Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Vernodalin Suppresses Tumor Proliferation and Increases Apoptosis of Gastric Cancer Cells Through Attenuation of FAK/PI3K/AKT/mTOR and MAPKs Signaling Pathways

Author(s): Ying Luo, Dan Zhang, Leping Hou and Nengming Lin*

Volume 24, Issue 5, 2023

Published on: 28 September, 2022

Page: [708 - 717] Pages: 10

DOI: 10.2174/1389201023666220728150544

Price: $65

Abstract

Background: Gastric cancer (GC) is the most aggressive malignant tumor with limited treatment alternatives post metastasis. Vernodalin (VN) induced apoptosis has been reported in various types of human cancer cells. However, the precise molecular mechanisms underlying the anti-metastasis action of VN on GC cells are yet to be elucidated.

Objective: In this study, we investigated the anti-metastatic and apoptotic effects of VN on SGC- 7901 and AGS cells, with a purpose of gaining a deeper understanding of the anti-metastatic mechanisms of VN on gastric carcinoma. To attenuate the activation of PI3K/AKT/mTOR and mitogen-activated protein kinase (MAPK) signaling pathways by VN in GC cells.

Methods: We employed VN and gastric cancer cells in experiments such as MTT assay, apoptosis, MMP, DAPI, Rh-123, cell adhesion assay, and western blot analysis on GC SGC-7901 and AGS cells.

Results: Our results revealed that VN inhibits cell proliferation, adhesion, and metastasis and induces apoptosis of both GC cells. VN potentially reduced the protein expressions of MMP-2, MMP-9, and uPA, whereas intensified expressions of TIMP-1 and TIMP-2. Also, VN attenuates the expression of FAK, p-PI3K, p-AKT, p-mTOR, p-JNK, p-p38MAPK, and p-ERK. Thus, it is inferred that VN treatment reduced the activities of MMP-2 and MMP-9 via the FAK/PI3K/AKT/ mTOR, and MAPKs signaling pathways. Our results confirm that VN prevented GC growth, invasion and metastasis and induce apoptosis in GC cells.

Conclusion: Our findings suggest that VN is a potential natural therapeutic compound as a new remedy for GC chemotherapy treatment.

Keywords: Vernodalin, Gastric Cancer, Apoptosis, Metastasis, PI3K/AKT/mTOR signaling pathway

« Previous
Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Hu, Y.; Fang, J.Y.; Xiao, S.D. Can the incidence of gastric cancer be reduced in the new century? J. Dig. Dis., 2013, 14(1), 11-15.
[http://dx.doi.org/10.1111/j.1751-2980.2012.00647.x] [PMID: 23134264]
[3]
Orditura, M.; Galizia, G.; Sforza, V.; Gambardella, V.; Fabozzi, A.; Laterza, M.M.; Andreozzi, F.; Ventriglia, J.; Savastano, B.; Mabilia, A.; Lieto, E.; Ciardiello, F.; De Vita, F. Treatment of gastric cancer. World J. Gastroenterol., 2014, 20(7), 1635-1649.
[http://dx.doi.org/10.3748/wjg.v20.i7.1635] [PMID: 24587643]
[4]
Bertuccio, P.; Chatenoud, L.; Levi, F.; Praud, D.; Ferlay, J.; Negri, E.; Malvezzi, M.; La Vecchia, C. Recent patterns in gastric cancer: A global overview. Int. J. Cancer, 2009, 125(3), 666-673.
[http://dx.doi.org/10.1002/ijc.24290] [PMID: 19382179]
[5]
Dong, Y.; Cao, A.; Shi, J.; Yin, P.; Wang, L.; Ji, G.; Xie, J.; Wu, D. Tangeretin, a citrus polymethoxyflavonoid, induces apoptosis of human gastric cancer AGS cells through extrinsic and intrinsic signaling pathways. Oncol. Rep., 2014, 31(4), 1788-1794.
[http://dx.doi.org/10.3892/or.2014.3034] [PMID: 24573532]
[6]
Yi-Ming, L.; Zhuo-Lun, Z.; Yong-Fu, H. New phenolic derivatives from galeola faberi. Planta Med., 1993, 59(4), 363-365.
[http://dx.doi.org/10.1055/s-2006-959702] [PMID: 17235990]
[7]
Igual, M.O.; Martucci, M.E.P.; Da Costa, F.B. Gobbo-Neto, Sesquiterpenelactones, chlorogenic acids and flavonoids from leaves of Vernoniapolyanthes Less (Asteraceae). Biochem. Syst. Ecol., 2013, 51, 94-97.
[http://dx.doi.org/10.1016/j.bse.2013.08.018]
[8]
Looi, C.Y.; Arya, A.; Cheah, F.K.; Muharram, B.; Leong, K.H.; Mohamad, K.; Wong, W.F.; Rai, N.; Mustafa, M.R. Induction of apoptosis in human breast cancer cells via caspase pathway by vernodalin isolated from Centratherum anthelminticum (L.) seeds. PLoS One, 2013, 8(2), e56643.
[http://dx.doi.org/10.1371/journal.pone.0056643] [PMID: 23437193]
[9]
Mohebali, N.; Pandurangan, A.K.; Mustafa, M.R.; Anandasadagopan, S.K.; Alagumuthu, T. Vernodalin induces apoptosis through the activation of ROS/JNK pathway in human colon cancer cells. J. Biochem. Mol. Toxicol., 2020, 34(12), e22587.
[http://dx.doi.org/10.1002/jbt.22587] [PMID: 32726518]
[10]
Ananda Sadagopan, S.K.; Mohebali, N.; Looi, C.Y.; Hasanpourghadi, M.; Pandurangan, A.K.; Arya, A.; Karimian, H.; Mustafa, M.R. Forkhead Box Transcription Factor (FOXO3a) mediates the cytotoxic effect of vernodalin in vitro and inhibits the breast tumor growth in vivo. J. Exp. Clin. Cancer Res., 2015, 34, 147.
[http://dx.doi.org/10.1186/s13046-015-0266-y] [PMID: 26643256]
[11]
Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[12]
Wada, T.; Penninger, J.M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 2004, 23(16), 2838-2849.
[http://dx.doi.org/10.1038/sj.onc.1207556] [PMID: 15077147]
[13]
Xia, Z.; Dickens, M.; Raingeaud, J.; Davis, R.J.; Greenberg, M.E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995, 270(5240), 1326-1331.
[http://dx.doi.org/10.1126/science.270.5240.1326] [PMID: 7481820]
[14]
Deng, N.; Goh, L.K.; Wang, H.; Das, K.; Tao, J.; Tan, I.B.; Zhang, S.; Lee, M.; Wu, J.; Lim, K.H.; Lei, Z.; Goh, G.; Lim, Q.Y.; Tan, A.L.; Sin Poh, D.Y.; Riahi, S.; Bell, S.; Shi, M.M.; Linnartz, R.; Zhu, F.; Yeoh, K.G.; Toh, H.C.; Yong, W.P.; Cheong, H.C.; Rha, S.Y.; Boussioutas, A.; Grabsch, H.; Rozen, S.; Tan, P. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut, 2012, 61(5), 673-684.
[http://dx.doi.org/10.1136/gutjnl-2011-301839] [PMID: 22315472]
[15]
Wadhwa, R.; Song, S.; Lee, J.S.; Yao, Y.; Wei, Q.; Ajani, J.A. Gastric cancer-molecular and clinical dimensions. Nat. Rev. Clin. Oncol., 2013, 10(11), 643-655.
[http://dx.doi.org/10.1038/nrclinonc.2013.170] [PMID: 24061039]
[16]
Fresno Vara, J.A.; Casado, E.; de Castro, J.; Cejas, P.; Belda-Iniesta, C.; González-Barón, M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev., 2004, 30(2), 193-204.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.007] [PMID: 15023437]
[17]
Willems, L.; Tamburini, J.; Chapuis, N.; Lacombe, C.; Mayeux, P.; Bouscary, D. PI3K and mTOR signaling pathways in cancer: New data on targeted therapies. Curr. Oncol. Rep., 2012, 14(2), 129-138.
[http://dx.doi.org/10.1007/s11912-012-0227-y] [PMID: 22350330]
[18]
Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTORsignaling in cancer. Front. Oncol., 2014, 4, 64.
[http://dx.doi.org/10.3389/fonc.2014.00064] [PMID: 24782981]
[19]
Mao, Q.Q.; Xu, X.Y.; Shang, A.; Gan, R.Y.; Wu, D.T.; Atanasov, A.G.; Li, H.B. Phytochemicals for the prevention and treatment of gastric cancer: Effects and mechanisms. Int. J. Mol. Sci., 2020, 21(2), 570.
[http://dx.doi.org/10.3390/ijms21020570] [PMID: 31963129]
[20]
Liu, Y.; Nugroho, A.E.; Hirasawa, Y.; Nakata, A.; Kaneda, T.; Uchiyama, N.; Goda, Y.; Shirota, O.; Morita, H.; Aisa, H.A. Vernodalidimers A and B, novel orthoesterelemanolide dimers from seeds of Vernoniaanthelmintica. Tetrahedron Lett., 2010, 51(50), 6584-6587.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.031]
[21]
Kasim, L.S.; Ferro, V.; Odukoya, O.A.; Ukpo, G.E.; Seidel, V.; Gray, A.I.; Waigh, R. Cytotoxicity of isolated compounds from the extracts of Struchium sparganophora (Linn) Ktze asteraceae. Pak. J. Pharm. Sci., 2011, 24(4), 475-478.
[PMID: 21959807]
[22]
Kupchan, S.M.; Hemingway, R.J.; Werner, D.; Karim, A.; McPhail, A.T.; Sim, G.A. Vernolepin, a novel elemanolide dilactone tumor inhibitor from Vernonia hymenolepis. J. Am. Chem. Soc., 1968, 90(13), 3596-3597.
[http://dx.doi.org/10.1021/ja01015a073] [PMID: 5651569]
[23]
Looi, C.Y.; Moharram, B.; Paydar, M.; Wong, Y.L.; Leong, K.H.; Mohamad, K.; Arya, A.; Wong, W.F.; Mustafa, M.R. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways. BMC Complement. Altern. Med., 2013, 13, 166.
[http://dx.doi.org/10.1186/1472-6882-13-166] [PMID: 23837445]
[24]
Martin, T.A.; Ye, L.; Sanders, A.J.; Lane, J.; Jiang, W.G. Cancer invasion and metastasis: Molecular and cellular perspective. In: Madame Curie Bioscience Database; Landes Bioscience, 2013.
[25]
Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal., 2020, 18(1), 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[26]
Huang, M.; Lu, J.J.; Ding, J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect., 2021, 11(1), 5-13.
[http://dx.doi.org/10.1007/s13659-020-00293-7] [PMID: 33389713]
[27]
Ito, T.; Aimaiti, S.; Win, N.N.; Kodama, T.; Morita, H. New sesquiterpene lactones, vernonilides A and B, from the seeds of Vernonia anthelmintica in Uyghur and their antiproliferative activities. Bioorg. Med. Chem. Lett., 2016, 26(15), 3608-3611.
[http://dx.doi.org/10.1016/j.bmcl.2016.06.009] [PMID: 27311895]
[28]
Thongnest, S.; Chawengrum, P.; Keeratichamroen, S.; Lirdprapamongkol, K.; Eurtivong, C.; Boonsombat, J.; Kittakoop, P.; Svasti, J.; Ruchirawat, S. Vernodalidimer L, a sesquiterpene lactone dimer from Vernonia extensa and anti-tumor effects of vernodalin, vernolepin, and vernolide on HepG2 liver cancer cells. Bioorg. Chem., 2019, 92, 103197.
[http://dx.doi.org/10.1016/j.bioorg.2019.103197] [PMID: 31445193]
[29]
Bui, H.T.T.; Le, N.H.; Le, Q.A.; Kim, S.E.; Lee, S.; Kang, D. Synergistic apoptosis of human gastric cancer cells by bortezomib and TRAIL. Int. J. Med. Sci., 2019, 16(11), 1412-1423.
[http://dx.doi.org/10.7150/ijms.34398] [PMID: 31673231]
[30]
Yadav, N.; Kumar, S.; Marlowe, T.; Chaudhary, A.K.; Kumar, R.; Wang, J.; O’Malley, J.; Boland, P.M.; Jayanthi, S.; Kumar, T.K.; Yadava, N.; Chandra, D. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis., 2015, 6(11), e1969.
[http://dx.doi.org/10.1038/cddis.2015.305] [PMID: 26539916]
[31]
Sznarkowska, A.; Kostecka, A.; Meller, K.; Bielawski, K.P. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget, 2017, 8(9), 15996-16016.
[http://dx.doi.org/10.18632/oncotarget.13723] [PMID: 27911871]
[32]
Indran, I.R.; Tufo, G.; Pervaiz, S.; Brenner, C. Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochim. Biophys. Acta, 2011, 1807(6), 735-745.
[http://dx.doi.org/10.1016/j.bbabio.2011.03.010] [PMID: 21453675]
[33]
Ballot, C.; Kluza, J.; Martoriati, A.; Nyman, U.; Formstecher, P.; Joseph, B.; Bailly, C.; Marchetti, P. Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid Lamellarin D. Mol. Cancer Ther., 2009, 8(12), 3307-3317.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0639] [PMID: 19952118]
[34]
Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria in cancer cells: What is so special about them? Trends Cell Biol., 2008, 18(4), 165-173.
[http://dx.doi.org/10.1016/j.tcb.2008.01.006] [PMID: 18296052]
[35]
Kumar, A.; El-Osta, A.; Hussain, A.A.; Marshall, J. Increased sequestration of matrix metalloproteinases in ageing human Bruch’s membrane: Implications for ECM turnover. Invest. Ophthalmol. Vis. Sci., 2010, 51(5), 2664-2670.
[http://dx.doi.org/10.1167/iovs.09-4195] [PMID: 20042661]
[36]
Bauvois, B. New facets of matrix metalloproteinases MMP-2 and MMP-9 as cell surface transducers: Outside-in signaling and relationship to tumor progression. Biochim. Biophys. Acta, 2012, 1825(1), 29-36.
[PMID: 22020293]
[37]
Mason, S.D.; Joyce, J.A. Proteolytic networks in cancer. Trends Cell Biol., 2011, 21(4), 228-237.
[http://dx.doi.org/10.1016/j.tcb.2010.12.002] [PMID: 21232958]
[38]
Hildenbrand, R.; Allgayer, H.; Marx, A.; Stroebel, P. Modulators of the urokinase-type plasminogen activation system for cancer. Expert Opin. Investig. Drugs, 2010, 19(5), 641-652.
[http://dx.doi.org/10.1517/13543781003767400] [PMID: 20402599]
[39]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278(1), 16-27.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07919.x] [PMID: 21087457]
[40]
Basu, B.; Correa de Sampaio, P.; Mohammed, H.; Fogarasi, M.; Corrie, P.; Watkins, N.A.; Smethurst, P.A.; English, W.R.; Ouwehand, W.H.; Murphy, G. Inhibition of MT1-MMP activity using functional antibody fragments selected against its hemopexin domain. Int. J. Biochem. Cell Biol., 2012, 44(2), 393-403.
[http://dx.doi.org/10.1016/j.biocel.2011.11.015] [PMID: 22138224]
[41]
Hassan, Z.K.; Daghestani, M.H. Curcumin effect on MMPs and TIMPs genes in a breast cancer cell line. Asian Pac. J. Cancer Prev., 2012, 13(7), 3259-3264.
[http://dx.doi.org/10.7314/APJCP.2012.13.7.3259] [PMID: 22994744]
[42]
Singh, S.S.; Yap, W.N.; Arfuso, F.; Kar, S.; Wang, C.; Cai, W.; Dharmarajan, A.M.; Sethi, G.; Kumar, A.P. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine? World J. Gastroenterol., 2015, 21(43), 12261-12273.
[http://dx.doi.org/10.3748/wjg.v21.i43.12261] [PMID: 26604635]
[43]
Parsons, J.T. Focal adhesion kinase: The first ten years. J. Cell Sci., 2003, 116(Pt 8), 1409-1416.
[http://dx.doi.org/10.1242/jcs.00373] [PMID: 12640026]
[44]
Osaki, M.; Oshimura, M.; Ito, H. PI3K-Akt pathway: Its functions and alterations in human cancer. Apoptosis, 2004, 9(6), 667-676.
[http://dx.doi.org/10.1023/B:APPT.0000045801.15585.dd] [PMID: 15505410]
[45]
Hu, Q.; Lin, X.; Ding, L.; Zeng, Y.; Pang, D.; Ouyang, N.; Xiang, Y.; Yao, H. ARHGAP42 promotes cell migration and invasion involving PI3K/Akt signaling pathway in nasopharyngeal carcinoma. Cancer Med., 2018, 7(8), 3862-3874.
[http://dx.doi.org/10.1002/cam4.1552] [PMID: 29936709]
[46]
Zhang, Y.; Yan, J.; Xu, H.; Yang, Y.; Li, W.; Wu, H.; Liu, C. Extremely low frequency electromagnetic fields promote mesenchymal stem cell migration by increasing intracellular Ca2+ and activating the FAK/Rho GTPases signaling pathways in vitro. Stem Cell Res. Ther., 2018, 9(1), 143.
[http://dx.doi.org/10.1186/s13287-018-0883-4] [PMID: 29784011]
[47]
Wu, Y.J.; Lin, S.H.; Din, Z.H.; Su, J.H.; Liu, C.I. Sinulariolide inhibits gastric cancer cell migration and invasion through downregulation of the EMT process and suppression of FAK/PI3K/AKT/mTOR and MAPKs signaling pathways. Mar. Drugs, 2019, 17(12), 668.
[http://dx.doi.org/10.3390/md17120668] [PMID: 31783709]
[48]
Sebolt-Leopold, J.S. Development of anticancer drugs targeting the MAP kinase pathway. Oncogene, 2000, 19(56), 6594-6599.
[http://dx.doi.org/10.1038/sj.onc.1204083] [PMID: 11426644]
[49]
Qu, L.; Liu, F.X.; Cao, X.C.; Xiao, Q.; Yang, X.; Ren, K.Q. Activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal kinase pathway is involved in the casticin-induced apoptosis of colon cancer cells. Exp. Ther. Med., 2014, 8(5), 1494-1500.
[http://dx.doi.org/10.3892/etm.2014.1934] [PMID: 25289048]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy