine-Weber H, Pöhlmann S. Multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 2020; 78(4): 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[39]
Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.06.07.137802]
[40]
Zamorano Cuervo N, Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife 2020; 9: 61390.
[http://dx.doi.org/10.7554/eLife.61390] [PMID: 33164751]
[41]
Qiao J, Li W, Bao J, et al. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem Biophys Res Commun 2020; 533(4): 867-71.
[http://dx.doi.org/10.1016/j.bbrc.2020.09.042] [PMID: 33008593]
[42]
Dai W, Zhang B, Jiang XM, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020; 368(6497): 1331-5.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[43]
Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020; 368(6489): 409-12.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[44]
Hillen HS, Kokic G, Farnung L, Dienemann C, Tegunov D, Cramer P. Structure of replicating SARS-CoV-2 polymerase. Nature 2020; 584(7819): 154-6.
[http://dx.doi.org/10.1038/s41586-020-2368-8] [PMID: 32438371]
[45]
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID- 19—preliminary report. N Engl J Med 2020; 383(19): 1813-26.
[http://dx.doi.org/10.1056/NEJMoa2007764]
[46]
Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe COVID-19. N Engl J Med 2020; 382(24): 2327-36.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[47]
Cohen J, Kupferschmidt K. ‘A very, very bad look’ for remdesivir. Science 2020; 370(6517): 642-3.
[http://dx.doi.org/10.1126/science.370.6517.642] [PMID: 33154114]
[48]
Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020; 181(4): 905-913.e7.
[http://dx.doi.org/10.1016/j.cell.2020.04.004] [PMID: 32333836]
[49]
Yuan M, Wu NC, Zhu X, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020; 368(6491): 630-3.
[http://dx.doi.org/10.1126/science.abb7269] [PMID: 32245784]
[50]
Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov 2016; 15(5): 327-47.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[51]
Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA 2020; 323(18): 1824-36.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[52]
Xia S, Liu M, Wang C, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020; 30(4): 343-55.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[53]
Bittmann S, Luchter E, Weissenstein A, Villalon G, Moschüring-Alieva E. TMPRSS2-inhibitors play a role in cell entry mechanism of COVID19: An insight into camostat and nafamostat. J Regen Biol Med 2020; 2: 1-3.
[http://dx.doi.org/10.37191/Mapsci-2582-385X-2(2)-022]
[54]
Sonawane K, Barale SS, Dhanavade MJ, Waghmare SR, Nadaf NH, Kamble SA. Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-Coronavirus-2. ChemRxiv 2020.
[http://dx.doi.org/10.26434/chemrxiv.12162360.v1]
[55]
Jankun J. COVID-19 pandemic; transmembrane protease serine 2 (TMPRSS2) inhibitors as potential therapeutics for SARS-CoV-2 coronavirus. Transl Uni Toledo J Med Sci 2020; 7: 1-5.
[http://dx.doi.org/10.46570/utjms.vol7-2020-361]
[56]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[57]
Harrison AG, Lin T, Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol 2020; 41(12): 1100-15.
[http://dx.doi.org/10.1016/j.it.2020.10.004] [PMID: 33132005]
[58]
Lv X, Zhao S, Ning Z, et al. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J 2015; 9(1): 68.
[http://dx.doi.org/10.1186/s13065-015-0145-9] [PMID: 26705419]
[59]
Yamamoto K, Venida A, Yano J, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020; 581(7806): 100-5.
[http://dx.doi.org/10.1038/s41586-020-2229-5] [PMID: 32376951]
[60]
Liu Y, Ning Z, Chen Y, et al. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature 2020; 582(7813): 557-60.
[http://dx.doi.org/10.1038/s41586-020-2271-3] [PMID: 32340022]
[61]
Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020; 30(17): 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[62]
Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582(7811): 289-93.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[63]
Jena NR. Drug targets, mechanisms of drug action, and therapeutics against SARS-CoV-2. Chemical Physics Impact 2021; p. 100011.
[64]
Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 2020; 248: 117477.
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[65]
Sheahan TP, Sims AC, Zhou S, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883.
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[66]
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14(1): 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[67]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[68]
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci 2009; 106(14): 5871-6.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[69]
Baranov PV, Henderson CM, Anderson CB, Gesteland RF, Atkins JF, Howard MT. Programmed ribosomal frameshifting in decoding the SARS-CoV genome. Virology 2005; 332(2): 498-510.
[http://dx.doi.org/10.1016/j.virol.2004.11.038] [PMID: 15680415]
[70]
Ziebuhr J, Snijder EJ, Gorbalenya AE. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 2000; 81(Pt 4): 853-79.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[71]
Mielech AM, Chen Y, Mesecar AD, Baker SC. Nidovirus papain-like proteases: Multifunctional enzymes with protease, deubiquitinating and deISGylating activities. Virus Res 2014; 194: 184-90.
[http://dx.doi.org/10.1016/j.virusres.2014.01.025] [PMID: 24512893]
[72]
China CDC. Epidemic update and risk assessment of 2019 Novel Coronavirus. Chinese Center for Diseases Control and Prevention 2020.
[73]
Patel A, Jernigan DB. Initial public health response and interim clinical guidance for the 2019 novel coronavirus outbreak - United States, December 31, 2019-February 4, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(5): 140-6.
[http://dx.doi.org/10.15585/mmwr.mm6905e1] [PMID: 32027631]
[74]
Jin Y, Yang H, Ji W, et al. Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 2020; 12(4): 372.
[http://dx.doi.org/10.3390/v12040372] [PMID: 32230900]
[75]
Lei J, Li J, Li X, Qi X. CT imaging of the 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020; 295(1): 18.
[http://dx.doi.org/10.1148/radiol.2020200236] [PMID: 32003646]
[76]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Depicting the inhibitory potential of polyphenols from Isatis indigotica root against the main protease of SARS CoV-2 using computational approaches. J Biomol Struct Dyn 2020; 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1867644] [PMID: 33292085]
[77]
Bhardwaj VK, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2021; 39(10): 3449-58.
[http://dx.doi.org/10.1080/07391102.2020.1766572] [PMID: 32397940]
[78]
Singh R, Bhardwaj VK, Sharma J, Das P, Purohit R. Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics 2021; 113(1 Pt 2): 707-15.
[http://dx.doi.org/10.1016/j.ygeno.2020.10.001] [PMID: 33065246]
[79]
Kumar A, Rajendran V, Sethumadhavan R, Purohit R. Identifying novel oncogenes: A machine learning approach. Interdiscip Sci 2013; 5(4): 241-6.
[http://dx.doi.org/10.1007/s12539-013-0151-3] [PMID: 24402816]
[80]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Potential therapeutic use of corticosteroids as SARS CoV-2 main protease inhibitors: A computational study. J Biomol Struct Dyn 2022; 40(5): 2053-66.
[http://dx.doi.org/10.1080/07391102.2020.1867644] [PMID: 33094701]
[81]
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. J Mol Struct 2021; 1229: 129489.
[http://dx.doi.org/10.1016/j.molstruc.2020.129489] [PMID: 33100380]
[82]
Sharma J, Kumar Bhardwaj V, Singh R, Rajendran V, Purohit R, Kumar S. An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chem 2021; 346: 128933.
[http://dx.doi.org/10.1016/j.foodchem.2020.128933] [PMID: 33418408]
[83]
Bhardwaj VK, Purohit R. Targeting the protein-protein interface pocket of Aurora-A-TPX2 complex: Rational drug design and validation. J Biomol Struct Dyn 2021; 39(11): 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1772109] [PMID: 32448055]
[84]
Barreto ML, Teixeira MG, Carmo EH. Infectious diseases epidemiology. J Epidemiol Community Health 2006; 60(3): 192-5.
[http://dx.doi.org/10.1136/jech.2003.011593] [PMID: 16476746]
[85]
Ji W, Wang W, Zhao X, Zai J, Li X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J Med Virol 2020; 92(4): 433-40.
[http://dx.doi.org/10.1002/jmv.25682] [PMID: 31967321]
[86]
Zhang C, Zheng W, Huang X, Bell EW, Zhou X, Zhang Y. Protein structure and sequence re-analysis of 2019-nCoV genome does not indicate snakes as its intermediate host or the unique similarity between its spike protein insertions and HIV-1. BioRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.04.933135]
[87]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[88]
Xu X, Chen P, Wang J, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 2020; 63(3): 457-60.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[89]
Xia J, Tong J, Liu M, Shen Y, Guo D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol 2020; 92(6): 589-94.
[http://dx.doi.org/10.1002/jmv.25725] [PMID: 32100876]
[90]
Adeoye AO, Oso BJ, Olaoye IF, Tijjani H, Adebayo AI. Repurposing of chloroquine and some clinically approved antiviral drugs as effective therapeutics to prevent cellular entry and replication of coronavirus. J Biomol Struct Dyn 2021; 39(10): 3469-79.
[http://dx.doi.org/10.1080/07391102.2020.1765876] [PMID: 32375574]
[91]
Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA. Incubation periods of acute respiratory viral infections: A systematic review. Lancet Infect Dis 2009; 9(5): 291-300.
[http://dx.doi.org/10.1016/S1473-3099(09)70069-6] [PMID: 19393959]
[92]
Cho SY, Kang JM, Ha YE, et al. MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study. Lancet 2016; 388(10048): 994-1001.
[http://dx.doi.org/10.1016/S0140-6736(16)30623-7] [PMID: 27402381]
[93]
Ai T, Yang Z, Hou H. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology 2020; 296(2): E32-40.
[http://dx.doi.org/10.1148/radiol.2020200642]
[94]
Wan S, Yi Q, Fan S, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.02.10.20021832]
[95]
Cascella M, Rajnik M, Cuomo A. Features, evaluation and treatment coronavirus (COVID-19). In: Stat pearls. Treasure Island, FL: Stat Pearls Publishing 2020.
[96]
Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Götte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem 2020; 295(15): 4773-9.
[http://dx.doi.org/10.1074/jbc.AC120.013056] [PMID: 32094225]
[97]
Norrie JD. Remdesivir for COVID-19: Challenges of underpowered studies. Lancet 2020; 395(10236): 1525-7.
[http://dx.doi.org/10.1016/S0140-6736(20)31023-0] [PMID: 32423580]
[98]
Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 days in patients with severe COVID-19. N Engl J Med 2020; 383(19): 1827-37.
[http://dx.doi.org/10.1056/NEJMoa2015301] [PMID: 32459919]
[99]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[100]
Martinez MA. Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrob Agents Chemother 2020; 64(5): e00399-20.
[http://dx.doi.org/10.1128/AAC.00399-20] [PMID: 32152082]
[101]
Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: A multicentre retrospective matched cohort study. Hong Kong Med J 2003; 9(6): 399-406.
[PMID: 14660806]
[102]
Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol 2020; 92(6): 556-63.
[http://dx.doi.org/10.1002/jmv.25729] [PMID: 32104907]
[103]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[104]
Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR. Effectof hydroxychloroquine in hospitalized patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial. N Engl J Med 2020; 383: 2030-40.
[http://dx.doi.org/10.1056/NEJMoa2022926] [PMID: 33031652]
[105]
Formiga FR, Leblanc R, Reboucas JDS, Farias LP, Oliveira RND, Pena L. Ivermectin: An award-winning drug with expected anti via l activity against COVID-19. J Control Release 2021; 329: 758-61.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.009] [PMID: 33038449]
[106]
Jans DA, Wagstaff KM. Ivermectin as a broad-spectrum host-directed antiviral: The real deal? Cells 2020; 9(9): 9092100.
[http://dx.doi.org/10.3390/cells9092100] [PMID: 32942671]
[107]
King CR, Tessier TM, Dodge MJ, Weinberg JB, Mymryk JS. Inhibition of human adenovirus replication by the importin a/b1 nuclear import inhibitor ivermectin. J Virol 2020; 94(18): 00710-20.
[http://dx.doi.org/10.1128/JVI.00710-20] [PMID: 32641484]
[108]
Pooja RM, Chowdhury P. Ivermectin and doxycycline combination as a promising drug candidate against SARS-CoV-2 infection: A computational study. arXiv:201200653v1 2020.
[109]
Kalfas S, Visvanathan K, Chan K, Drago J. The therapeutic potential of ivermectin for COVID-19: A systematic review of mechanisms and evidence. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.11.30.20236570]
[110]
Pandey S, Pathak SK, Pandey A, et al. Ivermectin in COVID-19: What do we know? Diabetes Metab Syndr 2020; 14(6): 1921-2.
[http://dx.doi.org/10.1016/j.dsx.2020.09.027] [PMID: 33032231]
[111]
Chamie J. Real-World Evidence: The Case of Peru. Causality between Ivermectin and COVID-19 Infection Fatality Rate. 2020. Available from: https://covid19criticalcare.com/wp-content/uploads/2020/12/JUANCHAMIE-REAL-WORLD-EVIDENCE-The-Case-of-Peru.pdf
[112]
Trial Site. MedinCell’s Mission for ‘Mass Roll-out’ of Ivermectin for COVID- 19: Early Study Data Points Reveal Promise. Trial Site News. Montpellier. 2020. Available from: https://trialsitenews.com/medincells-missionfor- mass-roll-out-of-ivermectin-for-covid-19-earlystudy-data-pointsreveal promise/ (Accessed on January 8, 2021).
[113]
Shin D, Mukherjee R, Grewe D, et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020; 587(7835): 657-62.
[http://dx.doi.org/10.1038/s41586-020-2601-5] [PMID: 32726803]
[114]
Ortega JT, Serrano ML, Jastrzebska B. Class A G protein-coupled receptor antagonist famotidine as a therapeutic alternative against SARS-CoV2: An in silico analysis. Biomolecules 2020; 10(6): 954.
[http://dx.doi.org/10.3390/biom10060954] [PMID: 32599963]
[115]
Freedberg DE, Conigliaro J, Wang TC, et al. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: A propensity score matched retrospective cohort study. Gastroenterology 2020; 159(3): 1129-1131.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.05.053] [PMID: 32446698]
[116]
Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 2020; 3(9): e202000786.
[http://dx.doi.org/10.26508/lsa.202000786] [PMID: 32703818]
[117]
Cheng Y-W, Chao T-L, Li C-L, et al. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep 2020; 33(2): 108254.
[http://dx.doi.org/10.1016/j.celrep.2020.108254] [PMID: 33007239]
[118]
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res 2020; 176: 104742.
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[119]
Hempel T, Raich L, Olsson S, et al. Molecular mechanism of inhibiting the SARS-CoV-2 cell entry facilitator TMPRSS2 with camostat and nafamostat. Chem Sci (Camb) 2020; 12(3): 983-92.
[http://dx.doi.org/10.1039/D0SC05064D] [PMID: 35382133]
[120]
Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis 2006; 6(2): 67-9.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[121]
Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J 2005; 2(1): 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[122]
Biot C, Daher W, Chavain N, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem 2006; 49(9): 2845-9.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[123]
Yao X, Ye F, Zhang M. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Infect Dis 2020; 70(15): 732-9.
[http://dx.doi.org/10.1093/cid/ciaa237]
[124]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[125]
Buonaguro FM, Puzanov I, Ascierto PA. Anti-IL6R role in treatment of COVID-19-related ARDS. J Transl Med 2020; 18(1): 165.
[http://dx.doi.org/10.1186/s12967-020-02333-9] [PMID: 32290847]
[126]
Roback JD, Guarner J. Convalescent plasma to treat COVID-19: Possibilities and challenges. JAMA 2020; 323(16): 1561-2.
[http://dx.doi.org/10.1001/jama.2020.4940] [PMID: 32219429]
[127]
Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP. LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.09.30.318972]
[128]
Baum A, Fulton BO, Wloga E, et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 2020; 369(6506): 1014-8.
[http://dx.doi.org/10.1126/science.abd0831] [PMID: 32540904]
[129]
Chen Y, Klein SL, Garibaldi BT, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev 2021; 65: 101205.
[http://dx.doi.org/10.1016/j.arr.2020.101205] [PMID: 33137510]
[130]
Weinreich DM, Sivapalasingam S, Norton T, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with COVID-19. N Engl J Med 2021; 384(3): 238-51.
[http://dx.doi.org/10.1056/NEJMoa2035002] [PMID: 33332778]
[131]
Trial Site. Eli Lilly’s Monoclonal Antibody Takes a Hit: Bamlanivimab Fails Part of ACTIV 3 Trial: Greater Challenges Ahead? 2021. Available from: https://trialsitenews.com/eli-lillys-monoclonal-antibody-takesa- hit-bamlanivimab fails-part of-activ-3-trial-greater-challenges-ahead/ (Accessed on January 06, 2021).
[132]
doubtGOV. UK. (2020) “Oxford University/AstraZeneca COVID- 19 Vaccine Approved”. 2020.
[133]
China National Health Commission, The novel coronavirus pneumonia diagnosis and treatment plan (6th trial version).
[134]
Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs. delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA 2016; 315(20): 2190-9.
[http://dx.doi.org/10.1001/jama.2016.5828] [PMID: 27209269]
[135]
Li W. The curative effect observation of shuanghuanglian and penicillin on acute tonsillitis. Lin Chuang Er Bi Yan Hou Ke Za Zhi 2002; 16(9): 475-6.
[PMID: 15515537]
[136]
Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med 2020; 382(17): 1663-5.
[http://dx.doi.org/10.1056/NEJMc2005073] [PMID: 32187458]
[137]
Chen X, Howard OM, Yang X, Wang L, Oppenheim JJ, Krakauer T. Effects of Shuanghuanglian and Qingkailing, two multi-components of traditional Chinese medicinal preparations, on human leukocyte function. Life Sci 2002; 70(24): 2897-913.
[http://dx.doi.org/10.1016/S0024-3205(02)01541-2] [PMID: 12269401]
[138]
Defendi HGT, da Silva Madeira L, Borschiver S. Analysis of the COVID-19 vaccine development process: An exploratory study of accelerating factors and innovative environments. J Pharm Innov 2021; 17: 555-71.
[http://dx.doi.org/10.1007/s12247-021-09535-8] [PMID: 33552310]
[139]
InvivoGen. Spotlight on COVID-19: Vaccine development. https://www.invivogen.com/spotlight-covid-19-vaccine-development
[140]
Peng Y, Mentzer AJ, Liu G, et al. Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat Immunol 2020; 21(11): 1336-45.
[http://dx.doi.org/10.1038/s41590-020-0782-6] [PMID: 32887977]
[141]
Cox RJ, Brokstad KA. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat Rev Immunol 2020; 20(10): 581-2.
[http://dx.doi.org/10.1038/s41577-020-00436-4] [PMID: 32839569]
[142]
Thieme CJ, Anft M, Paniskaki K, et al. Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 proteins is not associated with recovery in critical COVID-19 patients. Cell Rep Med 2020; 1(6): 100092.
[http://dx.doi.org/10.1016/j.xcrm.2020.100092] [PMID: 32904468]
[143]
AEP. VAccines against SARS-CoV-2 (COVID-19) Based on adenovirus vectors are safe, well tolerated and immunogenic. https://vacunasaep.org/profesionales/noticias/COVID-19-vacunas-adenovirus-oxford1
[144]
World Health Organization (WHO). Landscape of COVID-19 candidate vaccines. Available from: (Accessed on 31 Jul 2020).
[145]
Kojima N, Klausner JD. Protective immunity after recovery from SARS-CoV-2 infection. Lancet Infect Dis 2022; 22(1): 12-4.
[http://dx.doi.org/10.1016/S1473-3099(21)00676-9] [PMID: 34762853]
[146]
Qureshi AI, Baskett WI, Huang W, Lobanova I, Hasan Naqvi S, Shyu CR. Reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in patients undergoing serial laboratory testing. Clin Infect Dis 2022; 74(2): 294-300.
[http://dx.doi.org/10.1093/cid/ciab345] [PMID: 33895814]
[147]
Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021; 371(6529): 4063.
[http://dx.doi.org/10.1126/science.abf4063] [PMID: 33408181]
[148]
Wang L, Zhou T, Zhang Y, et al. Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Science 2021; 373(6556): 782-7.
[http://dx.doi.org/10.1126/science.abh1766]
[149]
Doshi P. COVID-19: Do many people have pre-existing immunity? BMJ 2020; 370: m3563.
[http://dx.doi.org/10.1136/bmj.m3563] [PMID: 32943427]
[150]
Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021; 591(7851): 639-44.
[http://dx.doi.org/10.1038/s41586-021-03207-w] [PMID: 33461210]
[151]
Crotty S. Coronavirus, hybrid immunity: COVID-19 vaccine responses provide insights into how the immune system perceives threats. Science 2021; 372(6549): 1392-3.
[http://dx.doi.org/10.1126/science.abj2258]
[152]
Faria NR, Mellan TA, Whittaker C, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science 2021; 372(6544): 815-21.
[http://dx.doi.org/10.1126/science.abh2644] [PMID: 33853970]
[153]
Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B.1.351 variant. N Engl J Med 2021; 384(20): 1885-98.
[http://dx.doi.org/10.1056/NEJMoa2102214] [PMID: 33725432]
[154]
Frieman M, Harris AD, Herati RS, et al. SARS-CoV-2 vaccines for all but a single dose for COVID-19 survivors. EBioMedicine 2021; 68: 103401.
[http://dx.doi.org/10.1016/j.ebiom.2021.103401] [PMID: 34051441]
[155]
Moyo-Gwete T, Madzivhandila M, Makhado Z, et al. Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y.V2 (B.1.351). N Engl J Med 2021; 384(22): 2161-3.
[http://dx.doi.org/10.1056/NEJMc2104192] [PMID: 33826816]
[156]
Reynolds CJ, Pade C, Gibbons JM, et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science 2021; 372(6549): eabh1282.
[http://dx.doi.org/10.1126/science.abh1282] [PMID: 33931567]
[157]
Goel RR, Apostolidis SA, Painter MM, et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination. Sci Immunol 2021; 6(58): eabi6950.
[http://dx.doi.org/10.1126/sciimmunol.abi6950] [PMID: 33858945]
[158]
Wang Z, Muecksch F, Schaefer-Babajew D, et al. Naturally enhanced neutralizing breadth to SARS-CoV-2 after one year. bioRxiv 2021; 2021.05.07.443175.
[http://dx.doi.org/10.1101/2021.05.07.443175]
[159]
Stamatatos L, Czartoski J, Wan YH, et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science 2021; 372(6549): eabg9175.
[http://dx.doi.org/10.1126/science.abg9175] [PMID: 33766944]
[160]
Yonker LM, Neilan AM, Bartsch Y, et al. Pediatric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Clinical presentation, infectivity, and immune responses. J Pediatr 2020; 227: 45-52.e5.
[http://dx.doi.org/10.1016/j.jpeds.2020.08.037] [PMID: 32827525]
[161]
Schuez-Havupalo L, Toivonen L, Karppinen S, Kaljonen A, Peltola V. Daycare attendance and respiratory tract infections: A prospective birth cohort study. BMJ Open 2017; 7(9): e014635.
[http://dx.doi.org/10.1136/bmjopen-2016-014635] [PMID: 28877939]
[162]
Posfay-Barbe KM, Wagner N, Gauthey M, et al. COVID-19 in children and the dynamics of infection in families. Pediatrics 2020; 146(2): e20201576.
[http://dx.doi.org/10.1542/peds.2020-1576] [PMID: 32457213]
[163]
Tagarro A, Epalza C, Santos M, et al. Screening and severity of coronavirus disease 2019 (COVID-19) in children in madrid, Spain. JAMA Pediatr 2020; 174(10): 1009.
[http://dx.doi.org/10.1001/jamapediatrics.2020.1346] [PMID: 32267485]
[164]
Götzinger F, Santiago-García B, Noguera-Julián A, et al. COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child Adolesc Health 2020; 4(9): 653-61.
[http://dx.doi.org/10.1016/S2352-4642(20)30177-2] [PMID: 32593339]
[165]
Shekerdemian LS, Mahmood NR, Wolfe KK, et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and canadian pediatric intensive care units. JAMA Pediatr 2020; 174(9): 868-73.
[http://dx.doi.org/10.1001/jamapediatrics.2020.1948] [PMID: 32392288]
[166]
Riphagen S, Gomez X, Gonzalez-Martinez C, Wilkinson N, Theocharis P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020; 395(10237): 1607-8.
[http://dx.doi.org/10.1016/S0140-6736(20)31094-1] [PMID: 32386565]
[167]
Toubiana J, Poirault C, Corsia A, et al. Kawasaki-like multisystem inflammatory syndrome in children during the COVID-19 pandemic in Paris, France: Prospective observational study. BMJ 2020; 369: m2094.
[http://dx.doi.org/10.1136/bmj.m2094] [PMID: 32493739]
[168]
Verdoni L, Mazza A, Gervasoni A, et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet 2020; 395(10239): 1771-8.
[http://dx.doi.org/10.1016/S0140-6736(20)31103-X] [PMID: 32410760]
[169]
Whittaker E, Bamford A, Kenny J, et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA 2020; 324(3): 259-69.
[http://dx.doi.org/10.1001/jama.2020.10369] [PMID: 32511692]
[170]
Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med 2020; 383(4): 334-46.
[http://dx.doi.org/10.1056/NEJMoa2021680] [PMID: 32598831]
[171]
Godfred-Cato S, Bryant B, Leung J, et al. COVID-19-associated multisystem inflammatory syndrome in children -United States, March-July 2020. MMWR Morb Mortal Wkly Rep 2020; 69(32): 1074-80.
[http://dx.doi.org/10.15585/mmwr.mm6932e2] [PMID: 32790663]
[172]
Feng Z, Bao Y, Yang Y, Zheng Y, Shen K. Severe acute respiratory syndrome coronavirus 2-induced multisystem inflammatory syndrome in children. Pediatr Investig 2020; 4(4): 257-62.
[http://dx.doi.org/10.1002/ped4.12225] [PMID: 33376953]
[173]
Nakra NA, Blumberg DA, Herrera-Guerra A, Lakshminrusimha S. Multisystem inflammatory syndrome in children (MIS-C) following SARS-CoV-2 infection: Review of clinical presentation, hypothetical pathogenesis, and proposed management. Children 2020; 7(7): 69.
[http://dx.doi.org/10.3390/children7070069] [PMID: 32630212]
[174]
Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect Dis 2020; 20(11): e276-88.
[http://dx.doi.org/10.1016/S1473-3099(20)30651-4] [PMID: 32818434]
[175]
Chiotos K, Hayes M, Kimberlin DW, et al. Multicenter initial guidance on use of antivirals for children with coronavirus disease 2019/severe acute respiratory syndrome coronavirus 2. J Pediatric Infect Dis Soc 2020; 9(6): 701-15.
[http://dx.doi.org/10.1093/jpids/piaa045] [PMID: 32318706]
[176]
Venturini E, Montagnani C, Garazzino S, et al. Treatment of children with COVID-19: Position paper of the Italian Society of Pediatric Infectious Disease. Ital J Pediatr 2020; 46(1): 139.
[http://dx.doi.org/10.1186/s13052-020-00900-w] [PMID: 32972435]
[177]
Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheumatol 2020; 72(7): 1059-63.
[http://dx.doi.org/10.1002/art.41285] [PMID: 32293098]
[178]
Liu M, Caputi TL, Dredze M, Kesselheim AS, Ayers JW. Internet searches for unproven COVID-19 therapies in the United States. JAMA Intern Med 2020; 180(8): 1116-8.
[http://dx.doi.org/10.1001/jamainternmed.2020.1764] [PMID: 32347895]
[179]
Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 2020; 14(1): 72-3.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[180]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[181]
Vestergaard LS, Nielsen J, Richter L, et al. Excess all-cause mortality during the COVID-19 pandemic in Europe preliminary pooled estimates from the EuroMOMO network, March to April 2020. Euro Surveill 2020; 25(26): 2001214.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.26.2001214] [PMID: 32643601]
[182]
Sudharsanan N, Didzun O, Bärnighausen T, Geldsetzer P. The contribution of the age distribution of cases to COVID-19 case fatality across countries. Ann Intern Med 2020; 173(9): 714-20.
[http://dx.doi.org/10.7326/M20-2973] [PMID: 32698605]
[183]
Poletti P, Tirani M, Cereda D, et al. Probability of symptoms and critical disease after SARS-CoV-2 infection. JAMA Netw Open arXiv:200608471 2020.
[http://dx.doi.org/10.48550/arXiv.2006.08471]
[184]
Guo T, Shen Q, Guo W, et al. Clinical characteristics of elderly patients with COVID-19 in hunan province, China: A multicenter, retrospective study. Gerontology 2020; 66(5): 467-75.
[http://dx.doi.org/10.1159/000508734] [PMID: 32474561]
[185]
Smorenberg A, Peters EJG, van Daele P, Nossent EJ, Muller M. How does SARS-CoV-2 targets the elderly patients? A review on potential mechanisms increasing disease severity. Eur J Intern Med 2021; 83: 1-5.
[http://dx.doi.org/10.1016/j.ejim.2020.11.024] [PMID: 33303345]
[186]
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12(10): 9959-81.
[http://dx.doi.org/10.18632/aging.103344] [PMID: 32470948]
[187]
Varadhan V, Yao W, Matteini A, et al. Simple biologically informed inflammatory index of two serumcytokines predicts 10 year all-cause mortality in older adults. J Gerontol A Biol Sci Med Sci 2014; 69: 165-73.
[188]
Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front Immunol 2018; 8: 1960.
[http://dx.doi.org/10.3389/fimmu.2017.01960] [PMID: 29375577]
[189]
Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol 2019; 124: 110632.
[http://dx.doi.org/10.1016/j.exger.2019.110632] [PMID: 31201918]
[190]
Di Santo SG, Franchini F, Filiputti B, Martone A, Sannino S. The effects of COVID-19 and quarantine measures on the lifestyles and mental health of people over 60 at increased risk of dementia. Front Psychiatry 2020; 11: 578628.
[http://dx.doi.org/10.3389/fpsyt.2020.578628] [PMID: 33173523]
[191]
Schäfer SK, Sopp MR, Schanz CG, Staginnus M, Göritz AS, Michael T. Impact of COVID-19 on public mental health and the buffering effect of a sense of coherence. Psychother Psychosom 2020; 89(6): 386-92.
[http://dx.doi.org/10.1159/000510752] [PMID: 32810855]
[192]
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol 2020; 92(5): 479-90.
[http://dx.doi.org/10.1002/jmv.25707] [PMID: 32052466]
[193]
Lau JT, Leung PC, Wong ELY, et al. The use of an herbal formula by hospital care workers during the severe acute respiratory syndrome epidemic in Hong Kong to prevent severe acute respiratory syndrome transmission, relieve influenza-related symptoms, and improve quality of life: A prospective cohort study. J Altern Complement Med 2005; 11(1): 49-55.
[http://dx.doi.org/10.1089/acm.2005.11.49] [PMID: 15750363]
[194]
Luo H, Tang QL, Shang YX, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med 2020; 26(4): 243-50.
[http://dx.doi.org/10.1007/s11655-020-3192-6] [PMID: 32065348]
[195]
Hemilä H. Vitamin C intake and susceptibility to pneumonia. Pediatr Infect Dis J 1997; 16(9): 836-7.
[http://dx.doi.org/10.1097/00006454-199709000-00003] [PMID: 9306475]
[196]
Nonnecke BJ, McGill JL, Ridpath JF, Sacco RE, Lippolis JD, Reinhardt TA. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J Dairy Sci 2014; 97(9): 5566-79.
[http://dx.doi.org/10.3168/jds.2014-8293] [PMID: 25022687]
[197]
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol 2020; 21(3): 335-7.
[http://dx.doi.org/10.1016/S1470-2045(20)30096-6] [PMID: 32066541]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy