Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

Oxytocin: An Old Hormone, a Novel Psychotropic Drug and its Possible Use in Treating Psychiatric Disorders

Author(s): Donatella Marazziti, Phuoc-Tan Diep, Sue Carter and Manuel Glauco Carbone*

Volume 29, Issue 35, 2022

Published on: 12 August, 2022

Page: [5615 - 5687] Pages: 73

DOI: 10.2174/0929867329666220727120646

Price: $65

Abstract

Background: Oxytocin is a nonapeptide synthesized in the paraventricular and supraoptic nuclei of the hypothalamus. Historically, this molecule has been involved as a key factor in the formation of infant attachment, maternal behavior and pair bonding and, more generally, in linking social signals with cognition, behaviors and reward. In the last decades, the whole oxytocin system has gained a growing interest as it was proposed to be implicated in etiopathogenesis of several neurodevelopmental and neuropsychiatric disorders.

Methods: With the main goal of an in-depth understanding of the oxytocin role in the regulation of different functions and complex behaviors as well as its intriguing implications in different neuropsychiatric disorders, we performed a critical review of the current state of the art. We carried out this work through the PubMed database up to June 2021 with the search terms: 1) “oxytocin and neuropsychiatric disorders”; 2) “oxytocin and neurodevelopmental disorders”; 3) “oxytocin and anorexia”; 4) “oxytocin and eating disorders”; 5) “oxytocin and obsessive- compulsive disorder”; 6) “oxytocin and schizophrenia”; 7) “oxytocin and depression”; 8) “oxytocin and bipolar disorder”; 9) “oxytocin and psychosis”; 10) “oxytocin and anxiety”; 11) “oxytocin and personality disorder”; 12) “oxytocin and PTSD”.

Results: Biological, genetic, and epigenetic studies highlighted quality and quantity modifications in the expression of oxytocin peptide or in oxytocin receptor isoforms. These alterations would seem to be correlated with a higher risk of presenting several neuropsychiatric disorders belonging to different psychopathological spectra. Collaterally, the exogenous oxytocin administration has shown to ameliorate many neuropsychiatric clinical conditions.

Conclusion: Finally, we briefly analyzed the potential pharmacological use of oxytocin in a patient with severe symptomatic SARS-CoV-2 infection due to its anti-inflammatory, antioxidative and immunoregulatory properties.

Keywords: Oxytocin, intranasal oxytocin, exogenous oxytocin, neuropsychiatric disorders, oxytocin receptor, plasmatic oxytocin.

[1]
Feldman, R.; Monakhov, M.; Pratt, M.; Ebstein, R.P. Oxytocin pathway genes: Evolutionary ancient system impacting on human affiliation, sociality, and psychopathology. Biol. Psychiatry, 2016, 79(3), 174-184.
[http://dx.doi.org/10.1016/j.biopsych.2015.08.008] [PMID: 26392129]
[2]
Busnelli, M.; Chini, B. Molecular basis of oxytocin receptor signalling in the brain: What we know and what we need to know. Curr. Top. Behav. Neurosci., 2017, 35, 3-29.
[http://dx.doi.org/10.1007/7854_2017_6] [PMID: 28812263]
[3]
Maejima, Y.; Sakuma, K.; Santoso, P.; Gantulga, D.; Katsurada, K.; Ueta, Y.; Hiraoka, Y.; Nishimori, K.; Tanaka, S.; Shimomura, K.; Yada, T. Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus. FEBS Lett., 2014, 588(23), 4404-4412.
[http://dx.doi.org/10.1016/j.febslet.2014.10.010] [PMID: 25448678]
[4]
Gimpl, G.; Fahrenholz, F. The oxytocin receptor system: Structure, function, and regulation. Physiol. Rev., 2001, 81(2), 629-683.
[http://dx.doi.org/10.1152/physrev.2001.81.2.629] [PMID: 11274341]
[5]
Quintana, D.S.; Rokicki, J.; van der Meer, D.; Alnæs, D.; Kaufmann, T.; Córdova-Palomera, A.; Dieset, I.; Andreassen, O.A.; Westlye, L.T. Oxytocin pathway gene networks in the human brain. Nat. Commun., 2019, 10(1), 668.
[http://dx.doi.org/10.1038/s41467-019-08503-8] [PMID: 30737392]
[6]
Valtcheva, S.; Froemke, R.C. Neuromodulation of maternal circuits by oxytocin. Cell Tissue Res., 2019, 375(1), 57-68.
[http://dx.doi.org/10.1007/s00441-018-2883-1] [PMID: 30062614]
[7]
Uvnäs-Moberg, K.; Ekström-Bergström, A.; Berg, M.; Buckley, S.; Pajalic, Z.; Hadjigeorgiou, E.; Kotłowska, A.; Lengler, L.; Kielbratowska, B.; Leon-Larios, F.; Magistretti, C.M.; Downe, S.; Lindström, B.; Dencker, A. Maternal plasma levels of oxytocin during physiological childbirth – a systematic review with implications for uterine contractions and central actions of oxytocin. BMC Pregnancy Childbirth, 2019, 19(1), 285.
[http://dx.doi.org/10.1186/s12884-019-2365-9] [PMID: 31399062]
[8]
Kamikawa, A.; Seko, J. Physiological and pharmacological evaluation of oxytocin-induced milk ejection in mice. Exp. Anim., 2020, 69(3), 345-353.
[http://dx.doi.org/10.1538/expanim.19-0126] [PMID: 32213759]
[9]
Knobloch, H.S.; Charlet, A.; Hoffmann, L.C.; Eliava, M.; Khrulev, S.; Cetin, A.H.; Osten, P.; Schwarz, M.K.; Seeburg, P.H.; Stoop, R.; Grinevich, V. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron, 2012, 73(3), 553-566.
[http://dx.doi.org/10.1016/j.neuron.2011.11.030] [PMID: 22325206]
[10]
Zoicas, I.; Slattery, D.A.; Neumann, I.D. Brain oxytocin in social fear conditioning and its extinction: Involvement of the lateral septum. Neuropsychopharmacology, 2014, 39(13), 3027-3035.
[http://dx.doi.org/10.1038/npp.2014.156] [PMID: 24964815]
[11]
Eliava, M.; Melchior, M.; Knobloch-Bollmann, H.S.; Wahis, J.; da Silva Gouveia, M.; Tang, Y.; Ciobanu, A.C.; Triana del Rio, R.; Roth, L.C.; Althammer, F.; Chavant, V.; Goumon, Y.; Gruber, T.; Petit-Demoulière, N.; Busnelli, M.; Chini, B.; Tan, L.L.; Mitre, M.; Froemke, R.C.; Chao, M.V.; Giese, G.; Sprengel, R.; Kuner, R.; Poisbeau, P.; Seeburg, P.H.; Stoop, R.; Charlet, A.; Grinevich, V. a new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron, 2016, 89(6), 1291-1304.
[http://dx.doi.org/10.1016/j.neuron.2016.01.041] [PMID: 26948889]
[12]
Althammer, F.; Grinevich, V. Diversity of oxytocin neurons: Beyond magno- and parvocellular cell types? J. Neuroendocrinol., 2017.
[PMID: 29024187]
[13]
Zheng, J.J.; Li, S.J.; Zhang, X.D.; Miao, W.Y.; Zhang, D.; Yao, H.; Yu, X. Oxytocin mediates early experience–dependent cross-modal plasticity in the sensory cortices. Nat. Neurosci., 2014, 17(3), 391-399.
[http://dx.doi.org/10.1038/nn.3634] [PMID: 24464043]
[14]
Veening, J.G.; Olivier, B. Intranasal administration of oxytocin: Behavioral and clinical effects, a review. Neurosci. Biobehav. Rev., 2013, 37(8), 1445-1465.
[http://dx.doi.org/10.1016/j.neubiorev.2013.04.012] [PMID: 23648680]
[15]
Yamamoto, Y.; Higashida, H. RAGE regulates oxytocin transport into the brain. Commun. Biol., 2020, 3(1), 70.
[http://dx.doi.org/10.1038/s42003-020-0799-2] [PMID: 32054984]
[16]
Chini, B.; Verhage, M.; Grinevich, V. The action radius of oxytocin release in the mammalian CNS: From single vesicles to behavior. Trends Pharmacol. Sci., 2017, 38(11), 982-991.
[http://dx.doi.org/10.1016/j.tips.2017.08.005] [PMID: 28899620]
[17]
Devost, D.; Wrzal, P.; Zingg, H. Oxytocin receptor signalling. Prog. Brain Res., 2008, 170, 167-176.
[http://dx.doi.org/10.1016/S0079-6123(08)00415-9] [PMID: 18655881]
[18]
Jurek, B.; Neumann, I.D. The oxytocin receptor: From intracellular signaling to behavior. Physiol. Rev., 2018, 98(3), 1805-1908.
[http://dx.doi.org/10.1152/physrev.00031.2017] [PMID: 29897293]
[19]
Staes, N.; Guevara, E.E.; Helsen, P.; Eens, M.; Stevens, J.M.G. The Pan social brain: An evolutionary history of neurochemical receptor genes and their potential impact on sociocognitive differences. J. Hum. Evol., 2021, 152, , 102949..
[http://dx.doi.org/10.1016/j.jhevol.2021.102949] [PMID: 33578304]
[20]
King, C.E.; Gano, A.; Becker, H.C. The role of oxytocin in alcohol and drug abuse. Brain Res., 2020, 1736, , 146761..
[http://dx.doi.org/10.1016/j.brainres.2020.146761] [PMID: 32142721]
[21]
Sundar, M.; Patel, D.; Young, Z.; Leong, K.C. Oxytocin and addiction: Potential Glutamatergic mechanisms. Int. J. Mol. Sci., 2021, 22(5), 2405.
[http://dx.doi.org/10.3390/ijms22052405] [PMID: 33673694]
[22]
Che, X.; Cai, J.; Liu, Y.; Xu, T.; Yang, J.; Wu, C. Oxytocin signaling in the treatment of drug addic-tion: Therapeutic opportunities and challenges. Pharmacol. Ther., 2021, 223, , 107820..
[http://dx.doi.org/10.1016/j.pharmthera.2021.107820] [PMID: 33600854]
[23]
Rivera, D.S.; Lindsay, C.B.; Oliva, C.A.; Bozinovic, F.; Inestrosa, N.C. “Live together, die alone”: The effect of re-socialization on behavioural performance and social-affective brain-related proteins after a long-term chronic social isolation stress. Neurobiol. Stress, 2021, 14, , 100289..
[http://dx.doi.org/10.1016/j.ynstr.2020.100289] [PMID: 33426200]
[24]
Neumann, I.D.; Slattery, D.A. Oxytocin in general anxiety and social fear: A translational approach. Biol. Psychiatry, 2016, 79(3), 213-221.
[http://dx.doi.org/10.1016/j.biopsych.2015.06.004] [PMID: 26208744]
[25]
Hung, L.W.; Neuner, S.; Polepalli, J.S.; Beier, K.T.; Wright, M.; Walsh, J.J.; Lewis, E.M.; Luo, L.; Deisseroth, K.; Dölen, G.; Malenka, R.C. Gating of social reward by oxytocin in the ventral tegmental area. Science, 2017, 357(6358), 1406-1411.
[http://dx.doi.org/10.1126/science.aan4994] [PMID: 28963257]
[26]
Lawson, E.A. The effects of oxytocin on eating behaviour and metabolism in humans. Nat. Rev. Endocrinol., 2017, 13(12), 700-709.
[http://dx.doi.org/10.1038/nrendo.2017.115] [PMID: 28960210]
[27]
Meyer-Lindenberg, A.; Domes, G.; Kirsch, P.; Heinrichs, M. Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nat. Rev. Neurosci., 2011, 12(9), 524-538.
[http://dx.doi.org/10.1038/nrn3044] [PMID: 21852800]
[28]
Marlin, B.J.; Mitre, M.; D’amour, J.A.; Chao, M.V.; Froemke, R.C. Oxytocin enables maternal behaviour by balancing cortical inhibition. Nature, 2015, 520(7548), 499-504.
[http://dx.doi.org/10.1038/nature14402] [PMID: 25874674]
[29]
Iovino, M.; Messana, T.; Iovino, E.; De Pergola, G.; Guastamacchia, E.; Giagulli, V.A.; Triggiani, V. Neuroendocrine mechanisms involved in male sexual and emotional behavior. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(4), 472-480.
[http://dx.doi.org/10.2174/1871530319666190131155310] [PMID: 30706797]
[30]
Peled-Avron, L.; Abu-Akel, A.; Shamay-Tsoory, S. Exogenous effects of oxytocin in five psychiatric disorders: A systematic review, meta-analyses and a personalized approach through the lens of the social salience hypothesis. Neurosci. Biobehav. Rev., 2020, 114, 70-95.
[http://dx.doi.org/10.1016/j.neubiorev.2020.04.023] [PMID: 32348803]
[31]
Rae, M.; Duarte, M.L.; Gomes, I.; Camarini, R.; Devi, L.A. Oxytocin and vasopressin: Signalling, behavioural modulation and potential therapeutic effects. Br. J. Pharmacol., 2021.
[PMID: 33817785]
[32]
Bukovskaya, O.; Shmukler, A. Oxytocin and social cognitions in schizophrenia: A systematic review. Psychiatr. Q., 2016, 87(3), 521-543.
[http://dx.doi.org/10.1007/s11126-015-9407-x] [PMID: 26689706]
[33]
Servan, A.; Brunelin, J.; Poulet, E. The effects of oxytocin on social cognition in borderline personality disorder. Encephale, 2018, 44(1), 46-51.
[http://dx.doi.org/10.1016/j.encep.2017.11.001] [PMID: 29273344]
[34]
Tan, B.L.; Lee, S.A.; Lee, J. Social cognitive interventions for people with schizophrenia: A systematic review. Asian J. Psychiatr., 2018, 35, 115-131.
[http://dx.doi.org/10.1016/j.ajp.2016.06.013] [PMID: 27670776]
[35]
Donadon, M.F.; Martin-Santos, R.; Osório, F.L. The associations between oxytocin and trauma in humans: A systematic review. Front. Pharmacol., 2018, 9, 154.
[http://dx.doi.org/10.3389/fphar.2018.00154] [PMID: 29545749]
[36]
Yoshida, M.; Takayanagi, Y.; Inoue, K.; Kimura, T.; Young, L.J.; Onaka, T.; Nishimori, K. Evidence that oxytocin exerts anxiolytic effects via oxytocin receptor expressed in serotonergic neurons in mice. J. Neurosci., 2009, 29(7), 2259-2271.
[http://dx.doi.org/10.1523/JNEUROSCI.5593-08.2009] [PMID: 19228979]
[37]
de Oliveira, D.C.G.; Zuardi, A.W.; Graeff, F.G.; Queiroz, R.H.C.; Crippa, J.A.S. Anxiolytic-like effect of oxytocin in the simulated public speaking test. J. Psychopharmacol., 2012, 26(4), 497-504.
[http://dx.doi.org/10.1177/0269881111400642] [PMID: 21555332]
[38]
Panaitescu, A.; Isac, S.; Pavel, B.; Ilie, A.S.; Ceanga, M.; Totan, A.; Zagrean, L.; Peltecu, G.; Zagrean, A.M. Oxytocin reduces seizure burden and hippocampal injury in a rat model of perinatal asphyxia. Acta Endocrinol. (Bucur.), 2018, 14(3), 315-319.
[http://dx.doi.org/10.4183/aeb.2018.315] [PMID: 31149277]
[39]
Giovanna, G.; Damiani, S.; Fusar-Poli, L.; Rocchetti, M.; Brondino, N.; de Cagna, F.; Mori, A.; Politi, P. Intranasal oxytocin as a potential therapeutic strategy in post-traumatic stress disorder: A systematic review. Psychoneuroendocrinology, 2020, 115, , 104605..
[http://dx.doi.org/10.1016/j.psyneuen.2020.104605] [PMID: 32088633]
[40]
Carter, C.S.; Kenkel, W.M.; MacLean, E.L.; Wilson, S.R.; Perkeybile, A.M.; Yee, J.R.; Ferris, C.F.; Nazarloo, H.P.; Porges, S.W.; Davis, J.M.; Connelly, J.J.; Kingsbury, M.A. Is Oxytocin “Nature’s Medicine”? Pharmacol. Rev., 2020, 72(4), 829-861.
[http://dx.doi.org/10.1124/pr.120.019398] [PMID: 32912963]
[41]
Dale, H.H. On some physiological actions of ergot. J. Physiol., 1906, 34(3), 163-206.
[http://dx.doi.org/10.1113/jphysiol.1906.sp001148] [PMID: 16992821]
[42]
Pierce, J.G.; Gordon, S.; du Vigneaud, V. Further distribution studies on the oxytocic hormone of the posterior lobe of the pituitary gland and the preparation of an active crystalline flavianate. J. Biol. Chem., 1952, 199(2), 929-940.
[http://dx.doi.org/10.1016/S0021-9258(18)38532-6] [PMID: 13022701]
[43]
du Vigneaud, V.; Ressler, C.; Trippett, S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J. Biol. Chem., 1953, 205(2), 949-957.
[http://dx.doi.org/10.1016/S0021-9258(18)49238-1] [PMID: 13129273]
[44]
du Vigneaud, V. Trail of sulfur research: From insulin to oxytocin. Science, 1956, 123(3205), 967-974.
[http://dx.doi.org/10.1126/science.123.3205.967] [PMID: 13324123]
[45]
Fabian, M.; Forsling, M.L.; Jones, J.J.; Pryor, J.S. The clearance and antidiuretic potency of neurohy-pophysial hormones in man, and their plasma binding and stability. J. Physiol., 1969, 204(3), 653-668.
[http://dx.doi.org/10.1113/jphysiol.1969.sp008937] [PMID: 5824107]
[46]
Summar, M.L.; Phillips, J.A., III; Battey, J.; Castiglione, C.M.; Kidd, K.K.; Maness, K.J.; Weiffenbach, B.; Gravius, T.C. Linkage relationships of human arginine vasopressin-neurophysin-II and oxytocin-neurophysin-I to prodynorphin and other loci on chromosome 20. Mol. Endocrinol., 1990, 4(6), 947-950.
[http://dx.doi.org/10.1210/mend-4-6-947] [PMID: 1978246]
[47]
Brownstein, M.J.; Russell, J.T.; Gainer, H. Synthesis, transport, and release of posterior pituitary hormones. Science, 1980, 207(4429), 373-378.
[http://dx.doi.org/10.1126/science.6153132] [PMID: 6153132]
[48]
Sheldrick, E.L.; Flint, A.P.F. Post-translational processing of oxytocin-neurophysin prohormone in the ovine corpus luteum: Activity of peptidyl glycine α-amidating mono-oxygenase and concentrations of its cofactor, ascorbic acid. J. Endocrinol., 1989, 122(1), 313-322.
[http://dx.doi.org/10.1677/joe.0.1220313] [PMID: 2769155]
[49]
Tsujimoto, M.; Hattori, A. The oxytocinase subfamily of M1 aminopeptidases. Biochim. Biophys. Acta. Proteins Proteom., 2005, 1751(1), 9-18.
[http://dx.doi.org/10.1016/j.bbapap.2004.09.011] [PMID: 16054015]
[50]
Burns, P.; Bowditch, J.; McFadyen, J.; Loiacono, R.; Albiston, A.L.; Pham, V.; Chai, S.Y. Social behaviour is altered in the insulin-regulated aminopeptidase knockout mouse. Behav. Brain Res., 2019, 376, , 112150..
[http://dx.doi.org/10.1016/j.bbr.2019.112150] [PMID: 31419522]
[51]
Petersson, M.; Uvnäsmoberg, K. Prolyl-leucyl-glycinamide shares some effects with oxytocin but decreases oxytocin levels. Physiol. Behav., 2004, 83(3), 475-481.
[http://dx.doi.org/10.1016/j.physbeh.2004.08.034] [PMID: 15581670]
[52]
Uvnäs-Moberg, K.; Gross, M.M.; Agius, A.; Downe, S.; Calleja-Agius, J. Are there epigenetic oxytocin-mediated effects on the mother and infant during physiological childbirth? Int. J. Mol. Sci., 2020, 21(24), 9503.
[http://dx.doi.org/10.3390/ijms21249503] [PMID: 33327490]
[53]
Khan, R.S.; Yu, C.; Kastin, A.J.; He, Y.; Ehrensing, R.H.; Hsuchou, H.; Stone, K.P.; Pan, W. Brain activation by peptide Pro-Leu-Gly-NH(2) (MIF-1). Int. J. Pept., 2010.
[54]
Baribeau, D.A.; Anagnostou, E. Oxytocin and vasopressin: Linking pituitary neuropeptides and their receptors to social neurocircuits. Front. Neurosci., 2015, 9, 335.
[http://dx.doi.org/10.3389/fnins.2015.00335] [PMID: 26441508]
[55]
MacLean, E.L.; Wilson, S.R.; Martin, W.L.; Davis, J.M.; Nazarloo, H.P.; Carter, C.S. Challenges for measuring oxytocin: The blind men and the elephant? Psychoneuroendocrinology, 2019, 107, 225-231.
[http://dx.doi.org/10.1016/j.psyneuen.2019.05.018] [PMID: 31163380]
[56]
Carter, C.S. The Oxytocin–Vasopressin pathway in the context of love and fear. Front. Endocrinol. (Lausanne), 2017, 8, 356.
[http://dx.doi.org/10.3389/fendo.2017.00356] [PMID: 29312146]
[57]
Stadler, B.; Whittaker, M.R.; Exintaris, B.; Middendorff, R. Oxytocin in the male reproductive tract; The therapeutic potential of oxytocin-agonists and-antagonists. Front. Endocrinol. (Lausanne), 2020, 11, , 565731..
[http://dx.doi.org/10.3389/fendo.2020.565731] [PMID: 33193084]
[58]
Lemel, L.; Nieścierowicz, K.; García-Fernández, M.D.; Darré, L.; Durroux, T.; Busnelli, M.; Pezet, M.; Rébeillé, F.; Jouhet, J.; Mouillac, B.; Domene, C.; Chini, B.; Cherezov, V.; Moreau, C.J. The lig-and-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. J. Lipid Res., 2021, 62, , 100059..
[http://dx.doi.org/10.1016/j.jlr.2021.100059] [PMID: 33647276]
[59]
Zingg, H.H.; Laporte, S.A. The oxytocin receptor. Trends Endocrinol. Metab., 2003, 14(5), 222-227.
[http://dx.doi.org/10.1016/S1043-2760(03)00080-8] [PMID: 12826328]
[60]
Oakley, R.H.; Laporte, S.A.; Holt, J.A.; Barak, L.S.; Caron, M.G. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-beta-arrestin complexes after receptor endocytosis. J. Biol. Chem., 2001, 276(22), 19452-19460.
[http://dx.doi.org/10.1074/jbc.M101450200] [PMID: 11279203]
[61]
Conti, F.; Sertic, S.; Reversi, A.; Chini, B. Intracellular trafficking of the human oxytocin receptor: Evidence of receptor recycling via a Rab4/Rab5 “short cycle”. Am. J. Physiol. Endocrinol. Metab., 2009, 296(3), E532-E542.
[http://dx.doi.org/10.1152/ajpendo.90590.2008] [PMID: 19126785]
[62]
Baskaran, C.; Plessow, F.; Silva, L.; Asanza, E.; Marengi, D.; Eddy, K.T.; Sluss, P.M.; Johnson, M.L.; Misra, M.; Lawson, E.A. Oxytocin secretion is pulsatile in men and is related to social-emotional functioning. Psychoneuroendocrinology, 2017, 85, 28-34.
[http://dx.doi.org/10.1016/j.psyneuen.2017.07.486] [PMID: 28800490]
[63]
Ueda, T.; Yokoyama, Y.; Irahara, M.; Aono, T. Influence of psychological stress on suckling-induced pulsatile oxytocin release. Obstet. Gynecol., 1994, 84(2), 259-262.
[PMID: 8041543]
[64]
Tribollet, E.; Barberis, C.; Jard, S.; Dubois-Dauphin, M.; Dreifuss, J.J. Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res., 1988, 442(1), 105-118.
[http://dx.doi.org/10.1016/0006-8993(88)91437-0] [PMID: 2834008]
[65]
Boccia, M.L.; Petrusz, P.; Suzuki, K.; Marson, L.; Pedersen, C.A. Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience, 2013, 253, 155-164.
[http://dx.doi.org/10.1016/j.neuroscience.2013.08.048] [PMID: 24012742]
[66]
Freeman, S.M.; Inoue, K.; Smith, A.L.; Goodman, M.M.; Young, L.J. The neuroanatomical distribution of oxytocin receptor binding and mRNA in the male rhesus macaque (Macaca mulatta). Psychoneuroendocrinology, 2014, 45, 128-141.
[http://dx.doi.org/10.1016/j.psyneuen.2014.03.023] [PMID: 24845184]
[67]
Boccia, M.L.; Panicker, A.K.; Pedersen, C.; Petrusz, P. Oxytocin receptors in non-human primate brain visualized with monoclonal antibody. Neuroreport, 2001, 12(8), 1723-1726.
[http://dx.doi.org/10.1097/00001756-200106130-00041] [PMID: 11409747]
[68]
Freeman, S.M.; Palumbo, M.C.; Lawrence, R.H.; Smith, A.L.; Goodman, M.M.; Bales, K.L. Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and mid-brain. Transl. Psychiatry, 2018, 8(1), 257.
[http://dx.doi.org/10.1038/s41398-018-0315-3] [PMID: 30514927]
[69]
Nair, H.P.; Gutman, A.R.; Davis, M.; Young, L.J. Central oxytocin, vasopressin, and corticotropin-releasing factor receptor densities in the basal forebrain predict isolation potentiated startle in rats. J. Neurosci., 2005, 25(49), 11479-11488.
[http://dx.doi.org/10.1523/JNEUROSCI.2524-05.2005] [PMID: 16339041]
[70]
Blake, M.G.; Boccia, M.M. Basal forebrain cholinergic system and memory. Curr. Top. Behav. Neurosci., 2016, 37, 253-273.
[http://dx.doi.org/10.1007/7854_2016_467] [PMID: 28213811]
[71]
Loup, F.; Tribollet, E.; Dubois-Dauphin, M.; Pizzolato, G.; Dreifuss, J.J. Localization of oxytocin binding sites in the human brainstem and upper spinal cord: An autoradiographic study. Brain Res., 1989, 500(1-2), 223-230.
[http://dx.doi.org/10.1016/0006-8993(89)90317-X] [PMID: 2557960]
[72]
Loup, F.; Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J. Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res., 1991, 555(2), 220-232.
[http://dx.doi.org/10.1016/0006-8993(91)90345-V] [PMID: 1657300]
[73]
Toloczko, D.M.; Young, L.; Insel, T.R. Are there oxytocin receptors in the primate brain? Ann. N. Y. Acad. Sci., 1997, 807(1 Integrative N), 506-509.
[http://dx.doi.org/10.1111/j.1749-6632.1997.tb51953.x] [PMID: 9071384]
[74]
Grinevich, V.; Stoop, R. Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors. Neuron, 2018, 99(5), 887-904.
[http://dx.doi.org/10.1016/j.neuron.2018.07.016] [PMID: 30189208]
[75]
Warfvinge, K.; Krause, D.; Edvinsson, L. The distribution of oxytocin and the oxytocin receptor in rat brain: Relation to regions active in migraine. J. Headache Pain, 2020, 21(1), 10.
[http://dx.doi.org/10.1186/s10194-020-1079-8] [PMID: 32028899]
[76]
Curley, J.P.; Jordan, E.R.; Swaney, W.T.; Izraelit, A.; Kammel, S.; Champagne, F.A. The meaning of weaning: Influence of the weaning period on behavioral development in mice. Dev. Neurosci., 2009, 31(4), 318-331.
[http://dx.doi.org/10.1159/000216543] [PMID: 19546569]
[77]
Higashida, H.; Lopatina, O.; Yoshihara, T.; Pichugina, Y.A.; Soumarokov, A.A.; Munesue, T.; Minabe, Y.; Kikuchi, M.; Ono, Y.; Korshunova, N.; Salmina, A.B. Oxytocin signal and social behaviour: Comparison among adult and infant oxytocin, oxytocin receptor and CD38 gene knockout mice. J. Neuroendocrinol., 2010, 22(5), 373-379.
[http://dx.doi.org/10.1111/j.1365-2826.2010.01976.x] [PMID: 20141571]
[78]
Lopatina, O.; Liu, H.X.; Amina, S.; Hashii, M.; Higashida, H. Oxytocin-induced elevation of ADP-ribosyl cyclase activity, cyclic ADP-riboseor Ca2+ concentrations is involved in autoregulation of oxytocin secretionin the hypothalamus and posterior pituitary in male mice. Neuropharmacology, 2010, 58(1), 50-55.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.012] [PMID: 19540855]
[79]
Lopatina, O.; Inzhutova, A.; Pichugina, Y.A.; Okamoto, H.; Salmina, A.B.; Higashida, H. Reproductive experience affects parental retrieval behaviour associated with increased plasma oxytocin levels in wild-type and CD38-knockout mice. J. Neuroendocrinol., 2011, 23(11), 1125-1133.
[http://dx.doi.org/10.1111/j.1365-2826.2011.02136.x] [PMID: 21501260]
[80]
Lukas, M.; Bredewold, R.; Neumann, I.D.; Veenema, A.H. Maternal separation interferes with developmental changes in brain vasopressin and oxytocin receptor binding in male rats. Neuropharmacology, 2010, 58(1), 78-87.
[http://dx.doi.org/10.1016/j.neuropharm.2009.06.020] [PMID: 19560475]
[81]
Bales, K.L.; Boone, E.; Epperson, P.; Hoffman, G.; Carter, C.S. Are behavioral effects of early experience mediated by oxytocin? Front. Psychiatry, 2011, 2, 24.
[http://dx.doi.org/10.3389/fpsyt.2011.00024] [PMID: 21629841]
[82]
Veenema, A.H.; Bredewold, R.; Neumann, I.D. Opposite effects of maternal separation on intermale and maternal aggression in C57BL/6 mice: Link to hypothalamic vasopressin and oxytocin immunore-activity. Psychoneuroendocrinology, 2007, 32(5), 437-450.
[http://dx.doi.org/10.1016/j.psyneuen.2007.02.008] [PMID: 17433558]
[83]
Veenema, A.H.; Blume, A.; Niederle, D.; Buwalda, B.; Neumann, I.D. Effects of early life stress on adult male aggression and hypothalamic vasopressin and serotonin. Eur. J. Neurosci., 2006, 24(6), 1711-1720.
[http://dx.doi.org/10.1111/j.1460-9568.2006.05045.x] [PMID: 17004935]
[84]
Boccia, M.L.; Pedersen, C.A. Brief vs. long maternal separations in infancy: Contrasting relationships with adult maternal behavior and lactation levels of aggression and anxiety. Psychoneuroendocrinology, 2001, 26(7), 657-672.
[http://dx.doi.org/10.1016/S0306-4530(01)00019-1] [PMID: 11500248]
[85]
Ming, G.; Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci., 2005, 28(1), 223-250.
[http://dx.doi.org/10.1146/annurev.neuro.28.051804.101459] [PMID: 16022595]
[86]
Voss, P.; Thomas, M.E.; Cisneros-Franco, J.M.; de Villers-Sidani, É. Dynamic brains and the changing rules of neuroplasticity: Implications for learning and recovery. Front. Psychol., 2017, 8, 1657.
[http://dx.doi.org/10.3389/fpsyg.2017.01657] [PMID: 29085312]
[87]
Duffau, H. Brain plasticity and reorganization before, during, and after glioma resection. In: Glioblastoma; Elsevier: Amsterdam, 2016; pp. 225-236.
[88]
Sagi, Y.; Tavor, I.; Hofstetter, S.; Tzur-Moryosef, S.; Blumenfeld-Katzir, T.; Assaf, Y. Learning in the fast lane: New insights into neuroplasticity. Neuron, 2012, 73(6), 1195-1203.
[http://dx.doi.org/10.1016/j.neuron.2012.01.025] [PMID: 22445346]
[89]
Leuner, B.; Caponiti, J.M.; Gould, E. Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus, 2012, 22(4), 861-868.
[http://dx.doi.org/10.1002/hipo.20947] [PMID: 21692136]
[90]
Opendak, M.; Offit, L.; Monari, P.; Schoenfeld, T.J.; Sonti, A.N.; Cameron, H.A.; Gould, E. Lasting adaptations in social behavior produced by social disruption and inhibition of adult neurogenesis. J. Neurosci., 2016, 36(26), 7027-7038.
[http://dx.doi.org/10.1523/JNEUROSCI.4435-15.2016] [PMID: 27358459]
[91]
Ji, H.; Su, W.; Zhou, R.; Feng, J.; Lin, Y.; Zhang, Y.; Wang, X.; Chen, X.; Li, J. Intranasal oxytocin administration improves depression-like behaviors in adult rats that experienced neonatal maternal deprivation. Behav. Pharmacol., 2016, 27(8), 689-696.
[http://dx.doi.org/10.1097/FBP.0000000000000248] [PMID: 27644094]
[92]
Sánchez-Vidaña, D.I.; Chan, N.M.J.; Chan, A.H.L.; Hui, K.K.Y.; Lee, S.; Chan, H.Y.; Law, Y.S.; Sze, M.Y.; Tsui, W.C.S.; Fung, T.K.H.; Lau, B.W.M.; Lai, C.Y.Y. Repeated treatment with oxytocin promotes hippocampal cell proliferation, dendritic maturation and affects socio-emotional behavior. Neuroscience, 2016, 333, 65-77.
[http://dx.doi.org/10.1016/j.neuroscience.2016.07.005] [PMID: 27418343]
[93]
Raymond, A.D.; Kucherepa, N.N.A.; Fisher, K.R.S.; Halina, W.G.; Partlow, G.D. Neurogenesis of oxytocin-containing neurons in the paraventricular nucleus (PVN) of the female pig in 3 reproductive states: Puberty gilts, adult gilts and lactating sows. Brain Res., 2006, 1102(1), 44-51.
[http://dx.doi.org/10.1016/j.brainres.2006.04.113] [PMID: 16806117]
[94]
Lévy, F.; Batailler, M.; Meurisse, M.; Keller, M.; Cornilleau, F.; Moussu, C.; Poissenot, K.; Migaud, M. Differential effects of oxytocin on olfactory, hippocampal and hypothalamic neurogenesis in adult sheep. Neurosci. Lett., 2019, 713, , 134520..
[http://dx.doi.org/10.1016/j.neulet.2019.134520] [PMID: 31562884]
[95]
Nicoll, R.A. A brief history of long-term potentiation. Neuron, 2017, 93(2), 281-290.
[http://dx.doi.org/10.1016/j.neuron.2016.12.015] [PMID: 28103477]
[96]
Pinar, C.; Fontaine, C.J.; Triviño-Paredes, J.; Lottenberg, C.P.; Gil-Mohapel, J.; Christie, B.R. Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neurosci. Biobehav. Rev., 2017, 80, 394-413.
[http://dx.doi.org/10.1016/j.neubiorev.2017.06.001] [PMID: 28624435]
[97]
Tomizawa, K.; Iga, N.; Lu, Y.F.; Moriwaki, A.; Matsushita, M.; Li, S.T.; Miyamoto, O.; Itano, T.; Matsui, H. Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nat. Neurosci., 2003, 6(4), 384-390.
[http://dx.doi.org/10.1038/nn1023] [PMID: 12598900]
[98]
Pagani, J.H.; Zhao, M.; Cui, Z.; Williams Avram, S.K.; Caruana, D.A.; Dudek, S.M.; Young, W.S. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol. Psychiatry, 2015, 20(4), 490-499.
[http://dx.doi.org/10.1038/mp.2014.47] [PMID: 24863146]
[99]
Lin, Y.T.; Huang, C.C.; Hsu, K.S. Oxytocin promotes long-term potentiation by enhancing epidermal growth factor receptor-mediated local translation of protein kinase Mζ. J. Neurosci., 2012, 32(44), 15476-15488.
[http://dx.doi.org/10.1523/JNEUROSCI.2429-12.2012] [PMID: 23115185]
[100]
Lin, Y.T.; Hsieh, T.Y.; Tsai, T.C.; Chen, C.C.; Huang, C.C.; Hsu, K.S. Conditional deletion of hippocampal CA2/CA3a oxytocin receptors impairs the persistence of long-term social recognition memory in mice. J. Neurosci., 2018, 38(5), 1218-1231.
[http://dx.doi.org/10.1523/JNEUROSCI.1896-17.2017] [PMID: 29279308]
[101]
Diamond, D.M.; Campbell, A.M.; Park, C.R.; Halonen, J.; Zoladz, P.R. The temporal dynamics model of emotional memory processing: A synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. Neural Plast., 2007, 2007, 1-33.
[http://dx.doi.org/10.1155/2007/60803] [PMID: 17641736]
[102]
Penn, A.C.; Zhang, C.L.; Georges, F.; Royer, L.; Breillat, C.; Hosy, E.; Petersen, J.D.; Humeau, Y.; Choquet, D. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature, 2017, 549(7672), 384-388.
[http://dx.doi.org/10.1038/nature23658] [PMID: 28902836]
[103]
Park, S.H.; Kim, Y.J.; Park, J.C.; Han, J.S.; Choi, S.Y. Intranasal Oxytocin following uncontrollable stress blocks impairments in hippocampal plasticity and recognition memory in stressed rats. Int. J. Neuropsychopharmacol., 2017, 20(10), 861-866.
[http://dx.doi.org/10.1093/ijnp/pyx061] [PMID: 28977526]
[104]
Lee, S.Y.; Park, S.H.; Chung, C.; Kim, J.J.; Choi, S.Y.; Han, J.S. Oxytocin protects hippocampal memory and plasticity from uncontrollable stress. Sci. Rep., 2015, 5(1), 18540.
[http://dx.doi.org/10.1038/srep18540] [PMID: 26688325]
[105]
Kelly, A.M.; Hiura, L.C.; Saunders, A.G.; Ophir, A.G. Oxytocin neurons exhibit extensive functional plasticity due to offspring age in mothers and fathers. Integr. Comp. Biol., 2017, 57(3), 603-618.
[http://dx.doi.org/10.1093/icb/icx036] [PMID: 28957529]
[106]
Beranger, G.E.; Pisani, D.F.; Castel, J.; Djedaini, M.; Battaglia, S.; Amiaud, J.; Boukhechba, F.; Ailhaud, G.; Michiels, J.F.; Heymann, D.; Luquet, S.; Amri, E.Z. Oxytocin reverses ovariectomy-induced osteopenia and body fat gain. Endocrinology, 2014, 155(4), 1340-1352.
[http://dx.doi.org/10.1210/en.2013-1688] [PMID: 24506069]
[107]
Elabd, S.; Sabry, I. Two birds with one stone: Possible dual-role of oxytocin in the treatment of diabetes and osteoporosis. Front. Endocrinol. (Lausanne), 2015, 6, 121.
[http://dx.doi.org/10.3389/fendo.2015.00121] [PMID: 26322016]
[108]
Elabd, C.; Cousin, W.; Upadhyayula, P.; Chen, R.Y.; Chooljian, M.S.; Li, J.; Kung, S.; Jiang, K.P.; Conboy, I.M. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat. Commun., 2014, 5(1), 4082.
[http://dx.doi.org/10.1038/ncomms5082] [PMID: 24915299]
[109]
Cho, S.Y.; Kim, A.Y.; Kim, J.; Choi, D.H.; Son, E.D.; Shin, D.W. Oxytocin alleviates cellular senescence through oxytocin receptor‐mediated extracellular signal‐regulated kinase/Nrf2 signalling. Br. J. Dermatol., 2019, 181(6), 1216-1225.
[http://dx.doi.org/10.1111/bjd.17824] [PMID: 30801661]
[110]
Faraji, J.; Karimi, M.; Soltanpour, N.; Moharrerie, A.; Rouhzadeh, Z. lotfi, H.; Hosseini, S.A.; Jafari, S.Y.; Roudaki, S.; Moeeini, R.; Metz, G.A.S. Oxytocin-mediated social enrichment promotes longer telomeres and novelty seeking. eLife, 2018, 7, , e40262..
[http://dx.doi.org/10.7554/eLife.40262] [PMID: 30422111]
[111]
Haston, S.; Pozzi, S.; Carreno, G.; Manshaei, S.; Panousopoulos, L.; Gonzalez-Meljem, J.M.; Apps, J.R.; Virasami, A.; Thavaraj, S.; Gutteridge, A.; Forshew, T.; Marais, R.; Brandner, S.; Jacques, T.S.; Andoniadou, C.L.; Martinez-Barbera, J.P. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary cranio-pharyngioma. Development, 2017, 144(12), 2141-2152.
[PMID: 28506993]
[112]
Boeck, C.; Gumpp, A.M.; Calzia, E.; Radermacher, P.; Waller, C.; Karabatsiakis, A.; Kolassa, I.T. The association between cortisol, oxytocin, and immune cell mitochondrial oxygen consumption in postpartum women with childhood maltreatment. Psychoneuroendocrinology, 2018, 96, 69-77.
[http://dx.doi.org/10.1016/j.psyneuen.2018.05.040] [PMID: 29908404]
[113]
Bordt, E.A.; Smith, C.J.; Demarest, T.G.; Bilbo, S.D.; Kingsbury, M.A. Mitochondria, oxytocin, and vasopressin: Unfolding the inflammatory protein response. Neurotox. Res., 2019, 36(2), 239-256.
[http://dx.doi.org/10.1007/s12640-018-9962-7] [PMID: 30259418]
[114]
Rubinsztein, D.C.; Mariño, G.; Kroemer, G. Autophagy and aging. Cell, 2011, 146(5), 682-695.
[http://dx.doi.org/10.1016/j.cell.2011.07.030] [PMID: 21884931]
[115]
Luo, D.; Jin, B.; Zhai, X.; Li, J.; Liu, C.; Guo, W.; Li, J. Oxytocin promotes hepatic regeneration in elderly mice. iScience, 2021, 24(2), , 102125..
[http://dx.doi.org/10.1016/j.isci.2021.102125] [PMID: 33659883]
[116]
Buemann, B.; Uvnäs-Moberg, K. Oxytocin may have a therapeutical potential against cardiovascular disease. Possible pharmaceutical and behavioral approaches. Med. Hypotheses, 2020, 138, , 109597..
[http://dx.doi.org/10.1016/j.mehy.2020.109597] [PMID: 32032912]
[117]
Li, T.; Wang, P.; Wang, S.C.; Wang, Y.F. Approaches mediating oxytocin regulation of the immune system. Front. Immunol., 2017, 7, 693.
[http://dx.doi.org/10.3389/fimmu.2016.00693] [PMID: 28119696]
[118]
Kingsbury, M.A.; Bilbo, S.D. The inflammatory event of birth: How oxytocin signaling may guide the development of the brain and gastrointestinal system. Front. Neuroendocrinol., 2019, 55, , 100794..
[http://dx.doi.org/10.1016/j.yfrne.2019.100794] [PMID: 31560883]
[119]
Geenen, V. Thymus-dependent T cell tolerance of neuroendocrine functions: Principles, reflections, and implications for tolerogenic/negative self-vaccination. Ann. N. Y. Acad. Sci., 2006, 1088(1), 284-296.
[http://dx.doi.org/10.1196/annals.1366.009] [PMID: 17192574]
[120]
Murgatroyd, C.A.; Hicks-Nelson, A.; Fink, A.; Beamer, G.; Gurel, K.; Elnady, F.; Pittet, F.; Nephew, B.C. Effects of chronic social stress and maternal intranasal oxytocin and vasopressin on offspring Interferon-γ and behavior. Front. Endocrinol. (Lausanne), 2016, 7, 155.
[http://dx.doi.org/10.3389/fendo.2016.00155] [PMID: 28018290]
[121]
Rotondo, F.; Butz, H.; Syro, L.V.; Yousef, G.M.; Di Ieva, A.; Restrepo, L.M.; Quintanar-Stephano, A.; Berczi, I.; Kovacs, K. Arginine vasopressin (AVP): A review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary, 2016, 19(4), 345-355.
[http://dx.doi.org/10.1007/s11102-015-0703-0] [PMID: 26762848]
[122]
Karelina, K.; Stuller, K.A.; Jarrett, B.; Zhang, N.; Wells, J.; Norman, G.J.; DeVries, A.C. Oxytocin mediates social neuroprotection after cerebral ischemia. Stroke, 2011, 42(12), 3606-3611.
[http://dx.doi.org/10.1161/STROKEAHA.111.628008] [PMID: 21960564]
[123]
Yuan, L.; Liu, S.; Bai, X.; Gao, Y.; Liu, G.; Wang, X.; Liu, D.; Li, T.; Hao, A.; Wang, Z. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice. J. Neuroinflammation, 2016, 13(1), 77.
[http://dx.doi.org/10.1186/s12974-016-0541-7] [PMID: 27075756]
[124]
Clodi, M.; Vila, G.; Geyeregger, R.; Riedl, M.; Stulnig, T.M.; Struck, J.; Luger, T.A.; Luger, A. Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. Am. J. Physiol. Endocrinol. Metab., 2008, 295(3), E686-E691.
[http://dx.doi.org/10.1152/ajpendo.90263.2008] [PMID: 18593851]
[125]
Mairesse, J.; Zinni, M.; Pansiot, J.; Hassan-Abdi, R.; Demene, C.; Colella, M.; Charriaut-Marlangue, C.; Rideau Batista Novais, A.; Tanter, M.; Maccari, S.; Gressens, P.; Vaiman, D.; Soussi-Yanicostas, N.; Baud, O. Oxytocin receptor agonist reduces perinatal brain damage by targeting microglia. Glia, 2019, 67(2), 345-359.
[http://dx.doi.org/10.1002/glia.23546] [PMID: 30506969]
[126]
Szeto, A.; Sun-Suslow, N.; Mendez, A.J.; Hernandez, R.I.; Wagner, K.V.; McCabe, P.M. Regulation of the macrophage oxytocin receptor in response to inflammation. Am. J. Physiol. Endocrinol. Metab., 2017, 312(3), E183-E189.
[http://dx.doi.org/10.1152/ajpendo.00346.2016] [PMID: 28049625]
[127]
Wee, C.L.; Nikitchenko, M.; Wang, W.C.; Luks-Morgan, S.J.; Song, E.; Gagnon, J.A.; Randlett, O.; Bianco, I.H.; Lacoste, A.M.B.; Glushenkova, E.; Barrios, J.P.; Schier, A.F.; Kunes, S.; Engert, F.; Douglass, A.D. Zebrafish oxytocin neurons drive nocifensive behavior via brainstem premotor targets. Nat. Neurosci., 2019, 22(9), 1477-1492.
[http://dx.doi.org/10.1038/s41593-019-0452-x] [PMID: 31358991]
[128]
Poisbeau, P.; Grinevich, V.; Charlet, A. Oxytocin signaling in Pain: Cellular, circuit, system, and behavioral levels. Curr. Trop. Behav. Neurosci., 2017, 35, 193-211.
[http://dx.doi.org/10.1007/7854_2017_14] [PMID: 28942595]
[129]
Tsuchiya, S.; Yamabe, M.; Yamaguchi, Y.; Kobayashi, Y.; Konno, T.; Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int. J. Cancer, 1980, 26(2), 171-176.
[http://dx.doi.org/10.1002/ijc.2910260208] [PMID: 6970727]
[130]
Kaneko, Y.; Pappas, C.; Tajiri, N.; Borlongan, C.V. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro. Sci. Rep., 2016, 6(1), 35659.
[http://dx.doi.org/10.1038/srep35659] [PMID: 27767042]
[131]
Lagercrantz, H.; Slotkin, T.A. The “stress” of being born. Sci. Am., 1986, 254(4), 100-107.
[http://dx.doi.org/10.1038/scientificamerican0486-100] [PMID: 3961465]
[132]
Maron, J.L.; Johnson, K.L.; Parkin, C.; Iyer, L.; Davis, J.M.; Bianchi, D.W. Cord blood genomic analysis highlights the role of redox balance. Free Radic. Biol. Med., 2010, 49(6), 992-996.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.026] [PMID: 20566327]
[133]
Tyzio, R.; Cossart, R.; Khalilov, I.; Minlebaev, M.; Hübner, C.A.; Represa, A.; Ben-Ari, Y.; Khazipov, R. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science, 2006, 314(5806), 1788-1792.
[http://dx.doi.org/10.1126/science.1133212] [PMID: 17170309]
[134]
Castillo-Ruiz, A.; Mosley, M.; George, A.J.; Mussaji, L.F.; Fullerton, E.F.; Ruszkowski, E.M.; Jacobs, A.J.; Gewirtz, A.T.; Chassaing, B.; Forger, N.G. The microbiota influences cell death and microglial colonization in the perinatal mouse brain. Brain Behav. Immun., 2018, 67, 218-229.
[http://dx.doi.org/10.1016/j.bbi.2017.08.027] [PMID: 28890156]
[135]
Costello, E.K.; Stagaman, K.; Dethlefsen, L.; Bohannan, B.J.M.; Relman, D.A. The application of ecological theory toward an understanding of the human microbiome. Science, 2012, 336(6086), 1255-1262.
[http://dx.doi.org/10.1126/science.1224203] [PMID: 22674335]
[136]
Khazipov, R.; Tyzio, R.; Benari, Y. Effects of oxytocin on GABA signalling in the foetal brain during delivery. Prog. Brain Res., 2008, 170, 243-257.
[http://dx.doi.org/10.1016/S0079-6123(08)00421-4] [PMID: 18655887]
[137]
Dantzer, R. Neuroimmune interactions: From the brain to the immune system and vice versa. Physiol. Rev., 2018, 98(1), 477-504.
[http://dx.doi.org/10.1152/physrev.00039.2016] [PMID: 29351513]
[138]
Dantzer, R. Can Immunopsychiatry help in understanding the basis of sex differences in major depressive disorder? Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2019, 4(7), 606-607.
[http://dx.doi.org/10.1016/j.bpsc.2019.04.011] [PMID: 31279402]
[139]
McCarthy, M.M.; Nugent, B.M.; Lenz, K.M. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat. Rev. Neurosci., 2017, 18(8), 471-484.
[http://dx.doi.org/10.1038/nrn.2017.61] [PMID: 28638119]
[140]
Bartz, J.A.; Zaki, J.; Ochsner, K.N.; Bolger, N.; Kolevzon, A.; Ludwig, N.; Lydon, J.E. Effects of oxytocin on recollections of maternal care and closeness. Proc. Natl. Acad. Sci. USA, 2010, 107(50), 21371-21375.
[http://dx.doi.org/10.1073/pnas.1012669107] [PMID: 21115834]
[141]
Carter, C.S. The Role of Oxytocin and vasopressin in attachment. Psychodyn. Psychiatry, 2017, 45(4), 499-517.
[http://dx.doi.org/10.1521/pdps.2017.45.4.499] [PMID: 29244625]
[142]
Forsling, M.L. Neurohypophysial hormones and circadian rhythm. Ann. N. Y. Acad. Sci., 1993, 689(1), 382-395.
[http://dx.doi.org/10.1111/j.1749-6632.1993.tb55562.x] [PMID: 8373022]
[143]
Windle, R.J.; Forsling, M.L. Variations in oxytocin secretion during the 4-day oestrous cycle of the rat. J. Endocrinol., 1993, 136(2), 305-311.
[http://dx.doi.org/10.1677/joe.0.1360305] [PMID: 8459196]
[144]
Forsling, M.L.; Peysner, K. Pituitary and plasma vasopressin concentrations and fluid balance throughout the oestrous cycle of the rat. J. Endocrinol., 1988, 117(3), 397-402.
[http://dx.doi.org/10.1677/joe.0.1170397] [PMID: 3392496]
[145]
Kostoglou-Athanassiou, I.; Forsling, M.L. Effect of 5-hydroxytryptamine and pineal metabolites on the secretion of neurohypophysial hormones. Brain Res. Bull., 1998, 46(5), 417-422.
[http://dx.doi.org/10.1016/S0361-9230(98)00027-6] [PMID: 9739003]
[146]
Fuchs, A.R.; Behrens, O.; Liu, H.C. Correlation of nocturnal increase in plasma oxytocin with a decrease in plasma estradiol/progesterone ratio in late pregnancy. Am. J. Obstet. Gynecol., 1992, 167(6), 1559-1563.
[http://dx.doi.org/10.1016/0002-9378(92)91739-W] [PMID: 1471665]
[147]
Windle, R.J.; Forsling, M.L.; Guzek, J.W. Daily rhythms in the hormone content of the neurohypo-physial system and release of oxytocin and vasopressin in the male rat: Effect of constant light. J. Endocrinol., 1992, 133(2), 283-290.
[http://dx.doi.org/10.1677/joe.0.1330283] [PMID: 1613430]
[148]
Forsling, M.L. Diurnal rhythms in neurohypophysial function. Exp. Physiol., 2000, 85(s1), 179s-186s.
[http://dx.doi.org/10.1111/j.1469-445X.2000.tb00022.x] [PMID: 10795921]
[149]
Blevins, J.E.; Baskin, D.G. Translational and therapeutic potential of oxytocin as an anti-obesity strategy: Insights from rodents, nonhuman primates and humans. Physiol Behav, 2015, 152(Pt B), 438-449.
[150]
Blevins, J.E.; Graham, J.L.; Morton, G.J.; Bales, K.L.; Schwartz, M.W.; Baskin, D.G.; Havel, P.J. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, 308(5), R431-R438.
[http://dx.doi.org/10.1152/ajpregu.00441.2014] [PMID: 25540103]
[151]
Deblon, N.; Veyrat-Durebex, C.; Bourgoin, L.; Caillon, A.; Bussier, A.L.; Petrosino, S.; Piscitelli, F.; Legros, J.J.; Geenen, V.; Foti, M.; Wahli, W.; Di Marzo, V.; Rohner-Jeanrenaud, F. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One, 2011, 6(9), , e25565..
[http://dx.doi.org/10.1371/journal.pone.0025565] [PMID: 21980491]
[152]
Kublaoui, B.M.; Gemelli, T.; Tolson, K.P.; Wang, Y.; Zinn, A.R. Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice. Mol. Endocrinol., 2008, 22(7), 1723-1734.
[http://dx.doi.org/10.1210/me.2008-0067] [PMID: 18451093]
[153]
Arletti, R.; Benelli, A.; Bertolini, A. Influence of oxytocin on feeding behavior in the rat. Peptides, 1989, 10(1), 89-93.
[http://dx.doi.org/10.1016/0196-9781(89)90082-X] [PMID: 2748428]
[154]
Lawson, E.A.; Marengi, D.A.; DeSanti, R.L.; Holmes, T.M.; Schoenfeld, D.A.; Tolley, C.J. oxytocin reduces caloric intake in men. Obesity (Silver Spring), 2015, 23(5), 950-956.
[http://dx.doi.org/10.1002/oby.21069] [PMID: 25865294]
[155]
Ott, V.; Finlayson, G.; Lehnert, H.; Heitmann, B.; Heinrichs, M.; Born, J.; Hallschmid, M. Oxytocin reduces reward-driven food intake in humans. Diabetes, 2013, 62(10), 3418-3425.
[http://dx.doi.org/10.2337/db13-0663] [PMID: 23835346]
[156]
Kasahara, Y.; Takayanagi, Y.; Kawada, T.; Itoi, K.; Nishimori, K. Impaired thermoregulatory ability of oxytocin-deficient mice during cold-exposure. Biosci. Biotechnol. Biochem., 2007, 71(12), 3122-3126.
[http://dx.doi.org/10.1271/bbb.70498] [PMID: 18071238]
[157]
Kasahara, Y.; Sato, K.; Takayanagi, Y.; Mizukami, H.; Ozawa, K.; Hidema, S.; So, K.H.; Kawada, T.; Inoue, N.; Ikeda, I.; Roh, S.G.; Itoi, K.; Nishimori, K. Oxytocin receptor in the hypothalamus is sufficient to rescue normal thermoregulatory function in male oxytocin receptor knockout mice. Endocrinology, 2013, 154(11), 4305-4315.
[http://dx.doi.org/10.1210/en.2012-2206] [PMID: 24002032]
[158]
Amico, J.A.; Vollmer, R.R.; Cai, H.; Miedlar, J.A.; Rinaman, L. Enhanced initial and sustained intake of sucrose solution in mice with an oxytocin gene deletion. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, 289(6), R1798-R1806.
[http://dx.doi.org/10.1152/ajpregu.00558.2005] [PMID: 16150836]
[159]
Sclafani, A.; Rinaman, L.; Vollmer, R.R.; Amico, J.A. Oxytocin knockout mice demonstrate enhanced intake of sweet and nonsweet carbohydrate solutions. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(5), R1828-R1833.
[http://dx.doi.org/10.1152/ajpregu.00826.2006] [PMID: 17272659]
[160]
Miedlar, J.A.; Rinaman, L.; Vollmer, R.R.; Amico, J.A. Oxytocin gene deletion mice overconsume palatable sucrose solution but not palatable lipid emulsions. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 293(3), R1063-R1068.
[http://dx.doi.org/10.1152/ajpregu.00228.2007] [PMID: 17596329]
[161]
Mullis, K.; Kay, K.; Williams, D.L. Oxytocin action in the ventral tegmental area affects sucrose intake. Brain Res., 2013, 1513, 85-91.
[http://dx.doi.org/10.1016/j.brainres.2013.03.026] [PMID: 23548602]
[162]
Wu, C.L.; Hung, C.R.; Chang, F.Y.; Pau, F.; Wang, J.L.; Wang, P. Involvement of cholecystokinin receptor in the inhibition of gastric emptying by oxytocin in male rats. Pflugers Arch., 2002, 445(2), 187-193.
[http://dx.doi.org/10.1007/s00424-002-0925-7] [PMID: 12457239]
[163]
Rinaman, L.; Rothe, E.E. GLP-1 receptor signaling contributes to anorexigenic effect of centrally administered oxytocin in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 283(1), R99-R106.
[http://dx.doi.org/10.1152/ajpregu.00008.2002] [PMID: 12069935]
[164]
Wu, C.L.; Doong, M.L.; Wang, P.S. Involvement of cholecystokinin receptor in the inhibition of gastrointestinal motility by oxytocin in ovariectomized rats. Eur. J. Pharmacol., 2008, 580(3), 407-415.
[http://dx.doi.org/10.1016/j.ejphar.2007.11.024] [PMID: 18078924]
[165]
Takayanagi, Y.; Kasahara, Y.; Onaka, T.; Takahashi, N.; Kawada, T.; Nishimori, K. Oxytocin receptor-deficient mice developed late-onset obesity. Neuroreport, 2008, 19(9), 951-955.
[http://dx.doi.org/10.1097/WNR.0b013e3283021ca9] [PMID: 18520999]
[166]
Camerino, C. Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity (Silver Spring), 2009, 17(5), 980-984.
[http://dx.doi.org/10.1038/oby.2009.12] [PMID: 19247273]
[167]
Zhang, H.; Wu, C.; Chen, Q.; Chen, X.; Xu, Z.; Wu, J.; Cai, D. Treatment of obesity and diabetes using oxytocin or analogs in patients and mouse models. PLoS One, 2013, 8(5), , e61477..
[http://dx.doi.org/10.1371/journal.pone.0061477] [PMID: 23700406]
[168]
Maejima, Y.; Iwasaki, Y.; Yamahara, Y.; Kodaira, M.; Sedbazar, U.; Yada, T. Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging (Albany NY), 2011, 3(12), 1169-1177.
[http://dx.doi.org/10.18632/aging.100408] [PMID: 22184277]
[169]
Morton, G.J.; Thatcher, B.S.; Reidelberger, R.D.; Ogimoto, K.; Wolden-Hanson, T.; Baskin, D.G.; Schwartz, M.W.; Blevins, J.E. Peripheral oxytocin suppresses food intake and causes weight loss in diet-induced obese rats. Am. J. Physiol. Endocrinol. Metab., 2012, 302(1), E134-E144.
[http://dx.doi.org/10.1152/ajpendo.00296.2011] [PMID: 22008455]
[170]
Pischon, T.; Boeing, H.; Hoffmann, K.; Bergmann, M.; Schulze, M.B.; Overvad, K.; van der Schouw, Y.T.; Spencer, E.; Moons, K.G.M.; Tjønneland, A.; Halkjaer, J.; Jensen, M.K.; Stegger, J.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Chajes, V.; Linseisen, J.; Kaaks, R.; Trichopoulou, A.; Trichopoulos, D.; Bamia, C.; Sieri, S.; Palli, D.; Tumino, R.; Vineis, P.; Panico, S.; Peeters, P.H.M.; May, A.M.; Bueno-de-Mesquita, H.B.; van Duijnhoven, F.J.B.; Hallmans, G.; Weinehall, L.; Manjer, J.; Hedblad, B.; Lund, E.; Agudo, A.; Arriola, L.; Barricarte, A.; Navarro, C.; Martinez, C.; Quirós, J.R.; Key, T.; Bingham, S.; Khaw, K.T.; Boffetta, P.; Jenab, M.; Ferrari, P.; Riboli, E. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med., 2008, 359(20), 2105-2120.
[http://dx.doi.org/10.1056/NEJMoa0801891] [PMID: 19005195]
[171]
Stock, S.; Granström, L.; Backman, L.; Matthiesen, A.S.; Uvnäs-Moberg, K. Elevated plasma levels of oxytocin in obese subjects before and after gastric banding. Int. J. Obes., 1989, 13(2), 213-222.
[PMID: 2744933]
[172]
Schorr, M.; Marengi, D.A.; Pulumo, R.L.; Yu, E.; Eddy, K.T.; Klibanski, A.; Miller, K.K.; Lawson, E.A. Oxytocin and its relationship to body composition, bone mineral density, and hip geometry across the weight spectrum. J. Clin. Endocrinol. Metab., 2017, 102(8), 2814-2824.
[http://dx.doi.org/10.1210/jc.2016-3963] [PMID: 28586943]
[173]
Szulc, P.; Amri, E.Z.; Varennes, A.; Panaia-Ferrari, P.; Fontas, E.; Goudable, J.; Chapurlat, R.; Breuil, V. High serum oxytocin is associated with metabolic syndrome in older men – The MINOS study. Diabetes Res. Clin. Pract., 2016, 122, 17-27.
[http://dx.doi.org/10.1016/j.diabres.2016.09.022] [PMID: 27764720]
[174]
Lawson, E.A.; Ackerman, K.E.; Slattery, M.; Marengi, D.A.; Clarke, H.; Misra, M. Oxytocin secretion is related to measures of energy homeostasis in young amenorrheic athletes. J. Clin. Endocrinol. Metab., 2014, 99(5), E881-E885.
[http://dx.doi.org/10.1210/jc.2013-4136] [PMID: 24606095]
[175]
Lawson, E.A.; Donoho, D.A.; Blum, J.I.; Meenaghan, E.M.; Misra, M.; Herzog, D.B.; Sluss, P.M.; Miller, K.K.; Klibanski, A. Decreased nocturnal oxytocin levels in anorexia nervosa are associated with low bone mineral density and fat mass. J. Clin. Psychiatry, 2011, 72(11), 1546-1551.
[http://dx.doi.org/10.4088/JCP.10m06617] [PMID: 21903023]
[176]
Lee, M.R.; Scheidweiler, K.B.; Diao, X.X.; Akhlaghi, F.; Cummins, A.; Huestis, M.A.; Leggio, L.; Averbeck, B.B. Oxytocin by intranasal and intravenous routes reaches the cerebrospinal fluid in rhesus macaques: Determination using a novel oxytocin assay. Mol. Psychiatry, 2018, 23(1), 115-122.
[http://dx.doi.org/10.1038/mp.2017.27] [PMID: 28289281]
[177]
Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol., 2009, 62(10), e1-e34.
[http://dx.doi.org/10.1016/j.jclinepi.2009.06.006] [PMID: 19631507]
[178]
Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; Yasamy, M.T.; Fombonne, E. Global prevalence of autism and other pervasive developmental disorders. Autism Res., 2012, 5(3), 160-179.
[http://dx.doi.org/10.1002/aur.239] [PMID: 22495912]
[179]
Posar, A.; Resca, F.; Visconti, P. Autism according to diagnostic and statistical manual of mental disorders. The need for further improvements. J. Pediatr. Neurosci., 2015, 10(2), 146-148.
[http://dx.doi.org/10.4103/1817-1745.159195] [PMID: 26167220]
[180]
APA. Diagnostic and Statistical Manual of Mental Disorders, 5th ed; American Psychiatric Publishing: USA, 2013.
[181]
Dell’Osso, L.; Lorenzi, P.; Carpita, B. Camouflaging: Psychopathological meanings and clinical relevance in autism spectrum conditions. CNS Spectr., 2021, 26(5), 437-439.
[PMID: 32450944]
[182]
Famitafreshi, H.; Karimian, M. Overview of the recent advances in pathophysiology and treatment for autism. CNS Neurol. Disord. Drug Targets, 2018, 17(8), 590-594.
[http://dx.doi.org/10.2174/1871527317666180706141654] [PMID: 29984672]
[183]
Posar, A.; Visconti, P. Autism in 2016: The need for answers. J. Pediatr. (Rio J.), 2017, 93(2), 111-119.
[http://dx.doi.org/10.1016/j.jped.2016.09.002] [PMID: 27837654]
[184]
Muskens, J.B.; Velders, F.P.; Staal, W.G. Medical comorbidities in children and adolescents with autism spectrum disorders and attention deficit hyperactivity disorders: A systematic review. Eur. Child Adolesc. Psychiatry, 2017, 26(9), 1093-1103.
[http://dx.doi.org/10.1007/s00787-017-1020-0] [PMID: 28674760]
[185]
Shaltout, E.; Al-Dewik, N.; Samara, M.; Morsi, H.; Khattab, A. Psychological comorbidities in autism spectrum disorder. Adv. Neurobiol., 2020, 24, 163-191.
[http://dx.doi.org/10.1007/978-3-030-30402-7_6] [PMID: 32006360]
[186]
Wakerley, J.B.; Lincoln, D.W. The milk-ejection reflex of the rat: A 20- to 40-fold acceleration in the firing of paraventricular neurones during oxytocin release. J. Endocrinol., 1973, 57(3), 477-493.
[http://dx.doi.org/10.1677/joe.0.0570477] [PMID: 4577217]
[187]
Carmichael, M.S.; Humbert, R.; Dixen, J.; Palmisano, G.; Greenleaf, W.; Davidson, J.M. Plasma ox-ytocin increases in the human sexual response. J. Clin. Endocrinol. Metab., 1987, 64(1), 27-31.
[http://dx.doi.org/10.1210/jcem-64-1-27] [PMID: 3782434]
[188]
Carter, C.S. Oxytocin and sexual behavior. Neurosci. Biobehav. Rev., 1992, 16(2), 131-144.
[http://dx.doi.org/10.1016/S0149-7634(05)80176-9] [PMID: 1630727]
[189]
Insel, T.R. Toward a neuroanatomy of obsessive-compulsive disorder. Arch. Gen. Psychiatry, 1992, 49(9), 739-744.
[http://dx.doi.org/10.1001/archpsyc.1992.01820090067011] [PMID: 1514879]
[190]
Panksepp, J. Oxytocin effects on emotional processes: Separation distress, social bonding, and relationships to psychiatric disorders. Ann. N. Y. Acad. Sci., 1992, 652(1), 243-252.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb34359.x] [PMID: 1626832]
[191]
Insel, T.R.; O’Brien, D.J.; Leckman, J.F. Oxytocin, vasopressin, and autism: Is there a connection? Biol. Psychiatry, 1999, 45(2), 145-157.
[http://dx.doi.org/10.1016/S0006-3223(98)00142-5] [PMID: 9951561]
[192]
Insel, T.R.; Young, L.J. The neurobiology of attachment. Nat. Rev. Neurosci., 2001, 2(2), 129-136.
[http://dx.doi.org/10.1038/35053579] [PMID: 11252992]
[193]
Porges, S.W. The polyvagal theory: Neurophysiological foundations of emotions, attachment, communication, self-regulation. J. Can. Acad. Child Adolesc. Psychiatry, 2011, 21(4), 313-314.
[194]
Green, L.; Fein, D.; Modahl, C.; Feinstein, C.; Waterhouse, L.; Morris, M. Oxytocin and autistic disorder: Alterations in peptide forms. Biol. Psychiatry, 2001, 50(8), 609-613.
[http://dx.doi.org/10.1016/S0006-3223(01)01139-8] [PMID: 11690596]
[195]
Modahl, C.; Green, L.A.; Fein, D.; Morris, M.; Waterhouse, L.; Feinstein, C.; Levin, H. Plasma oxytocin levels in autistic children. Biol. Psychiatry, 1998, 43(4), 270-277.
[http://dx.doi.org/10.1016/S0006-3223(97)00439-3] [PMID: 9513736]
[196]
Al-Ayadhi, L.Y. Altered oxytocin and vasopressin levels in autistic children in Central Saudi Arabia. Neurosciences (Riyadh), 2005, 10(1), 47-50.
[PMID: 22473184]
[197]
Alabdali, A.; Al-Ayadhi, L.; El-Ansary, A. Association of social and cognitive impairment and biomarkers in autism spectrum disorders. J. Neuroinflammation, 2014, 11(1), 4.
[http://dx.doi.org/10.1186/1742-2094-11-4] [PMID: 24400970]
[198]
Feldman, R.; Golan, O.; Hirschler-Guttenberg, Y.; Ostfeld-Etzion, S.; Zagoory-Sharon, O. Parent–child interaction and oxytocin production in pre-schoolers with autism spectrum disorder. Br. J. Psychiatry, 2014, 205(2), 107-112.
[http://dx.doi.org/10.1192/bjp.bp.113.137513] [PMID: 24855128]
[199]
Husarova, V.M.; Lakatosova, S.; Pivovarciova, A.; Babinska, K.; Bakos, J.; Durdiakova, J.; Kubranska, A.; Ondrejka, I.; Ostatnikova, D. Plasma Oxytocin in children with autism and its correlations with behavioral parameters in children and parents. Psychiatry Investig., 2016, 13(2), 174-183.
[http://dx.doi.org/10.4306/pi.2016.13.2.174] [PMID: 27081377]
[200]
Zhang, H.F.; Dai, Y.C.; Wu, J.; Jia, M.X.; Zhang, J.S.; Shou, X.J.; Han, S.P.; Zhang, R.; Han, J.S. Plasma oxytocin and arginine-vasopressin levels in children with autism spectrum disorder in China: Associations with symptoms. Neurosci. Bull., 2016, 32(5), 423-432.
[http://dx.doi.org/10.1007/s12264-016-0046-5] [PMID: 27342432]
[201]
Husarova, V.; Lakatosova, S.; Pivovarciova, A.; Bakos, J.; Durdiakova, J.; Kubranska, A.; Ostatnikova, D. Brief report: Plasma oxytocin is lower in children with Asperger syndrome and associated with autistic trait attention to detail. Open J. Psychiatr., 2013, 3(4), 399-402.
[http://dx.doi.org/10.4236/ojpsych.2013.34043]
[202]
Taurines, R.; Schwenck, C.; Lyttwin, B.; Schecklmann, M.; Jans, T.; Reefschläger, L.; Geissler, J.; Gerlach, M.; Romanos, M. Oxytocin plasma concentrations in children and adolescents with autism spectrum disorder: Correlation with autistic symptomatology. Atten. Defic. Hyperact. Disord., 2014, 6(3), 231-239.
[http://dx.doi.org/10.1007/s12402-014-0145-y] [PMID: 24989441]
[203]
Parker, K.J.; Garner, J.P.; Libove, R.A.; Hyde, S.A.; Hornbeak, K.B.; Carson, D.S.; Liao, C.P.; Phillips, J.M.; Hallmayer, J.F.; Hardan, A.Y. Plasma oxytocin concentrations and OXTR polymorphisms predict social impairments in children with and without autism spectrum disorder. Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12258-12263.
[http://dx.doi.org/10.1073/pnas.1402236111] [PMID: 25092315]
[204]
Xu, X.J.; Shou, X.J.; Li, J.; Jia, M.X.; Zhang, J.S.; Guo, Y.; Wei, Q.Y.; Zhang, X.T.; Han, S.P.; Zhang, R.; Han, J.S. Mothers of autistic children: Lower plasma levels of oxytocin and Arg-vasopressin and a higher level of testosterone. PLoS One, 2013, 8(9), , e74849..
[http://dx.doi.org/10.1371/journal.pone.0074849] [PMID: 24086383]
[205]
Miller, M.; Bales, K.L.; Taylor, S.L.; Yoon, J.; Hostetler, C.M.; Carter, C.S.; Solomon, M. Oxytocin and vasopressin in children and adolescents with autism spectrum disorders: Sex differences and associations with symptoms. Autism Res., 2013, 6(2), 91-102.
[http://dx.doi.org/10.1002/aur.1270] [PMID: 23413037]
[206]
Althaus, M.; Groen, Y.; A Wijers, A.; Noltes, H.; Tucha, O.; Sweep, F.C.; Calcagnoli, F.; Hoekstra, P.J. Do blood plasma levels of oxytocin moderate the effect of nasally administered oxytocin on social orienting in high-functioning male adults with autism spectrum disorder? Psychopharmacology (Berl.), 2016, 233(14), 2737-2751.
[http://dx.doi.org/10.1007/s00213-016-4339-1] [PMID: 27256356]
[207]
Bakker-Huvenaars, M.J.; Greven, C.U.; Herpers, P.; Wiegers, E.; Jansen, A.; van der Steen, R.; van Herwaarden, A.E.; Baanders, A.N.; Nijhof, K.S.; Scheepers, F.; Rommelse, N.; Glennon, J.C.; Buitelaar, J.K. Saliva oxytocin, cortisol, and testosterone levels in adolescent boys with autism spectrum disorder, oppositional defiant disorder/conduct disorder and typically developing individuals. Eur. Neuropsychopharmacol., 2020, 30, 87-101.
[http://dx.doi.org/10.1016/j.euroneuro.2018.07.097] [PMID: 30201120]
[208]
Fujisawa, T.X.; Tanaka, S.; Saito, D.N.; Kosaka, H.; Tomoda, A. Visual attention for social information and salivary oxytocin levels in preschool children with autism spectrum disorders: An eye-tracking study. Front. Neurosci., 2014, 8, 295.
[http://dx.doi.org/10.3389/fnins.2014.00295] [PMID: 25278829]
[209]
Fujioka, T.; Fujisawa, T.X.; Inohara, K.; Okamoto, Y.; Matsumura, Y.; Tsuchiya, K.J.; Katayama, T.; Munesue, T.; Tomoda, A.; Wada, Y.; Kosaka, H. Attenuated relationship between salivary oxytocin levels and attention to social information in adolescents and adults with autism spectrum disorder: A comparative study. Ann. Gen. Psychiatry, 2020, 19(1), 38.
[http://dx.doi.org/10.1186/s12991-020-00287-2] [PMID: 32518579]
[210]
Tick, B.; Bolton, P.; Happé, F.; Rutter, M.; Rijsdijk, F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry, 2016, 57(5), 585-595.
[http://dx.doi.org/10.1111/jcpp.12499] [PMID: 26709141]
[211]
Gaugler, T.; Klei, L.; Sanders, S.J.; Bodea, C.A.; Goldberg, A.P.; Lee, A.B.; Mahajan, M.; Manaa, D.; Pawitan, Y.; Reichert, J.; Ripke, S.; Sandin, S.; Sklar, P.; Svantesson, O.; Reichenberg, A.; Hultman, C.M.; Devlin, B.; Roeder, K.; Buxbaum, J.D. Most genetic risk for autism resides with common variation. Nat. Genet., 2014, 46(8), 881-885.
[http://dx.doi.org/10.1038/ng.3039] [PMID: 25038753]
[212]
Abrahams, B.S.; Geschwind, D.H. Advances in autism genetics: On the threshold of a new neurobiology. Nat. Rev. Genet., 2008, 9(5), 341-355.
[http://dx.doi.org/10.1038/nrg2346] [PMID: 18414403]
[213]
Buxbaum, J.D. Multiple rare variants in the etiology of autism spectrum disorders. Dialogues Clin. Neurosci., 2009, 11(1), 35-43.
[http://dx.doi.org/10.31887/DCNS.2009.11.1/jdbuxbaum] [PMID: 19432386]
[214]
Kumar, R.A.; Christian, S.L. Genetics of autism spectrum disorders. Curr. Neurol. Neurosci. Rep., 2009, 9(3), 188-197.
[http://dx.doi.org/10.1007/s11910-009-0029-2] [PMID: 19348707]
[215]
Gupta, A.R.; State, M.W. Recent advances in the genetics of autism. Biol. Psychiatry, 2007, 61(4), 429-437.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.020] [PMID: 16996486]
[216]
Freitag, C.M. The genetics of autistic disorders and its clinical relevance: A review of the literature. Mol. Psychiatry, 2007, 12(1), 2-22.
[http://dx.doi.org/10.1038/sj.mp.4001896] [PMID: 17033636]
[217]
Veenstra-VanderWeele, J.; Cook, E.H., Jr. Molecular genetics of autism spectrum disorder. Mol. Psychiatry, 2004, 9(9), 819-832.
[http://dx.doi.org/10.1038/sj.mp.4001505] [PMID: 15197396]
[218]
Wang, K.; Zhang, H.; Ma, D.; Bucan, M.; Glessner, J.T.; Abrahams, B.S.; Salyakina, D.; Imielinski, M.; Bradfield, J.P.; Sleiman, P.M.A.; Kim, C.E.; Hou, C.; Frackelton, E.; Chiavacci, R.; Takahashi, N.; Sakurai, T.; Rappaport, E.; Lajonchere, C.M.; Munson, J.; Estes, A.; Korvatska, O.; Piven, J.; Sonnenblick, L.I.; Alvarez Retuerto, A.I.; Herman, E.I.; Dong, H.; Hutman, T.; Sigman, M.; Ozonoff, S.; Klin, A.; Owley, T.; Sweeney, J.A.; Brune, C.W.; Cantor, R.M.; Bernier, R.; Gilbert, J.R.; Cuccaro, M.L.; McMahon, W.M.; Miller, J.; State, M.W.; Wassink, T.H.; Coon, H.; Levy, S.E.; Schultz, R.T.; Nurnberger, J.I.; Haines, J.L.; Sutcliffe, J.S.; Cook, E.H.; Minshew, N.J.; Buxbaum, J.D.; Dawson, G.; Grant, S.F.A.; Geschwind, D.H.; Pericak-Vance, M.A.; Schellenberg, G.D.; Hakonarson, H. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 2009, 459(7246), 528-533.
[http://dx.doi.org/10.1038/nature07999] [PMID: 19404256]
[219]
Allen-Brady, K.; Miller, J.; Matsunami, N.; Stevens, J.; Block, H.; Farley, M.; Krasny, L.; Pingree, C.; Lainhart, J.; Leppert, M.; McMahon, W.M.; Coon, H. A high-density SNP genome-wide linkage scan in a large autism extended pedigree. Mol. Psychiatry, 2009, 14(6), 590-600.
[http://dx.doi.org/10.1038/mp.2008.14] [PMID: 18283277]
[220]
Ebstein, R.P.; Israel, S.; Lerer, E.; Uzefovsky, F.; Shalev, I.; Gritsenko, I.; Riebold, M.; Salomon, S.; Yirmiya, N. Arginine vasopressin and oxytocin modulate human social behavior. Ann. N. Y. Acad. Sci., 2009, 1167(1), 87-102.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04541.x] [PMID: 19580556]
[221]
Hovey, D.; Zettergren, A.; Jonsson, L.; Melke, J.; Anckarsäter, H.; Lichtenstein, P.; Westberg, L. Associations between oxytocin-related genes and autistic-like traits. Soc. Neurosci., 2014, 9(4), 378-386.
[http://dx.doi.org/10.1080/17470919.2014.897995] [PMID: 24635660]
[222]
Francis, S.M.; Kim, S.J.; Kistner-Griffin, E.; Guter, S.; Cook, E.H.; Jacob, S. ASD and genetic associations with receptors for oxytocin and vasopressin—AVPR1A, AVPR1B, and OXTR. Front. Neurosci., 2016, 10, 516.
[http://dx.doi.org/10.3389/fnins.2016.00516] [PMID: 27920663]
[223]
Yrigollen, C.M.; Han, S.S.; Kochetkova, A.; Babitz, T.; Chang, J.T.; Volkmar, F.R.; Leckman, J.F.; Grigorenko, E.L. Genes controlling affiliative behavior as candidate genes for autism. Biol. Psychiatry, 2008, 63(10), 911-916.
[http://dx.doi.org/10.1016/j.biopsych.2007.11.015] [PMID: 18207134]
[224]
Horvath, S.; Xu, X.; Laird, N.M. The family based association test method: Strategies for studying general genotype–phenotype associations. Eur. J. Hum. Genet., 2001, 9(4), 301-306.
[http://dx.doi.org/10.1038/sj.ejhg.5200625] [PMID: 11313775]
[225]
LoParo, D.; Waldman, I.D. The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Mol. Psychiatry, 2015, 20(5), 640-646.
[http://dx.doi.org/10.1038/mp.2014.77] [PMID: 25092245]
[226]
Wu, S.; Jia, M.; Ruan, Y.; Liu, J.; Guo, Y.; Shuang, M.; Gong, X.; Zhang, Y.; Yang, X.; Zhang, D. Positive association of the oxytocin receptor gene (OXTR) with autism in the Chinese Han population. Biol. Psychiatry, 2005, 58(1), 74-77.
[http://dx.doi.org/10.1016/j.biopsych.2005.03.013] [PMID: 15992526]
[227]
Jacob, S.; Brune, C.W.; Carter, C.S.; Leventhal, B.L.; Lord, C.; Cook, E.H. Jr. Association of the oxytocin receptor gene (OXTR) in Caucasian children and adolescents with autism. Neurosci. Lett., 2007, 417(1), 6-9.
[http://dx.doi.org/10.1016/j.neulet.2007.02.001] [PMID: 17383819]
[228]
Lerer, E.; Levi, S.; Salomon, S.; Darvasi, A.; Yirmiya, N.; Ebstein, R.P. Association between the ox-ytocin receptor (OXTR) gene and autism: Relationship to Vineland Adaptive Behavior Scales and cognition. Mol. Psychiatry, 2008, 13(10), 980-988.
[http://dx.doi.org/10.1038/sj.mp.4002087] [PMID: 17893705]
[229]
Liu, X.; Kawamura, Y.; Shimada, T.; Otowa, T.; Koishi, S.; Sugiyama, T.; Nishida, H.; Hashimoto, O.; Nakagami, R.; Tochigi, M.; Umekage, T.; Kano, Y.; Miyagawa, T.; Kato, N.; Tokunaga, K.; Sasaki, T. Association of the oxytocin receptor (OXTR) gene polymorphisms with autism spectrum disor-der (ASD) in the Japanese population. J. Hum. Genet., 2010, 55(3), 137-141.
[http://dx.doi.org/10.1038/jhg.2009.140] [PMID: 20094064]
[230]
Jack, A.; Connelly, J.J.; Morris, J.P. DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Front. Hum. Neurosci., 2012, 6, 280.
[http://dx.doi.org/10.3389/fnhum.2012.00280] [PMID: 23087634]
[231]
Tost, H.; Kolachana, B.; Hakimi, S.; Lemaitre, H.; Verchinski, B.A.; Mattay, V.S.; Weinberger, D.R.; Meyer-Lindenberg, A. A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proc. Natl. Acad. Sci. USA, 2010, 107(31), 13936-13941.
[http://dx.doi.org/10.1073/pnas.1003296107] [PMID: 20647384]
[232]
Wang, J.; Qin, W.; Liu, B.; Wang, D.; Zhang, Y.; Jiang, T.; Yu, C. Variant in OXTR gene and functional connectivity of the hypothalamus in normal subjects. Neuroimage, 2013, 81, 199-204.
[http://dx.doi.org/10.1016/j.neuroimage.2013.05.029] [PMID: 23684879]
[233]
Wermter, A.K.; Kamp-Becker, I.; Hesse, P.; Schulte-Körne, G.; Strauch, K.; Remschmidt, H. Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2010, 153B(2), 629-639.
[http://dx.doi.org/10.1002/ajmg.b.31032] [PMID: 19777562]
[234]
McDonald, N.M.; Baker, J.K.; Messinger, D.S. Oxytocin and parent–child interaction in the development of empathy among children at risk for autism. Dev. Psychol., 2016, 52(5), 735-745.
[http://dx.doi.org/10.1037/dev0000104] [PMID: 26998571]
[235]
Gregory, S.G.; Connelly, J.J.; Towers, A.J.; Johnson, J.; Biscocho, D.; Markunas, C.A.; Lintas, C.; Abramson, R.K.; Wright, H.H.; Ellis, P.; Langford, C.F.; Worley, G.; Delong, G.R.; Murphy, S.K.; Cuccaro, M.L.; Persico, A.; Pericak-Vance, M.A. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med., 2009, 7(1), 62.
[http://dx.doi.org/10.1186/1741-7015-7-62] [PMID: 19845972]
[236]
Rijlaarsdam, J.; van IJzendoorn, M.H.; Verhulst, F.C.; Jaddoe, V.W.V.; Felix, J.F.; Tiemeier, H.; Bakermans-Kranenburg, M.J. Prenatal stress exposure, oxytocin receptor gene (OXTR) methylation, and child autistic traits: The moderating role of OXTR rs53576 genotype. Autism Res., 2017, 10(3), 430-438.
[http://dx.doi.org/10.1002/aur.1681] [PMID: 27520745]
[237]
Andari, E.; Nishitani, S.; Kaundinya, G.; Caceres, G.A.; Morrier, M.J.; Ousley, O.; Smith, A.K.; Cubells, J.F.; Young, L.J. Epigenetic modification of the oxytocin receptor gene: Implications for autism symptom severity and brain functional connectivity. Neuropsychopharmacology, 2020, 45(7), 1150-1158.
[http://dx.doi.org/10.1038/s41386-020-0610-6] [PMID: 31931508]
[238]
Elagoz Yuksel, M.; Yuceturk, B.; Karatas, O.F.; Ozen, M.; Dogangun, B. The altered promoter methylation of oxytocin receptor gene in autism. J. Neurogenet., 2016, 30(3-4), 280-284.
[http://dx.doi.org/10.1080/01677063.2016.1202951] [PMID: 27309964]
[239]
Mosconi, M.W.; Cody-Hazlett, H.; Poe, M.D.; Gerig, G.; Gimpel-Smith, R.; Piven, J. Longitudinal study of amygdala volume and joint attention in 2- to 4-year-old children with autism. Arch. Gen. Psychiatry, 2009, 66(5), 509-516.
[http://dx.doi.org/10.1001/archgenpsychiatry.2009.19] [PMID: 19414710]
[240]
Nyffeler, J.; Walitza, S.; Bobrowski, E.; Gundelfinger, R.; Grünblatt, E. Association study in siblings and case-controls of serotonin- and oxytocin-related genes with high functioning autism. J. Mol. Psychiatry, 2014, 2(1), 1.
[http://dx.doi.org/10.1186/2049-9256-2-1] [PMID: 25408912]
[241]
Wu, N.; Li, Z.; Su, Y. The association between oxytocin receptor gene polymorphism (OXTR) and trait empathy. J. Affect. Disord., 2012, 138(3), 468-472.
[http://dx.doi.org/10.1016/j.jad.2012.01.009] [PMID: 22357335]
[242]
Thompson, R.J.; Parker, K.J.; Hallmayer, J.F.; Waugh, C.E.; Gotlib, I.H. Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology, 2011, 36(1), 144-147.
[http://dx.doi.org/10.1016/j.psyneuen.2010.07.003] [PMID: 20708845]
[243]
Watanabe, T.; Otowa, T.; Abe, O.; Kuwabara, H.; Aoki, Y.; Natsubori, T.; Takao, H.; Kakiuchi, C.; Kondo, K.; Ikeda, M.; Iwata, N.; Kasai, K.; Sasaki, T.; Yamasue, H. Oxytocin receptor gene variations predict neural and behavioral response to oxytocin in autism. Soc. Cogn. Affect. Neurosci., 2017, 12(3), 496-506.
[http://dx.doi.org/10.1093/scan/nsw150] [PMID: 27798253]
[244]
Tansey, K.E.; Brookes, K.J.; Hill, M.J.; Cochrane, L.E.; Gill, M.; Skuse, D.; Correia, C.; Vicente, A.; Kent, L.; Gallagher, L.; Anney, R.J.L. Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: Genetic and molecular studies. Neurosci. Lett., 2010, 474(3), 163-167.
[http://dx.doi.org/10.1016/j.neulet.2010.03.035] [PMID: 20303388]
[245]
Montag, C.; Sindermann, C.; Melchers, M.; Jung, S.; Luo, R.; Becker, B.; Xie, J.; Xu, W.; Guastella, A.J.; Kendrick, K.M. A functional polymorphism of the OXTR gene is associated with autistic traits in Caucasian and Asian populations. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2017, 174(8), 808-816.
[http://dx.doi.org/10.1002/ajmg.b.32596] [PMID: 29027364]
[246]
Campbell, D.B.; Datta, D.; Jones, S.T.; Batey Lee, E.; Sutcliffe, J.S.; Hammock, E.A.D.; Levitt, P. Association of oxytocin receptor (OXTR) gene variants with multiple phenotype domains of autism spectrum disorder. J. Neurodev. Disord., 2011, 3(2), 101-112.
[http://dx.doi.org/10.1007/s11689-010-9071-2] [PMID: 21484202]
[247]
Di Napoli, A.; Warrier, V.; Baron-Cohen, S.; Chakrabarti, B. Genetic variation in the oxytocin receptor (OXTR) gene is associated with asperger syndrome. Mol. Autism, 2014, 5(1), 48.
[http://dx.doi.org/10.1186/2040-2392-5-48] [PMID: 25264479]
[248]
Ma, W.J.; Hashii, M.; Munesue, T.; Hayashi, K.; Yagi, K.; Yamagishi, M.; Higashida, H.; Yokoyama, S. Non-synonymous single-nucleotide variations of the human oxytocin receptor gene and autism spectrum disorders: A case–control study in a Japanese population and functional analysis. Mol. Autism, 2013, 4(1), 22.
[http://dx.doi.org/10.1186/2040-2392-4-22] [PMID: 23815867]
[249]
Liu, X.; Kawashima, M.; Miyagawa, T.; Otowa, T.; Latt, K.Z.; Thiri, M.; Nishida, H.; Sugiyama, T.; Tsurusaki, Y.; Matsumoto, N.; Mabuchi, A.; Tokunaga, K.; Sasaki, T. Novel rare variations of the oxytocin receptor (OXTR) gene in autism spectrum disorder individuals. Hum. Genome Var., 2015, 2(1), 15024.
[http://dx.doi.org/10.1038/hgv.2015.24] [PMID: 27081536]
[250]
Ebstein, R.P.; Knafo, A.; Mankuta, D.; Chew, S.H.; Lai, P.S. The contributions of oxytocin and vasopressin pathway genes to human behavior. Horm. Behav., 2012, 61(3), 359-379.
[http://dx.doi.org/10.1016/j.yhbeh.2011.12.014] [PMID: 22245314]
[251]
Kranz, T.M.; Kopp, M.; Waltes, R.; Sachse, M.; Duketis, E.; Jarczok, T.A.; Degenhardt, F.; Görgen, K.; Meyer, J.; Freitag, C.M.; Chiocchetti, A.G. Meta-analysis and association of two common polymorphisms of the human oxytocin receptor gene in autism spectrum disorder. Autism Res., 2016, 9(10), 1036-1045.
[http://dx.doi.org/10.1002/aur.1597] [PMID: 26788924]
[252]
Hernandez, L.M.; Krasileva, K.; Green, S.A.; Sherman, L.E.; Ponting, C.; McCarron, R.; Lowe, J.K.; Geschwind, D.H.; Bookheimer, S.Y.; Dapretto, M. Additive effects of oxytocin receptor gene polymorphisms on reward circuitry in youth with autism. Mol. Psychiatry, 2017, 22(8), 1134-1139.
[http://dx.doi.org/10.1038/mp.2016.209] [PMID: 27843152]
[253]
Uzefovsky, F.; Bethlehem, R.A.I.; Shamay-Tsoory, S.; Ruigrok, A.; Holt, R.; Spencer, M.; Chura, L.; Warrier, V.; Chakrabarti, B.; Bullmore, E.; Suckling, J.; Floris, D.; Baron-Cohen, S. The oxytocin receptor gene predicts brain activity during an emotion recognition task in autism. Mol. Autism, 2019, 10(1), 12.
[http://dx.doi.org/10.1186/s13229-019-0258-4] [PMID: 30918622]
[254]
Ocakoğlu, F.T.; Köse, S.; Özbaran, B.; Onay, H. The oxytocin receptor gene polymorphism -rs237902- is associated with the severity of autism spectrum disorder: A pilot study. Asian J. Psychiatr., 2018, 31, 142-149.
[http://dx.doi.org/10.1016/j.ajp.2018.01.002] [PMID: 29428512]
[255]
Mor, M.; Nardone, S.; Sams, D.S.; Elliott, E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol. Autism, 2015, 6(1), 46.
[http://dx.doi.org/10.1186/s13229-015-0040-1] [PMID: 26273428]
[256]
Nakata, M.; Kimura, R.; Funabiki, Y.; Awaya, T.; Murai, T.; Hagiwara, M. MicroRNA profiling in adults with high-functioning autism spectrum disorder. Mol. Brain, 2019, 12(1), 82.
[http://dx.doi.org/10.1186/s13041-019-0508-6] [PMID: 31639010]
[257]
Kumsta, R.; Hummel, E.; Chen, F.S.; Heinrichs, M. Epigenetic regulation of the oxytocin receptor gene: Implications for behavioral neuroscience. Front. Neurosci., 2013, 7, 83.
[http://dx.doi.org/10.3389/fnins.2013.00083] [PMID: 23734094]
[258]
Perkeybile, A.M.; Carter, C.S.; Wroblewski, K.L.; Puglia, M.H.; Kenkel, W.M.; Lillard, T.S.; Karaoli, T.; Gregory, S.G.; Mohammadi, N.; Epstein, L.; Bales, K.L.; Connelly, J.J. Early nurture epigenetically tunes the oxytocin receptor. Psychoneuroendocrinology, 2019, 99, 128-136.
[http://dx.doi.org/10.1016/j.psyneuen.2018.08.037] [PMID: 30227351]
[259]
Hollander, E.; Novotny, S.; Hanratty, M.; Yaffe, R.; DeCaria, C.M.; Aronowitz, B.R.; Mosovich, S. Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology, 2003, 28(1), 193-198.
[http://dx.doi.org/10.1038/sj.npp.1300021] [PMID: 12496956]
[260]
Hollander, E.; Bartz, J.; Chaplin, W.; Phillips, A.; Sumner, J.; Soorya, L.; Anagnostou, E.; Wasser-man, S. Oxytocin increases retention of social cognition in autism. Biol. Psychiatry, 2007, 61(4), 498-503.
[http://dx.doi.org/10.1016/j.biopsych.2006.05.030] [PMID: 16904652]
[261]
Guastella, A.J.; Einfeld, S.L.; Gray, K.M.; Rinehart, N.J.; Tonge, B.J.; Lambert, T.J.; Hickie, I.B. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol. Psychiatry, 2010, 67(7), 692-694.
[http://dx.doi.org/10.1016/j.biopsych.2009.09.020] [PMID: 19897177]
[262]
Kruppa, J.A.; Gossen, A.; Oberwelland Weiß, E.; Kohls, G.; Großheinrich, N.; Cholemkery, H.; Freitag, C.M.; Karges, W.; Wölfle, E.; Sinzig, J.; Fink, G.R.; Herpertz-Dahlmann, B.; Konrad, K.; Schulte-Rüther, M. Neural modulation of social reinforcement learning by intranasal oxytocin in male adults with high-functioning autism spectrum disorder: A randomized trial. Neuropsychopharmacology, 2019, 44(4), 749-756.
[http://dx.doi.org/10.1038/s41386-018-0258-7] [PMID: 30390065]
[263]
Andari, E.; Duhamel, J.R.; Zalla, T.; Herbrecht, E.; Leboyer, M.; Sirigu, A. Promoting social behavior with oxytocin in high-functioning autism spectrum disorders. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4389-4394.
[http://dx.doi.org/10.1073/pnas.0910249107] [PMID: 20160081]
[264]
Auyeung, B.; Lombardo, M.V.; Heinrichs, M.; Chakrabarti, B.; Sule, A.; Deakin, J.B.; Bethlehem, R A I.; Dickens, L.; Mooney, N.; Sipple, J A N.; Thiemann, P.; Baron-Cohen, S. Oxytocin increases eye contact during a real-time, naturalistic social interaction in males with and without autism. Transl. Psychiatry, 2015, 5(2), , e507..
[http://dx.doi.org/10.1038/tp.2014.146] [PMID: 25668435]
[265]
Kanat, M.; Spenthof, I.; Riedel, A.; van Elst, L.T.; Heinrichs, M.; Domes, G. Restoring effects of oxytocin on the attentional preference for faces in autism. Transl. Psychiatry, 2017, 7(4), , e1097..
[http://dx.doi.org/10.1038/tp.2017.67] [PMID: 28418399]
[266]
Domes, G.; Kumbier, E.; Heinrichs, M.; Herpertz, S.C. Oxytocin promotes facial emotion recognition and amygdala reactivity in adults with asperger syndrome. Neuropsychopharmacology, 2014, 39(3), 698-706.
[http://dx.doi.org/10.1038/npp.2013.254] [PMID: 24067301]
[267]
Aoki, Y.; Yahata, N.; Watanabe, T.; Takano, Y.; Kawakubo, Y.; Kuwabara, H.; Iwashiro, N.; Natsubori, T.; Inoue, H.; Suga, M.; Takao, H.; Sasaki, H.; Gonoi, W.; Kunimatsu, A.; Kasai, K.; Yamasue, H. Oxytocin improves behavioural and neural deficits in inferring others’ social emotions in autism. Brain, 2014, 137(11), 3073-3086.
[http://dx.doi.org/10.1093/brain/awu231] [PMID: 25149412]
[268]
Greene, R.K.; Spanos, M.; Alderman, C.; Walsh, E.; Bizzell, J.; Mosner, M.G.; Kinard, J.L.; Stuber, G.D.; Chandrasekhar, T.; Politte, L.C.; Sikich, L.; Dichter, G.S. The effects of intranasal oxytocin on reward circuitry responses in children with autism spectrum disorder. J. Neurodev. Disord., 2018, 10(1), 12.
[http://dx.doi.org/10.1186/s11689-018-9228-y] [PMID: 29587625]
[269]
Quintana, D.S.; Westlye, L.T.; Hope, S.; Nærland, T.; Elvsåshagen, T.; Dørum, E.; Rustan, Ø.; Valstad, M.; Rezvaya, L.; Lishaugen, H.; Stensønes, E.; Yaqub, S.; Smerud, K.T.; Mahmoud, R.A.; Djupesland, P.G.; Andreassen, O.A. Dose-dependent social-cognitive effects of intranasal oxytocin delivered with novel Breath Powered device in adults with autism spectrum disorder: A randomized placebo-controlled double-blind crossover trial. Transl. Psychiatry, 2017, 7(5), , e1136..
[http://dx.doi.org/10.1038/tp.2017.103] [PMID: 28534875]
[270]
Lin, I.F.; Kashino, M.; Ohta, H.; Yamada, T.; Tani, M.; Watanabe, H.; Kanai, C.; Ohno, T.; Takayama, Y.; Iwanami, A.; Kato, N. The effect of intranasal oxytocin versus placebo treatment on the auto-nomic responses to human sounds in autism: A single-blind, randomized, placebo-controlled, crossover design study. Mol. Autism, 2014, 5(1), 20.
[http://dx.doi.org/10.1186/2040-2392-5-20] [PMID: 24576333]
[271]
Strathearn, L.; Kim, S.; Bastian, D.A.; Jung, J.; Iyengar, U.; Martinez, S.; Goin-Kochel, R.P.; Fonagy, P. Visual systemizing preference in children with autism: A randomized controlled trial of intranasal oxytocin. Dev. Psychopathol., 2018, 30(2), 511-521.
[http://dx.doi.org/10.1017/S0954579417001018] [PMID: 28712371]
[272]
Domes, G.; Heinrichs, M.; Kumbier, E.; Grossmann, A.; Hauenstein, K.; Herpertz, S.C. Effects of intranasal oxytocin on the neural basis of face processing in autism spectrum disorder. Biol. Psychiatry, 2013, 74(3), 164-171.
[http://dx.doi.org/10.1016/j.biopsych.2013.02.007] [PMID: 23510581]
[273]
Gordon, I.; Vander Wyk, B.C.; Bennett, R.H.; Cordeaux, C.; Lucas, M.V.; Eilbott, J.A.; Zagoory-Sharon, O.; Leckman, J.F.; Feldman, R.; Pelphrey, K.A. Oxytocin enhances brain function in children with autism. Proc. Natl. Acad. Sci. USA, 2013, 110(52), 20953-20958.
[http://dx.doi.org/10.1073/pnas.1312857110] [PMID: 24297883]
[274]
Watanabe, T.; Abe, O.; Kuwabara, H.; Yahata, N.; Takano, Y.; Iwashiro, N.; Natsubori, T.; Aoki, Y.; Takao, H.; Kawakubo, Y.; Kamio, Y.; Kato, N.; Miyashita, Y.; Kasai, K.; Yamasue, H. Mitigation of sociocommunicational deficits of autism through oxytocin-induced recovery of medial prefrontal activity: A randomized trial. JAMA Psychiatry, 2014, 71(2), 166-175.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.3181] [PMID: 24352377]
[275]
Aoki, Y.; Watanabe, T.; Abe, O.; Kuwabara, H.; Yahata, N.; Takano, Y.; Iwashiro, N.; Natsubori, T.; Takao, H.; Kawakubo, Y.; Kasai, K.; Yamasue, H. Oxytocin’s neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: A randomized controlled trial. Mol. Psychiatry, 2015, 20(4), 447-453.
[http://dx.doi.org/10.1038/mp.2014.74] [PMID: 25070538]
[276]
Andari, E.; Richard, N.; Leboyer, M.; Sirigu, A. Adaptive coding of the value of social cues with oxytocin, an fMRI study in autism spectrum disorder. Cortex, 2016, 76, 79-88.
[http://dx.doi.org/10.1016/j.cortex.2015.12.010] [PMID: 26872344]
[277]
Anagnostou, E.; Soorya, L.; Chaplin, W.; Bartz, J.; Halpern, D.; Wasserman, S.; Wang, A.T.; Pepa, L.; Tanel, N.; Kushki, A.; Hollander, E. Intranasal oxytocin versus placebo in the treatment of adults with autism spectrum disorders: A randomized controlled trial. Mol. Autism, 2012, 3(1), 16.
[http://dx.doi.org/10.1186/2040-2392-3-16] [PMID: 23216716]
[278]
Tachibana, M.; Kagitani-Shimono, K.; Mohri, I.; Yamamoto, T.; Sanefuji, W.; Nakamura, A.; Oishi, M.; Kimura, T.; Onaka, T.; Ozono, K.; Taniike, M. Long-term administration of intranasal oxytocin is a safe and promising therapy for early adolescent boys with autism spectrum disorders. J. Child Adolesc. Psychopharmacol., 2013, 23(2), 123-127.
[http://dx.doi.org/10.1089/cap.2012.0048] [PMID: 23480321]
[279]
Watanabe, T.; Kuroda, M.; Kuwabara, H.; Aoki, Y.; Iwashiro, N.; Tatsunobu, N.; Takao, H.; Nip-pashi, Y.; Kawakubo, Y.; Kunimatsu, A.; Kasai, K.; Yamasue, H. Clinical and neural effects of six-week administration of oxytocin on core symptoms of autism. Brain, 2015, 138(11), 3400-3412.
[http://dx.doi.org/10.1093/brain/awv249] [PMID: 26336909]
[280]
Kosaka, H.; Okamoto, Y.; Munesue, T.; Yamasue, H.; Inohara, K.; Fujioka, T.; Anme, T.; Orisaka, M.; Ishitobi, M.; Jung, M.; Fujisawa, T.X.; Tanaka, S.; Arai, S.; Asano, M.; Saito, D.N.; Sadato, N.; Tomoda, A.; Omori, M.; Sato, M.; Okazawa, H.; Higashida, H.; Wada, Y. Oxytocin efficacy is modulated by dosage and oxytocin receptor genotype in young adults with high-functioning autism: A 24-week randomized clinical trial. Transl. Psychiatry, 2016, 6(8), , e872..
[http://dx.doi.org/10.1038/tp.2016.152] [PMID: 27552585]
[281]
Fukai, M.; Hirosawa, T.; Kikuchi, M.; Ouchi, Y.; Takahashi, T.; Yoshimura, Y.; Miyagishi, Y.; Kosaka, H.; Yokokura, M.; Yoshikawa, E.; Bunai, T.; Minabe, Y. Oxytocin effects on emotional response to others’ faces via serotonin system in autism: A pilot study. Psychiatry Res. Neuroimaging, 2017, 267, 45-50.
[http://dx.doi.org/10.1016/j.pscychresns.2017.06.015] [PMID: 28738293]
[282]
Parker, K.J.; Oztan, O.; Libove, R.A.; Sumiyoshi, R.D.; Jackson, L.P.; Karhson, D.S.; Summers, J.E.; Hinman, K.E.; Motonaga, K.S.; Phillips, J.M.; Carson, D.S.; Garner, J.P.; Hardan, A.Y. Intranasal oxytocin treatment for social deficits and biomarkers of response in children with autism. Proc. Natl. Acad. Sci. USA, 2017, 114(30), 8119-8124.
[http://dx.doi.org/10.1073/pnas.1705521114] [PMID: 28696286]
[283]
Yamasue, H.; Okada, T.; Munesue, T.; Kuroda, M.; Fujioka, T.; Uno, Y.; Matsumoto, K.; Kuwabara, H.; Mori, D.; Okamoto, Y.; Yoshimura, Y.; Kawakubo, Y.; Arioka, Y.; Kojima, M.; Yuhi, T.; Owada, K.; Yassin, W.; Kushima, I.; Benner, S.; Ogawa, N.; Eriguchi, Y.; Kawano, N.; Uemura, Y.; Yamamoto, M.; Kano, Y.; Kasai, K.; Higashida, H.; Ozaki, N.; Kosaka, H. Effect of intranasal oxytocin on the core social symptoms of autism spectrum disorder: A randomized clinical trial. Mol. Psychiatry, 2020, 25(8), 1849-1858.
[http://dx.doi.org/10.1038/s41380-018-0097-2] [PMID: 29955161]
[284]
Yoshimura, Y.; Kikuchi, M.; Hiraishi, H.; Hasegawa, C.; Hirosawa, T.; Takahashi, T.; Munesue, T.; Kosaka, H.; Hiagashida, H.; Minabe, Y. Longitudinal changes in the mismatch field evoked by an empathic voice reflect changes in the empathy quotient in autism spectrum disorder. Psychiatry Res. Neuroimaging, 2018, 281, 117-122.
[http://dx.doi.org/10.1016/j.pscychresns.2018.05.003] [PMID: 30292077]
[285]
Bernaerts, S.; Boets, B.; Bosmans, G.; Steyaert, J.; Alaerts, K. Behavioral effects of multiple-dose oxytocin treatment in autism: A randomized, placebo-controlled trial with long-term follow-up. Mol. Autism, 2020, 11(1), 6.
[http://dx.doi.org/10.1186/s13229-020-0313-1] [PMID: 31969977]
[286]
Dadds, M.R.; MacDonald, E.; Cauchi, A.; Williams, K.; Levy, F.; Brennan, J. Nasal oxytocin for social deficits in childhood autism: A randomized controlled trial. J. Autism Dev. Disord., 2014, 44(3), 521-531.
[http://dx.doi.org/10.1007/s10803-013-1899-3] [PMID: 23888359]
[287]
Guastella, A.J.; Gray, K.M.; Rinehart, N.J.; Alvares, G.A.; Tonge, B.J.; Hickie, I.B.; Keating, C.M.; Cacciotti-Saija, C.; Einfeld, S.L. The effects of a course of intranasal oxytocin on social behaviors in youth diagnosed with autism spectrum disorders: A randomized controlled trial. J. Child Psychol. Psychiatry, 2015, 56(4), 444-452.
[http://dx.doi.org/10.1111/jcpp.12305] [PMID: 25087908]
[288]
Yatawara, C.J.; Einfeld, S.L.; Hickie, I.B.; Davenport, T.A.; Guastella, A.J. The effect of oxytocin nasal spray on social interaction deficits observed in young children with autism: A randomized clinical crossover trial. Mol. Psychiatry, 2016, 21(9), 1225-1231.
[http://dx.doi.org/10.1038/mp.2015.162] [PMID: 26503762]
[289]
Munesue, T.; Nakamura, H.; Kikuchi, M.; Miura, Y.; Takeuchi, N.; Anme, T.; Nanba, E.; Adachi, K.; Tsubouchi, K.; Sai, Y.; Miyamoto, K.; Horike, S.; Yokoyama, S.; Nakatani, H.; Niida, Y.; Kosaka, H.; Minabe, Y.; Higashida, H. Oxytocin for male subjects with autism spectrum disorder and comorbid intellectual disabilities: A randomized pilot study. Front. Psychiatry, 2016, 7, 2.
[http://dx.doi.org/10.3389/fpsyt.2016.00002] [PMID: 26834651]
[290]
Hirosawa, T.; Kikuchi, M.; Ouchi, Y.; Takahashi, T.; Yoshimura, Y.; Kosaka, H.; Furutani, N.; Hiraishi, H.; Fukai, M.; Yokokura, M.; Yoshikawa, E.; Bunai, T.; Minabe, Y. A pilot study of serotonergic modulation after long‐term administration of oxytocin in autism spectrum disorder. Autism Res., 2017, 10(5), 821-828.
[http://dx.doi.org/10.1002/aur.1761] [PMID: 28266806]
[291]
Treasure, J.; Duarte, T.A.; Schmidt, U. Eating disorders. Lancet, 2020, 395(10227), 899-911.
[http://dx.doi.org/10.1016/S0140-6736(20)30059-3] [PMID: 32171414]
[292]
Erzegovesi, S.; Bellodi, L. Eating disorders. CNS Spectr., 2016, 21(4), 304-309.
[http://dx.doi.org/10.1017/S1092852916000304] [PMID: 27319605]
[293]
Tozzi, F.; Thornton, L.M.; Klump, K.L.; Fichter, M.M.; Halmi, K.A.; Kaplan, A.S.; Strober, M.; Woodside, D.B.; Crow, S.; Mitchell, J.; Rotondo, A.; Mauri, M.; Cassano, G.; Keel, P.; Plotnicov, K.H.; Pollice, C.; Lilenfeld, L.R.; Berrettini, W.H.; Bulik, C.M.; Kaye, W.H. Symptom fluctuation in eating disorders: Correlates of diagnostic crossover. Am. J. Psychiatry, 2005, 162(4), 732-740.
[http://dx.doi.org/10.1176/appi.ajp.162.4.732] [PMID: 15800146]
[294]
Castellini, G.; Lo Sauro, C.; Mannucci, E.; Ravaldi, C.; Rotella, C.M.; Faravelli, C.; Ricca, V. Diagnostic crossover and outcome predictors in eating disorders according to DSM-IV and DSM-V proposed criteria: A 6-year follow-up study. Psychosom. Med., 2011, 73(3), 270-279.
[http://dx.doi.org/10.1097/PSY.0b013e31820a1838] [PMID: 21257978]
[295]
Castellini, G.T.F.; Ricca, V. Psychopathology of eating disorders. J. Psychopathol., 2014, 20, 461-470.
[296]
Galmiche, M.; Déchelotte, P.; Lambert, G.; Tavolacci, M.P. Prevalence of eating disorders over the 2000–2018 period: A systematic literature review. Am. J. Clin. Nutr., 2019, 109(5), 1402-1413.
[http://dx.doi.org/10.1093/ajcn/nqy342] [PMID: 31051507]
[297]
Baranowska, B.; Kochanowski, J. Neuroendocrine aspects of anorexia nervosa and bulimia nervosa. Neuroendocrinol. Lett., 2018, 39(3), 172-178.
[PMID: 30431742]
[298]
Hoffman, E.R.; Brownley, K.A.; Hamer, R.M.; Bulik, C.M. Plasma, salivary, and urinary oxytocin in anorexia nervosa: A pilot study. Eat. Behav., 2012, 13(3), 256-259.
[http://dx.doi.org/10.1016/j.eatbeh.2012.02.004] [PMID: 22664406]
[299]
Demitrack, M.A.; Lesem, M.D.; Listwak, S.J.; Brandt, H.A.; Jimerson, D.C.; Gold, P.W. CSF oxytocin in anorexia nervosa and bulimia nervosa: Clinical and pathophysiologic considerations. Am. J. Psychiatry, 1990, 147(7), 882-886.
[http://dx.doi.org/10.1176/ajp.147.7.882] [PMID: 2356873]
[300]
Frank, G.K.; Kaye, W.H.; Altemus, M.; Greeno, C.G. CSF oxytocin and vasopressin levels after recovery from bulimia nervosa and anorexia nervosa, bulimic subtype. Biol. Psychiatry, 2000, 48(4), 315-318.
[http://dx.doi.org/10.1016/S0006-3223(00)00243-2] [PMID: 10960163]
[301]
Monteleone, A.M.; Scognamiglio, P.; Volpe, U.; Di Maso, V.; Monteleone, P. Investigation of oxytocin secretion in anorexia nervosa and bulimia nervosa: Relationships to temperament personality dimensions. Eur. Eat. Disord. Rev., 2016, 24(1), 52-56.
[http://dx.doi.org/10.1002/erv.2391] [PMID: 26259495]
[302]
Schmelkin, C.; Plessow, F.; Thomas, J.J.; Gray, E.K.; Marengi, D.A.; Pulumo, R.; Silva, L.; Miller, K.K.; Hadjikhani, N.; Franko, D.L.; Eddy, K.T.; Lawson, E.A. Low oxytocin levels are related to alexithymia in anorexia nervosa. Int. J. Eat. Disord., 2017, 50(11), 1332-1338.
[http://dx.doi.org/10.1002/eat.22784] [PMID: 29044580]
[303]
Afinogenova, Y.; Schmelkin, C.; Plessow, F.; Thomas, J.J.; Pulumo, R.; Micali, N.; Miller, K.K.; Eddy, K.T.; Lawson, E.A. Low fasting oxytocin levels are associated with psychopathology in anorexia nervosa in partial recovery. J. Clin. Psychiatry, 2016, 77(11), e1483-e1490.
[http://dx.doi.org/10.4088/JCP.15m10217] [PMID: 28076675]
[304]
Lawson, E.A.; Holsen, L.M.; Santin, M.; DeSanti, R.; Meenaghan, E.; Eddy, K.T.; Herzog, D.B.; Goldstein, J.M.; Klibanski, A. Postprandial oxytocin secretion is associated with severity of anxiety and depressive symptoms in anorexia nervosa. J. Clin. Psychiatry, 2013, 74(5), e451-e457.
[http://dx.doi.org/10.4088/JCP.12m08154] [PMID: 23759466]
[305]
Lawson, E.A.; Holsen, L.M.; Santin, M.; Meenaghan, E.; Eddy, K.T.; Becker, A.E.; Herzog, D.B.; Goldstein, J.M.; Klibanski, A. Oxytocin secretion is associated with severity of disordered eating psychopathology and insular cortex hypoactivation in anorexia nervosa. J. Clin. Endocrinol. Metab., 2012, 97(10), E1898-E1908.
[http://dx.doi.org/10.1210/jc.2012-1702] [PMID: 22872688]
[306]
Aulinas, A.; Plessow, F.; Pulumo, R.L.; Asanza, E.; Mancuso, C.J.; Slattery, M.; Tolley, C.; Thomas, J.J.; Eddy, K.T.; Miller, K.K.; Klibanski, A.; Misra, M.; Lawson, E.A. Disrupted oxytocin-appetite signaling in females with anorexia nervosa. J. Clin. Endocrinol. Metab., 2019, 104(10), 4931-4940.
[http://dx.doi.org/10.1210/jc.2019-00926] [PMID: 31251345]
[307]
Chiodera, P.; Volpi, R.; Capretti, L.; Marchesi, C.; d’Amato, L.; De Ferri, A.; Bianconi, L.; Coiro, V. Effect of estrogen or insulin-induced hypoglycemia on plasma oxytocin levels in bulimia and anorexia nervosa. Metabolism, 1991, 40(11), 1226-1230.
[http://dx.doi.org/10.1016/0026-0495(91)90220-Q] [PMID: 1943752]
[308]
Acevedo, S.F.; Valencia, C.; Lutter, M.; McAdams, C.J. Severity of eating disorder symptoms related to oxytocin receptor polymorphisms in anorexia nervosa. Psychiatry Res., 2015, 228(3), 641-648.
[http://dx.doi.org/10.1016/j.psychres.2015.05.040] [PMID: 26106053]
[309]
Micali, N.; Crous-Bou, M.; Treasure, J.; Lawson, E.A. Association between oxytocin receptor geno-type, maternal care, and eating disorder behaviours in a community sample of women. Eur. Eat. Disord. Rev., 2017, 25(1), 19-25.
[http://dx.doi.org/10.1002/erv.2486] [PMID: 27862641]
[310]
Kim, Y.R.; Kim, J.H.; Kim, C.H.; Shin, J.G.; Treasure, J. Association between the oxytocin receptor gene polymorphism (rs53576) and bulimia nervosa. Eur. Eat. Disord. Rev., 2015, 23(3), 171-178.
[http://dx.doi.org/10.1002/erv.2354] [PMID: 25773927]
[311]
Connelly, J.J.; Golding, J.; Gregory, S.P.; Ring, S.M.; Davis, J.M.; Davey Smith, G.; Harris, J.C.; Carter, C.S.; Pembrey, M. Personality, behavior and environmental features associated with OXTR genetic variants in British mothers. PLoS One, 2014, 9(3), , e90465..
[http://dx.doi.org/10.1371/journal.pone.0090465] [PMID: 24621820]
[312]
Boraska, V.; Franklin, C.S.; Floyd, J A B.; Thornton, L.M.; Huckins, L.M.; Southam, L.; Rayner, N.W.; Tachmazidou, I.; Klump, K.L.; Treasure, J.; Lewis, C.M.; Schmidt, U.; Tozzi, F.; Kiezebrink, K.; Hebebrand, J.; Gorwood, P.; Adan, R A H.; Kas, M.J.H.; Favaro, A.; Santonastaso, P.; Fernández-Aranda, F.; Gratacos, M.; Rybakowski, F.; Dmitrzak-Weglarz, M.; Kaprio, J.; Keski-Rahkonen, A.; Raevuori, A.; Van Furth, E.F.; Slof-Op ’t Landt, M.C.T.; Hudson, J.I.; Reichborn-Kjennerud, T.; Knudsen, G.P.S.; Monteleone, P.; Kaplan, A.S.; Karwautz, A.; Hakonarson, H.; Berrettini, W.H.; Guo, Y.; Li, D.; Schork, N.J.; Komaki, G.; Ando, T.; Inoko, H.; Esko, T.; Fischer, K.; Männik, K.; Metspalu, A.; Baker, J.H.; Cone, R.D.; Dackor, J.; DeSocio, J.E.; Hilliard, C.E.; O’Toole, J.K.; Pantel, J.; Szatkiewicz, J.P.; Taico, C.; Zerwas, S.; Trace, S.E.; Davis, O.S.P.; Helder, S.; Bühren, K.; Burghardt, R.; de Zwaan, M.; Egberts, K.; Ehrlich, S.; Herpertz-Dahlmann, B.; Herzog, W.; Imgart, H.; Scherag, A.; Scherag, S.; Zipfel, S.; Boni, C.; Ramoz, N.; Versini, A.; Brandys, M.K.; Danner, U.N.; de Kovel, C.; Hendriks, J.; Koeleman, B.P.C.; Ophoff, R.A.; Strengman, E.; van Elburg, A.A.; Bruson, A.; Clementi, M.; Degortes, D.; Forzan, M.; Tenconi, E.; Docampo, E.; Escaramís, G.; Jiménez-Murcia, S.; Lissowska, J.; Rajewski, A.; Szeszenia-Dabrowska, N.; Slopien, A.; Hauser, J.; Karhunen, L.; Meulenbelt, I.; Slagboom, P.E.; Tortorella, A.; Maj, M.; Dedoussis, G.; Dikeos, D.; Gonidakis, F.; Tziouvas, K.; Tsitsika, A.; Papezova, H.; Slachtova, L.; Martaskova, D.; Kennedy, J.L.; Levitan, R.D.; Yilmaz, Z.; Huemer, J.; Koubek, D.; Merl, E.; Wagner, G.; Lichtenstein, P.; Breen, G.; Cohen-Woods, S.; Farmer, A.; McGuffin, P.; Cichon, S.; Giegling, I.; Herms, S.; Rujescu, D.; Schreiber, S.; Wichmann, H-E.; Dina, C.; Sladek, R.; Gambaro, G.; Soranzo, N.; Julia, A.; Marsal, S.; Rabionet, R.; Gaborieau, V.; Dick, D.M.; Palotie, A.; Ripatti, S.; Widén, E.; Andreassen, O.A.; Espeseth, T.; Lundervold, A.; Reinvang, I.; Steen, V.M.; Le Hellard, S.; Mattingsdal, M.; Ntalla, I.; Bencko, V.; Foretova, L.; Janout, V.; Navratilova, M.; Gallinger, S.; Pinto, D.; Scherer, S.W.; Aschauer, H.; Carlberg, L.; Schosser, A.; Alfredsson, L.; Ding, B.; Klareskog, L.; Padyukov, L.; Courtet, P.; Guillaume, S.; Jaussent, I.; Finan, C.; Kalsi, G.; Roberts, M.; Logan, D.W.; Peltonen, L.; Ritchie, G.R.S.; Barrett, J.C.; Anderson, C.A.; Barrett, J.C.; Floyd, J.A.B.; Franklin, C.S.; McGinnis, R.; Soranzo, N.; Zeggini, E.; Sambrook, J.; Stephens, J.; Ouwehand, W.H.; McArdle, W.L.; Ring, S.M.; Strachan, D.P.; Alexander, G.; Bulik, C.M.; Collier, D.A.; Conlon, P.J.; Dominiczak, A.; Duncanson, A.; Hill, A.; Langford, C.; Lord, G.; Maxwell, A.P.; Morgan, L.; Peltonen, L.; Sandford, R.N.; Sheerin, N.; Soranzo, N.; Vannberg, F.O.; Barrett, J.C.; Blackburn, H.; Chen, W-M.; Edkins, S.; Gillman, M.; Gray, E.; Hunt, S.E.; Langford, C.; Onengut-Gumuscu, S.; Potter, S.; Rich, S.S.; Simpkin, D.; Whittaker, P.; Estivill, X.; Hinney, A.; Sullivan, P.F.; Collier, D.A.; Zeggini, E.; Bulik, C.M. A genome-wide association study of anorexia nervosa. Mol. Psychiatry, 2014, 19(10), 1085-1094.
[http://dx.doi.org/10.1038/mp.2013.187] [PMID: 24514567]
[313]
Kucharska, K.; Kot, E.; Biernacka, K.; Zimowski, J.; Rogoza, R.; Rybakowski, F.; Kostecka, B.; Bednarska-Makaruk, M. Interaction between polymorphisms of the oxytocinergic system genes and emotion perception in inpatients with anorexia nervosa. Eur. Eat. Disord. Rev., 2019, 27(5), , erv.2698..
[http://dx.doi.org/10.1002/erv.2698] [PMID: 31385420]
[314]
Kim, Y.R.; Kim, J.H.; Kim, M.J.; Treasure, J. Differential methylation of the oxytocin receptor gene in patients with anorexia nervosa: A pilot study. PLoS One, 2014, 9(2), , e88673..
[http://dx.doi.org/10.1371/journal.pone.0088673] [PMID: 24523928]
[315]
Thaler, L.; Brassard, S.; Booij, L.; Kahan, E.; McGregor, K.; Labbe, A.; Israel, M.; Steiger, H. Methylation of the OXTR gene in women with anorexia nervosa: Relationship to social behavior. Eur. Eat. Disord. Rev., 2020, 28(1), 79-86.
[http://dx.doi.org/10.1002/erv.2703] [PMID: 31823473]
[316]
Kim, Y.R.; Eom, J.S.; Yang, J.W.; Kang, J.; Treasure, J. The impact of oxytocin on food intake and emotion recognition in patients with eating disorders: A double blind single dose within-subject cross-over design. PLoS One, 2015, 10(9), , e0137514..
[http://dx.doi.org/10.1371/journal.pone.0137514] [PMID: 26402337]
[317]
Kim, Y.R.; Kim, C.H.; Cardi, V.; Eom, J.S.; Seong, Y.; Treasure, J. Intranasal oxytocin attenuates attentional bias for eating and fat shape stimuli in patients with anorexia nervosa. Psychoneuroendocrinology, 2014, 44, 133-142.
[http://dx.doi.org/10.1016/j.psyneuen.2014.02.019] [PMID: 24703429]
[318]
Leppanen, J.; Cardi, V.; Ng, K.W.; Paloyelis, Y.; Stein, D.; Tchanturia, K.; Treasure, J. The effects of intranasal oxytocin on smoothie intake, cortisol and attentional bias in anorexia nervosa. Psychoneuroendocrinology, 2017, 79, 167-174.
[http://dx.doi.org/10.1016/j.psyneuen.2017.01.017] [PMID: 28288443]
[319]
Kim, Y.R.; Eom, J.S.; Leppanen, J.; Leslie, M.; Treasure, J. Effects of intranasal oxytocin on the attentional bias to emotional stimuli in patients with bulimia nervosa. Psychoneuroendocrinology, 2018, 91, 75-78.
[http://dx.doi.org/10.1016/j.psyneuen.2018.02.029] [PMID: 29529522]
[320]
Kim, Y.R.; Kim, C.H.; Park, J.H.; Pyo, J.; Treasure, J. The impact of intranasal oxytocin on attention to social emotional stimuli in patients with anorexia nervosa: A double blind within-subject cross-over experiment. PLoS One, 2014, 9(3), , e90721..
[http://dx.doi.org/10.1371/journal.pone.0090721] [PMID: 24603863]
[321]
Leslie, M.; Leppanen, J.; Paloyelis, Y.; Treasure, J. The influence of oxytocin on eating behaviours and stress in women with bulimia nervosa and binge eating disorder. Mol. Cell. Endocrinol., 2019, 497, , 110354..
[http://dx.doi.org/10.1016/j.mce.2018.12.014] [PMID: 30579958]
[322]
Leslie, M.; Leppanen, J.; Paloyelis, Y.; Nazar, B.P.; Treasure, J. The influence of oxytocin on risk‐taking in the balloon analogue risk task among women with bulimia nervosa and binge eating disorder. J. Neuroendocrinol., 2019, 31(8), , e12771..
[http://dx.doi.org/10.1111/jne.12771] [PMID: 31283053]
[323]
Leppanen, J.; Cardi, V.; Ng, K.W.; Paloyelis, Y.; Stein, D.; Tchanturia, K.; Treasure, J. Effects of intranasal oxytocin on the interpretation and expression of emotions in anorexia nervosa. J. Neuroendocrinol., 2017, 29(3), 12458.
[http://dx.doi.org/10.1111/jne.12458] [PMID: 28140486]
[324]
Russell, J.; Maguire, S.; Hunt, G.E.; Kesby, A.; Suraev, A.; Stuart, J.; Booth, J.; McGregor, I.S. Intranasal oxytocin in the treatment of anorexia nervosa: Randomized controlled trial during re-feeding. Psychoneuroendocrinology, 2018, 87, 83-92.
[http://dx.doi.org/10.1016/j.psyneuen.2017.10.014] [PMID: 29049935]
[325]
Febo, M.; Ferris, C.F. Oxytocin and vasopressin modulation of the neural correlates of motivation and emotion: Results from functional MRI studies in awake rats. Brain Res., 2014, 1580, 8-21.
[http://dx.doi.org/10.1016/j.brainres.2014.01.019] [PMID: 24486356]
[326]
Gordon, I.; Martin, C.; Feldman, R.; Leckman, J.F. Oxytocin and social motivation. Dev. Cogn. Neurosci., 2011, 1(4), 471-493.
[http://dx.doi.org/10.1016/j.dcn.2011.07.007] [PMID: 21984889]
[327]
Gamal-Eltrabily, M.; Manzano-García, A. Role of central oxytocin and dopamine systems in nociception and their possible interactions: Suggested hypotheses. Rev. Neurosci., 2018, 29(4), 377-386.
[http://dx.doi.org/10.1515/revneuro-2017-0068] [PMID: 29222936]
[328]
Leng, G.; Onaka, T.; Caquineau, C.; Sabatier, N.; Tobin, V.; Takayanagi, Y. Oxytocin and appetite. Prog. Brain Res., 2008, 170, 137-151.
[http://dx.doi.org/10.1016/S0079-6123(08)00413-5] [PMID: 18655879]
[329]
Shamay-Tsoory, S.G.; Abu-Akel, A. The social salience hypothesis of Oxytocin. Biol. Psychiatry, 2016, 79(3), 194-202.
[http://dx.doi.org/10.1016/j.biopsych.2015.07.020] [PMID: 26321019]
[330]
Romano, A.; Friuli, M.; Cifani, C.; Gaetani, S. Oxytocin in the neural control of eating: At the cross-road between homeostatic and non-homeostatic signals. Neuropharmacology, 2020, 171, , 108082..
[http://dx.doi.org/10.1016/j.neuropharm.2020.108082] [PMID: 32259527]
[331]
Grinevich, V.; Knobloch-Bollmann, H.S.; Eliava, M.; Busnelli, M.; Chini, B. Assembling the puzzle: Pathways of oxytocin signaling in the brain. Biol. Psychiatry, 2016, 79(3), 155-164.
[http://dx.doi.org/10.1016/j.biopsych.2015.04.013] [PMID: 26001309]
[332]
Ruscio, A.M.; Stein, D.J.; Chiu, W.T.; Kessler, R.C. The epidemiology of obsessive-compulsive disorder in the national comorbidity survey replication. Mol. Psychiatry, 2010, 15(1), 53-63.
[http://dx.doi.org/10.1038/mp.2008.94] [PMID: 18725912]
[333]
Pauls, D.L.; Abramovitch, A.; Rauch, S.L.; Geller, D.A. Obsessive–compulsive disorder: An integrative genetic and neurobiological perspective. Nat. Rev. Neurosci., 2014, 15(6), 410-424.
[http://dx.doi.org/10.1038/nrn3746] [PMID: 24840803]
[334]
Stewart, S.E.; Yu, D.; Scharf, J.M.; Neale, B.M.; Fagerness, J.A.; Mathews, C.A.; Arnold, P.D.; Evans, P.D.; Gamazon, E.R.; Osiecki, L.; McGrath, L.; Haddad, S.; Crane, J.; Hezel, D.; Illman, C.; Mayerfeld, C.; Konkashbaev, A.; Liu, C.; Pluzhnikov, A.; Tikhomirov, A.; Edlund, C.K.; Rauch, S.L.; Moessner, R.; Falkai, P.; Maier, W.; Ruhrmann, S.; Grabe, H-J.; Lennertz, L.; Wagner, M.; Bellodi, L.; Cavallini, M.C.; Richter, M.A.; Cook, E.H., Jr; Kennedy, J.L.; Rosenberg, D.; Stein, D.J.; Hemmings, S.M.J.; Lochner, C.; Azzam, A.; Chavira, D.A.; Fournier, E.; Garrido, H.; Sheppard, B.; Umaña, P.; Murphy, D.L.; Wendland, J.R.; Veenstra-VanderWeele, J.; Denys, D.; Blom, R.; Deforce, D.; Van Nieuwerburgh, F.; Westenberg, H.G.M.; Walitza, S.; Egberts, K.; Renner, T.; Miguel, E.C.; Cappi, C.; Hounie, A.G.; Conceição do Rosário, M.; Sampaio, A.S.; Vallada, H.; Nicolini, H.; Lanzagorta, N.; Camarena, B.; Delorme, R.; Leboyer, M.; Pato, C.N.; Pato, M.T.; Voyiaziakis, E.; Heutink, P.; Cath, D.C.; Posthuma, D.; Smit, J.H.; Samuels, J.; Bienvenu, O.J.; Cullen, B.; Fyer, A.J.; Grados, M.A.; Greenberg, B.D.; McCracken, J.T.; Riddle, M.A.; Wang, Y.; Coric, V.; Leckman, J.F.; Bloch, M.; Pit-tenger, C.; Eapen, V.; Black, D.W.; Ophoff, R.A.; Strengman, E.; Cusi, D.; Turiel, M.; Frau, F.; Macciardi, F.; Gibbs, J.R.; Cookson, M.R.; Singleton, A.; Arepalli, S.; Cookson, M.R.; Dillman, A.; Ferrucci, L.; Gibbs, J.R.; Hernandez, D.G.; Johnson, R.; Longo, D.L.; Nalls, M.A.; O’Brien, R.; Singleton, A.; Traynor, B.; Troncoso, J.; van der Brug, M.; Zielke, H.R.; Zonderman, A.; Hardy, J.; Hardy, J.A.; Ryten, M.; Smith, C.; Trabzuni, D.; Walker, R.; Weale, M.; Crenshaw, A.T.; Parkin, M.A.; Mirel, D.B.; Conti, D.V.; Purcell, S.; Nestadt, G.; Hanna, G.L.; Jenike, M.A.; Knowles, J.A.; Cox, N.; Pauls, D.L. Genome-wide association study of obsessive-compulsive disorder. Mol. Psychiatry, 2013, 18(7), 788-798.
[http://dx.doi.org/10.1038/mp.2012.85] [PMID: 22889921]
[335]
Scantamburlo, G.; Ansseau, M.; Geenen, V.; Legros, J.J. Oxytocin: From milk ejection to maladaptation in stress response and psychiatric disorders. A psychoneuroendocrine perspective. Ann. Endocrinol. (Paris), 2009, 70(6), 449-454.
[http://dx.doi.org/10.1016/j.ando.2009.09.002] [PMID: 19878924]
[336]
Marazziti, D.; Dell’Osso, M. The role of oxytocin in neuropsychiatric disorders. Curr. Med. Chem., 2008, 15(7), 698-704.
[http://dx.doi.org/10.2174/092986708783885291] [PMID: 18336283]
[337]
Amico, J.A.; Mantella, R.C.; Vollmer, R.R.; Li, X. Anxiety and stress responses in female oxytocin deficient mice. J. Neuroendocrinol., 2004, 16(4), 319-324.
[http://dx.doi.org/10.1111/j.0953-8194.2004.01161.x] [PMID: 15089969]
[338]
Marazziti, D.; Baroni, S.; Giannaccini, G.; Betti, L.; Massimetti, G.; Carmassi, C. Catena-Dell’Osso, M. A link between oxytocin and serotonin in humans: Supporting evidence from peripheral markers. Eur. Neuropsychopharmacol., 2012, 22(8), 578-583.
[http://dx.doi.org/10.1016/j.euroneuro.2011.12.010] [PMID: 22297159]
[339]
Kovács, G.L.; Sarnyai, Z.; Szabó, G. Oxytocin and addiction: A review. Psychoneuroendocrinology, 1998, 23(8), 945-962.
[http://dx.doi.org/10.1016/S0306-4530(98)00064-X] [PMID: 9924746]
[340]
Cochran, D.M.; Fallon, D.; Hill, M.; Frazier, J.A. The role of oxytocin in psychiatric disorders: A review of biological and therapeutic research findings. Harv. Rev. Psychiatry, 2013, 21(5), 219-247.
[http://dx.doi.org/10.1097/HRP.0b013e3182a75b7d] [PMID: 24651556]
[341]
Leckman, J.F.; Goodman, W.K.; North, W.G.; Chappell, P.B.; Price, L.H.; Pauls, D.L.; Anderson, G.M.; Riddle, M.A.; McSwiggan-Hardin, M.; McDougle, C.J. Elevated cerebrospinal fluid levels of oxytocin in obsessive-compulsive disorder. Comparison with Tourette’s syndrome and healthy controls. Arch. Gen. Psychiatry, 1994, 51(10), 782-792.
[http://dx.doi.org/10.1001/archpsyc.1994.03950100030003] [PMID: 7524462]
[342]
Swedo, S.E.; Leonard, H.L.; Kruesi, M.J.; Rettew, D.C.; Listwak, S.J.; Berrettini, W.; Stipetic, M.; Hamburger, S.; Gold, P.W.; Potter, W.Z. Cerebrospinal fluid neurochemistry in children and adolescents with obsessive-compulsive disorder. Arch. Gen. Psychiatry, 1992, 49(1), 29-36.
[http://dx.doi.org/10.1001/archpsyc.1992.01820010029004] [PMID: 1370197]
[343]
Marazziti, D.; Baroni, S.; Giannaccini, G. Catena-Dell’‘Osso, M.; Piccinni, A.; Massimetti, G.; Dell’'Osso, L. Plasma oxytocin levels in untreated adult obsessive-compulsive disorder patients. Neuropsychobiology, 2015, 72(2), 74-80.
[http://dx.doi.org/10.1159/000438756] [PMID: 26509891]
[344]
Altemus, M.; Jacobson, K.R.; Debellis, M.; Kling, M.; Pigott, T.; Murphy, D.L.; Gold, P.W. Normal CSF oxytocin and NPY levels in OCD. Biol. Psychiatry, 1999, 45(7), 931-933.
[http://dx.doi.org/10.1016/S0006-3223(98)00263-7] [PMID: 10202583]
[345]
Humble, M.B.; Uvnäs-Moberg, K.; Engström, I.; Bejerot, S. Plasma oxytocin changes and anti-obsessive response during serotonin reuptake inhibitor treatment: A placebo controlled study. BMC Psychiatry, 2013, 13(1), 344.
[http://dx.doi.org/10.1186/1471-244X-13-344] [PMID: 24359174]
[346]
Epperson, C.N.; McDougle, C.J.; Price, L.H. Intranasal oxytocin in obsessive-compulsive disorder. Biol. Psychiatry, 1996, 40(6), 547-549.
[http://dx.doi.org/10.1016/0006-3223(96)00120-5] [PMID: 8879477]
[347]
den Boer, J.A.; Westenberg, H.G.M. Oxytocin in obsessive compulsive disorder. Peptides, 1992, 13(6), 1083-1085.
[http://dx.doi.org/10.1016/0196-9781(92)90010-Z] [PMID: 1494489]
[348]
Cushing, B.; Kramer, K. Mechanisms underlying epigenetic effects of early social experience: The role of neuropeptides and steroids. Neurosci. Biobehav. Rev., 2005, 29(7), 1089-1105.
[http://dx.doi.org/10.1016/j.neubiorev.2005.04.001] [PMID: 16099507]
[349]
Kang, J.I.; Kim, H.W.; Kim, C.H.; Hwang, E.H.; Kim, S.J. Oxytocin receptor gene polymorphisms exert a modulating effect on the onset age in patients with obsessive-compulsive disorder. Psychoneuroendocrinology, 2017, 86, 45-52.
[http://dx.doi.org/10.1016/j.psyneuen.2017.09.011] [PMID: 28915380]
[350]
Grisham, J.R.; Anderson, T.M.; Sachdev, P.S. Genetic and environmental influences on obsessive-compulsive disorder. Eur. Arch. Psychiatry Clin. Neurosci., 2008, 258(2), 107-116.
[http://dx.doi.org/10.1007/s00406-007-0789-0] [PMID: 18297419]
[351]
Cappi, C.; Diniz, J.B.; Requena, G.L.; Lourenço, T.; Lisboa, B.C.G.; Batistuzzo, M.C.; Marques, A.H.; Hoexter, M.Q.; Pereira, C.A.; Miguel, E.C.; Brentani, H. Epigenetic evidence for involvement of the oxytocin receptor gene in obsessive–compulsive disorder. BMC Neurosci., 2016, 17(1), 79.
[http://dx.doi.org/10.1186/s12868-016-0313-4] [PMID: 27903255]
[352]
Vos, T.; Flaxman, A.D.; Naghavi, M.; Lozano, R.; Michaud, C.; Ezzati, M.; Shibuya, K.; Salomon, J.A.; Abdalla, S.; Aboyans, V.; Abraham, J.; Ackerman, I.; Aggarwal, R.; Ahn, S.Y.; Ali, M.K.; AlMazroa, M.A.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Bahalim, A.N.; Barker-Collo, S.; Barrero, L.H.; Bartels, D.H.; Basáñez, M-G.; Baxter, A.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bernabé, E.; Bhalla, K.; Bhandari, B.; Bikbov, B.; Abdulhak, A.B.; Birbeck, G.; Black, J.A.; Blencowe, H.; Blore, J.D.; Blyth, F.; Bolliger, I.; Bonaventure, A.; Boufous, S.; Bourne, R.; Boussinesq, M.; Braithwaite, T.; Brayne, C.; Bridgett, L.; Brooker, S.; Brooks, P.; Brugha, T.S.; Bryan-Hancock, C.; Bucello, C.; Buchbinder, R.; Buckle, G.; Budke, C.M.; Burch, M.; Burney, P.; Burstein, R.; Calabria, B.; Campbell, B.; Canter, C.E.; Carabin, H.; Carapetis, J.; Carmona, L.; Cella, C.; Charlson, F.; Chen, H.; Cheng, A.T-A.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahiya, M.; Dahodwala, N.; Damsere-Derry, J.; Danaei, G.; Davis, A.; De Leo, D.; Degenhardt, L.; Dellavalle, R.; Delossantos, A.; Denenberg, J.; Derrett, S.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dherani, M.; Diaz-Torne, C.; Dolk, H.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Edmond, K.; Elbaz, A.; Ali, S.E.; Erskine, H.; Erwin, P.J.; Espindola, P.; Ewoigbokhan, S.E.; Farzadfar, F.; Feigin, V.; Felson, D.T.; Ferrari, A.; Ferri, C.P.; Fèvre, E.M.; Finucane, M.M.; Flaxman, S.; Flood, L.; Foreman, K.; Forouzanfar, M.H.; Fowkes, F.G.R.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabbe, B.J.; Gabriel, S.E.; Gakidou, E.; Ganatra, H.A.; Garcia, B.; Gaspari, F.; Gillum, R.F.; Gmel, G.; Gosselin, R.; Grainger, R.; Groeger, J.; Guillemin, F.; Gunnell, D.; Gupta, R.; Haagsma, J.; Hagan, H.; Halasa, Y.A.; Hall, W.; Haring, D.; Haro, J.M.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Higashi, H.; Hill, C.; Hoen, B.; Hoffman, H.; Hotez, P.J.; Hoy, D.; Huang, J.J.; Ibeanusi, S.E.; Jacobsen, K.H.; James, S.L.; Jarvis, D.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Jonas, J.B.; Karthikeyan, G.; Kassebaum, N.; Kawakami, N.; Keren, A.; Khoo, J-P.; King, C.H.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lalloo, R.; Laslett, L.L.; Lathlean, T.; Leasher, J.L.; Lee, Y.Y.; Leigh, J.; Lim, S.S.; Limb, E.; Lin, J.K.; Lipnick, M.; Lipshultz, S.E.; Liu, W.; Loane, M.; Ohno, S.L.; Lyons, R.; Ma, J.; Mabweijano, J.; MacIntyre, M.F.; Malekzadeh, R.; Mallinger, L.; Manivannan, S.; Marcenes, W.; March, L.; Margolis, D.J.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGill, N.; McGrath, J.; Medina-Mora, M.E.; Meltzer, M.; Memish, Z.A.; Mensah, G.A.; Merriman, T.R.; Meyer, A-C.; Miglioli, V.; Miller, M.; Miller, T.R.; Mitchell, P.B.; Mocumbi, A.O.; Moffitt, T.E.; Mokdad, A.A.; Monasta, L.; Montico, M.; Moradi-Lakeh, M.; Moran, A.; Morawska, L.; Mori, R.; Murdoch, M.E.; Mwaniki, M.K.; Naidoo, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.V.; Nelson, P.K.; Nelson, R.G.; Nevitt, M.C.; Newton, C.R.; Nolte, S.; Norman, P.; Norman, R.; O’Donnell, M.; O’Hanlon, S.; Olives, C.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Page, A.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Patten, S.B.; Pearce, N.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Pesudovs, K.; Phillips, D.; Phillips, M.R.; Pierce, K.; Pion, S.; Polanczyk, G.V.; Polinder, S.; Pope, C.A., III; Popova, S.; Porrini, E.; Pourmalek, F.; Prince, M.; Pullan, R.L.; Ramaiah, K.D.; Ranganathan, D.; Razavi, H.; Regan, M.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Richardson, K.; Rivara, F.P.; Roberts, T.; Robinson, C.; De Leòn, F.R.; Ronfani, L.; Room, R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Saha, S.; Sampson, U.; Sanchez-Riera, L.; Sanman, E.; Schwebel, D.C.; Scott, J.G.; Segui-Gomez, M.; Shahraz, S.; Shepard, D.S.; Shin, H.; Shivakoti, R.; Silberberg, D.; Singh, D.; Singh, G.M.; Singh, J.A.; Singleton, J.; Sleet, D.A.; Sliwa, K.; Smith, E.; Smith, J.L.; Stapelberg, N.J.C.; Steer, A.; Steiner, T.; Stolk, W.A.; Stovner, L.J.; Sudfeld, C.; Syed, S.; Tamburlini, G.; Tavakkoli, M.; Taylor, H.R.; Taylor, J.A.; Taylor, W.J.; Thomas, B.; Thomson, W.M.; Thurston, G.D.; Tleyjeh, I.M.; Tonelli, M.; Towbin, J.A.; Truelsen, T.; Tsilimbaris, M.K.; Ubeda, C.; Undurraga, E.A.; van der Werf, M.J.; van Os, J.; Vavilala, M.S.; Venketasubramanian, N.; Wang, M.; Wang, W.; Watt, K.; Weatherall, D.J.; Weinstock, M.A.; Weintraub, R.; Weisskopf, M.G.; Weissman, M.M.; White, R.A.; Whiteford, H.; Wiersma, S.T.; Wilkinson, J.D.; Williams, H.C.; Williams, S.R.M.; Witt, E.; Wolfe, F.; Woolf, A.D.; Wulf, S.; Yeh, P-H.; Zaidi, A.K.M.; Zheng, Z-J.; Zonies, D.; Lopez, A.D.; Murray, C.J.L. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the global burden of disease study 2010. Lancet, 2012, 380(9859), 2163-2196.
[http://dx.doi.org/10.1016/S0140-6736(12)61729-2] [PMID: 23245607]
[353]
Olff, M.; Frijling, J.L.; Kubzansky, L.D.; Bradley, B.; Ellenbogen, M.A.; Cardoso, C.; Bartz, J.A.; Yee, J.R.; van Zuiden, M. The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology, 2013, 38(9), 1883-1894.
[http://dx.doi.org/10.1016/j.psyneuen.2013.06.019] [PMID: 23856187]
[354]
Neumann, I.D.; Landgraf, R. Balance of brain oxytocin and vasopressin: Implications for anxiety, depression, and social behaviors. Trends Neurosci., 2012, 35(11), 649-659.
[http://dx.doi.org/10.1016/j.tins.2012.08.004] [PMID: 22974560]
[355]
Bartz, J.A.; Zaki, J.; Bolger, N.; Ochsner, K.N. Social effects of oxytocin in humans: Context and person matter. Trends Cogn. Sci., 2011, 15(7), 301-309.
[http://dx.doi.org/10.1016/j.tics.2011.05.002] [PMID: 21696997]
[356]
Skuse, D.H.; Gallagher, L. Genetic influences on social cognition. Pediatr. Res., 2011, 69(5 Part 2), 85R-91R.
[http://dx.doi.org/10.1203/PDR.0b013e318212f562] [PMID: 21289535]
[357]
Heinrichs, M.; Baumgartner, T.; Kirschbaum, C.; Ehlert, U. Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biol. Psychiatry, 2003, 54(12), 1389-1398.
[http://dx.doi.org/10.1016/S0006-3223(03)00465-7] [PMID: 14675803]
[358]
Winter, J.; Jurek, B. The interplay between oxytocin and the CRF system: Regulation of the stress response. Cell Tissue Res., 2019, 375(1), 85-91.
[http://dx.doi.org/10.1007/s00441-018-2866-2] [PMID: 29911261]
[359]
Domes, G.; Heinrichs, M.; Gläscher, J.; Büchel, C.; Braus, D.F.; Herpertz, S.C. Oxytocin attenuates amygdala responses to emotional faces regardless of valence. Biol. Psychiatry, 2007, 62(10), 1187-1190.
[http://dx.doi.org/10.1016/j.biopsych.2007.03.025] [PMID: 17617382]
[360]
Kirsch, P.; Esslinger, C.; Chen, Q.; Mier, D.; Lis, S.; Siddhanti, S.; Gruppe, H.; Mattay, V.S.; Gallhofer, B.; Meyer-Lindenberg, A. Oxytocin modulates neural circuitry for social cognition and fear in humans. J. Neurosci., 2005, 25(49), 11489-11493.
[http://dx.doi.org/10.1523/JNEUROSCI.3984-05.2005] [PMID: 16339042]
[361]
Sripada, C.S.; Phan, K.L.; Labuschagne, I.; Welsh, R.; Nathan, P.J.; Wood, A.G. Oxytocin enhances resting-state connectivity between amygdala and medial frontal cortex. Int. J. Neuropsychopharmacol., 2013, 16(2), 255-260.
[http://dx.doi.org/10.1017/S1461145712000533] [PMID: 22647521]
[362]
Owen, S.F.; Tuncdemir, S.N.; Bader, P.L.; Tirko, N.N.; Fishell, G.; Tsien, R.W. Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature, 2013, 500(7463), 458-462.
[http://dx.doi.org/10.1038/nature12330] [PMID: 23913275]
[363]
Nagasawa, M.; Okabe, S.; Mogi, K.; Kikusui, T. Oxytocin and mutual communication in mother-infant bonding. Front. Hum. Neurosci., 2012, 6, 31.
[http://dx.doi.org/10.3389/fnhum.2012.00031] [PMID: 22375116]
[364]
Lieberwirth, C.; Wang, Z. Social bonding: Regulation by neuropeptides. Front. Neurosci., 2014, 8, 171.
[http://dx.doi.org/10.3389/fnins.2014.00171] [PMID: 25009457]
[365]
Costa, B.; Pini, S.; Martini, C.; Abelli, M.; Gabelloni, P.; Ciampi, O.; Muti, M.; Gesi, C.; Lari, L.; Cardini, A.; Mucci, A.; Bucci, P.; Lucacchini, A.; Cassano, G.B. Mutation analysis of oxytocin gene in individuals with adult separation anxiety. Psychiatry Res., 2009, 168(2), 87-93.
[http://dx.doi.org/10.1016/j.psychres.2008.04.009] [PMID: 19473710]
[366]
Costa, B.; Pini, S.; Gabelloni, P.; Abelli, M.; Lari, L.; Cardini, A.; Muti, M.; Gesi, C.; Landi, S.; Galderisi, S.; Mucci, A.; Lucacchini, A.; Cassano, G.B.; Martini, C. Oxytocin receptor polymorphisms and adult attachment style in patients with depression. Psychoneuroendocrinology, 2009, 34(10), 1506-1514.
[http://dx.doi.org/10.1016/j.psyneuen.2009.05.006] [PMID: 19515497]
[367]
Costa, B.; Pini, S.; Baldwin, D.S.; Silove, D.; Manicavasagar, V.; Abelli, M.; Coppedè, F.; Martini, C. Oxytocin receptor and G-protein polymorphisms in patients with depression and separation anxiety. J. Affect. Disord., 2017, 218, 365-373.
[http://dx.doi.org/10.1016/j.jad.2017.03.056] [PMID: 28499211]
[368]
Kim, H.S.; Sherman, D.K.; Sasaki, J.Y.; Xu, J.; Chu, T.Q.; Ryu, C.; Suh, E.M.; Graham, K.; Taylor, S.E. Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15717-15721.
[http://dx.doi.org/10.1073/pnas.1010830107] [PMID: 20724662]
[369]
Love, T.M.; Enoch, M.A.; Hodgkinson, C.A.; Peciña, M.; Mickey, B.; Koeppe, R.A.; Stohler, C.S.; Goldman, D.; Zubieta, J.K. Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biol. Psychiatry, 2012, 72(3), 198-206.
[http://dx.doi.org/10.1016/j.biopsych.2012.01.033] [PMID: 22418012]
[370]
Marazziti, D.; Dell’Osso, B.; Baroni, S.; Mungai, F.; Catena, M.; Rucci, P.; Albanese, F.; Giannaccini, G.; Betti, L.; Fabbrini, L.; Italiani, P.; Del Debbio, A.; Lucacchini, A.; Dell’Osso, L. A relationship between oxytocin and anxiety of romantic attachment. Clin. Pract. Epidemiol. Ment. Health, 2006, 2(1), 28.
[http://dx.doi.org/10.1186/1745-0179-2-28] [PMID: 17034623]
[371]
Weisman, O.; Zagoory-Sharon, O.; Schneiderman, I.; Gordon, I.; Feldman, R. Plasma oxytocin distributions in a large cohort of women and men and their gender-specific associations with anxiety. Psychoneuroendocrinology, 2013, 38(5), 694-701.
[http://dx.doi.org/10.1016/j.psyneuen.2012.08.011] [PMID: 22999263]
[372]
Lebowitz, E.R.; Leckman, J.F.; Feldman, R.; Zagoory-Sharon, O.; McDonald, N.; Silverman, W.K. Salivary oxytocin in clinically anxious youth: Associations with separation anxiety and family accommodation. Psychoneuroendocrinology, 2016, 65, 35-43.
[http://dx.doi.org/10.1016/j.psyneuen.2015.12.007] [PMID: 26716876]
[373]
Lebowitz, E.R.; Silverman, W.K.; Martino, A.M.; Zagoory-Sharon, O.; Feldman, R.; Leckman, J.F. Oxytocin response to youth-mother interactions in clinically anxious youth is associated with separation anxiety and dyadic behavior. Depress. Anxiety, 2017, 34(2), 127-136.
[http://dx.doi.org/10.1002/da.22585] [PMID: 28052452]
[374]
Tops, M.; van Peer, J.M.; Korf, J.; Wijers, A.A.; Tucker, D.M. Anxiety, cortisol, and attachment predict plasma oxytocin. Psychophysiology, 2007, 44(3), 444-449.
[http://dx.doi.org/10.1111/j.1469-8986.2007.00510.x] [PMID: 17371496]
[375]
Pierrehumbert, B.; Torrisi, R.; Ansermet, F.; Borghini, A.; Halfon, O. Adult attachment representations predict cortisol and oxytocin responses to stress. Attach. Hum. Dev., 2012, 14(5), 453-476.
[http://dx.doi.org/10.1080/14616734.2012.706394] [PMID: 22856618]
[376]
Eapen, V.; Dadds, M.; Barnett, B.; Kohlhoff, J.; Khan, F.; Radom, N.; Silove, D.M. Separation anxiety, attachment and inter-personal representations: Disentangling the role of oxytocin in the perinatal period. PLoS One, 2014, 9(9), , e107745..
[http://dx.doi.org/10.1371/journal.pone.0107745] [PMID: 25229827]
[377]
Buchheim, A.; Heinrichs, M.; George, C.; Pokorny, D.; Koops, E.; Henningsen, P.; O’Connor, M.F.; Gündel, H. Oxytocin enhances the experience of attachment security. Psychoneuroendocrinology, 2009, 34(9), 1417-1422.
[http://dx.doi.org/10.1016/j.psyneuen.2009.04.002] [PMID: 19457618]
[378]
Guastella, A.J.; Carson, D.S.; Dadds, M.R.; Mitchell, P.B.; Cox, R.E. Does oxytocin influence the early detection of angry and happy faces? Psychoneuroendocrinology, 2009, 34(2), 220-225.
[http://dx.doi.org/10.1016/j.psyneuen.2008.09.001] [PMID: 18848401]
[379]
Abelson, J.L.; Khan, S.; Liberzon, I.; Young, E.A. HPA axis activity in patients with panic disorder: Review and synthesis of four studies. Depress. Anxiety, 2007, 24(1), 66-76.
[http://dx.doi.org/10.1002/da.20220] [PMID: 16845643]
[380]
Le Mellédo, J.M.; Bradwejn, J.; Koszycki, D.; Bellavance, F.; Bichet, D. Arginine-vasopressin and oxytocin response to cholecystokinin-tetrapeptide. Peptides, 2001, 22(8), 1349-1357.
[http://dx.doi.org/10.1016/S0196-9781(01)00462-4] [PMID: 11457531]
[381]
Norman, G.J.; Hawkley, L.; Luhmann, M.; Ball, A.B.; Cole, S.W.; Berntson, G.G.; Cacioppo, J.T. Variation in the oxytocin receptor gene influences neurocardiac reactivity to social stress and HPA function: A population based study. Horm. Behav., 2012, 61(1), 134-139.
[http://dx.doi.org/10.1016/j.yhbeh.2011.11.006] [PMID: 22146101]
[382]
Onodera, M.; Ishitobi, Y.; Tanaka, Y.; Aizawa, S.; Masuda, K.; Inoue, A.; Oshita, H.; Okamoto, K.; Kawashima, C.; Nakanishi, M.; Hirakawa, H.; Ninomiya, T.; Maruyama, Y.; Kanehisa, M.; Higuma, H.; Akiyoshi, J. Genetic association of the oxytocin receptor genes with panic, major depressive disorder, and social anxiety disorder. Psychiatr. Genet., 2015, 25(5), 212.
[http://dx.doi.org/10.1097/YPG.0000000000000096] [PMID: 26110343]
[383]
Garcia, R. Neurobiology of fear and specific phobias. Learn. Mem., 2017, 24(9), 462-471.
[http://dx.doi.org/10.1101/lm.044115.116] [PMID: 28814472]
[384]
Janeček, M.; Dabrowska, J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies—potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res., 2019, 375(1), 143-172.
[http://dx.doi.org/10.1007/s00441-018-2889-8] [PMID: 30054732]
[385]
Molosh, A.I.; Dustrude, E.T.; Lukkes, J.L.; Fitz, S.D.; Caliman, I.F.; Abreu, A.R.R.; Dietrich, A.D.; Truitt, W.A.; Ver Donck, L.; Ceusters, M.; Kent, J.M.; Johnson, P.L.; Shekhar, A. Panic results in unique molecular and network changes in the amygdala that facilitate fear responses. Mol. Psychiatry, 2020, 25(2), 442-460.
[http://dx.doi.org/10.1038/s41380-018-0119-0] [PMID: 30108314]
[386]
Quintana, D.S.; Westlye, L.T.; Alnæs, D.; Rustan, Ø.G.; Kaufmann, T.; Smerud, K.T.; Mahmoud, R.A.; Djupesland, P.G.; Andreassen, O.A. Low dose intranasal oxytocin delivered with breath powered device dampens amygdala response to emotional stimuli: A peripheral effect-controlled within-subjects randomized dose-response fMRI trial. Psychoneuroendocrinology, 2016, 69, 180-188.
[http://dx.doi.org/10.1016/j.psyneuen.2016.04.010] [PMID: 27107209]
[387]
Dunsmoor, J.E.; Paz, R. Fear generalization and anxiety: Behavioral and neural mechanisms. Biol. Psychiatry, 2015, 78(5), 336-343.
[http://dx.doi.org/10.1016/j.biopsych.2015.04.010] [PMID: 25981173]
[388]
Eckstein, M.; Becker, B.; Scheele, D.; Scholz, C.; Preckel, K.; Schlaepfer, T.E.; Grinevich, V.; Kendrick, K.M.; Maier, W.; Hurlemann, R. Oxytocin facilitates the extinction of conditioned fear in humans. Biol. Psychiatry, 2015, 78(3), 194-202.
[http://dx.doi.org/10.1016/j.biopsych.2014.10.015] [PMID: 25542304]
[389]
Hu, J.; Wang, Z.; Feng, X.; Long, C.; Schiller, D. Post-retrieval oxytocin facilitates next day extinction of threat memory in humans. Psychopharmacology (Berl.), 2019, 236(1), 293-301.
[http://dx.doi.org/10.1007/s00213-018-5074-6] [PMID: 30370450]
[390]
Acheson, D.; Feifel, D.; de Wilde, S.; Mckinney, R.; Lohr, J.; Risbrough, V. The effect of intranasal oxytocin treatment on conditioned fear extinction and recall in a healthy human sample. Psychopharmacology (Berl.), 2013, 229(1), 199-208.
[http://dx.doi.org/10.1007/s00213-013-3099-4] [PMID: 23644911]
[391]
Kanat, M.; Heinrichs, M.; Mader, I.; van Elst, L.T.; Domes, G. Oxytocin modulates amygdala reactivity to masked fearful eyes. Neuropsychopharmacology, 2015, 40(11), 2632-2638.
[http://dx.doi.org/10.1038/npp.2015.111] [PMID: 25881796]
[392]
Kanat, M.; Heinrichs, M.; Schwarzwald, R.; Domes, G. Oxytocin attenuates neural reactivity to masked threat cues from the eyes. Neuropsychopharmacology, 2015, 40(2), 287-295.
[http://dx.doi.org/10.1038/npp.2014.183] [PMID: 25047745]
[393]
Acheson, D.T.; Feifel, D.; Kamenski, M.; Mckinney, R.; Risbrough, V.B. Intranasal oxytocin administration prior to exposure therapy for arachnophobia impedes treatment response. Depress. Anxiety, 2015, 32(6), 400-407.
[http://dx.doi.org/10.1002/da.22362] [PMID: 25826649]
[394]
Akiskal, H.S. Toward a definition of generalized anxiety disorder as an anxious temperament type. Acta Psychiatr. Scand., 1998, 98(s393), 66-73.
[http://dx.doi.org/10.1111/j.1600-0447.1998.tb05969.x] [PMID: 9777050]
[395]
Oliveira, D.C.G.; Chagas, M.H.N.; Garcia, L.V.; Crippa, J.A.S.; Zuardi, A.W. Oxytocin interference in the effects induced by inhalation of 7.5% CO2 in healthy volunteers. Hum. Psychopharmacol., 2012, 27(4), 378-385.
[http://dx.doi.org/10.1002/hup.2237] [PMID: 22711428]
[396]
Labuschagne, I.; Phan, K.L.; Wood, A.; Angstadt, M.; Chua, P.; Heinrichs, M.; Stout, J.C.; Nathan, P.J. Medial frontal hyperactivity to sad faces in generalized social anxiety disorder and modulation by oxytocin. Int. J. Neuropsychopharmacol., 2012, 15(7), 883-896.
[http://dx.doi.org/10.1017/S1461145711001489] [PMID: 21996304]
[397]
Carson, D.S.; Berquist, S.W.; Trujillo, T.H.; Garner, J.P.; Hannah, S.L.; Hyde, S.A.; Sumiyoshi, R.D.; Jackson, L.P.; Moss, J.K.; Strehlow, M.C.; Cheshier, S.H.; Partap, S.; Hardan, A.Y.; Parker, K.J. Cerebrospinal fluid and plasma oxytocin concentrations are positively correlated and negatively predict anxiety in children. Mol. Psychiatry, 2015, 20(9), 1085-1090.
[http://dx.doi.org/10.1038/mp.2014.132] [PMID: 25349162]
[398]
Anderberg, U.M.; Uvnäs-Moberg, K. Plasma oxytocin levels in female fibromyalgia syndrome pa-tients. Z. Rheumatol., 2000, 59(6), 373-379.
[http://dx.doi.org/10.1007/s003930070045] [PMID: 11201002]
[399]
Scantamburlo, G.; Hansenne, M.; Fuchs, S.; Pitchot, W.; Maréchal, P.; Pequeux, C.; Ansseau, M.; Legros, J.J. Plasma oxytocin levels and anxiety in patients with major depression. Psychoneuroendocrinology, 2007, 32(4), 407-410.
[http://dx.doi.org/10.1016/j.psyneuen.2007.01.009] [PMID: 17383107]
[400]
Opacka-Juffry, J.; Mohiyeddini, C. Experience of stress in childhood negatively correlates with plasma oxytocin concentration in adult men. Stress, 2012, 15(1), 1-10.
[http://dx.doi.org/10.3109/10253890.2011.560309] [PMID: 21682649]
[401]
Alvares, G.A.; Chen, N.T.M.; Balleine, B.W.; Hickie, I.B.; Guastella, A.J. Oxytocin selectively moderates negative cognitive appraisals in high trait anxious males. Psychoneuroendocrinology, 2012, 37(12), 2022-2031.
[http://dx.doi.org/10.1016/j.psyneuen.2012.04.018] [PMID: 22613033]
[402]
Nissen, E.; Gustavsson, P.; Widström, A-M.; Uvnäs-Moberg, K. Oxytocin, prolactin, milk produc-tion and their relationship with personality traits in women after vaginal delivery or Cesarean section. J. Psychosom. Obstet. Gynaecol., 1998, 19(1), 49-58.
[http://dx.doi.org/10.3109/01674829809044221] [PMID: 9575469]
[403]
Stuebe, A.M.; Grewen, K.; Meltzer-Brody, S. Association between maternal mood and oxytocin response to breastfeeding. J. Womens Health (Larchmt.), 2013, 22(4), 352-361.
[http://dx.doi.org/10.1089/jwh.2012.3768] [PMID: 23586800]
[404]
Goodin, B.R.; Anderson, A.J.B.; Freeman, E.L.; Bulls, H.W.; Robbins, M.T.; Ness, T.J. Intranasal oxytocin administration is associated with enhanced endogenous pain inhibition and reduced negative mood states. Clin. J. Pain, 2015, 31(9), 757-767.
[http://dx.doi.org/10.1097/AJP.0000000000000166] [PMID: 25370147]
[405]
Wang, J.; Qin, W.; Liu, B.; Zhou, Y.; Wang, D.; Zhang, Y.; Jiang, T.; Yu, C. Neural mechanisms of oxytocin receptor gene mediating anxiety-related temperament. Brain Struct. Funct., 2014, 219(5), 1543-1554.
[http://dx.doi.org/10.1007/s00429-013-0584-9] [PMID: 23708061]
[406]
Stankova, T.; Eichhammer, P.; Langguth, B.; Sand, P.G. Sexually dimorphic effects of oxytocin receptor gene (OXTR) variants on harm avoidance. Biol. Sex Differ., 2012, 3(1), 17.
[http://dx.doi.org/10.1186/2042-6410-3-17] [PMID: 22846218]
[407]
Apter-Levy, Y.; Feldman, M.; Vakart, A.; Ebstein, R.P.; Feldman, R. Impact of maternal depression across the first 6 years of life on the child’s mental health, social engagement, and empathy: The moderating role of oxytocin. Am. J. Psychiatry, 2013, 170(10), 1161-1168.
[http://dx.doi.org/10.1176/appi.ajp.2013.12121597] [PMID: 23846912]
[408]
Rodrigues, S.M.; Saslow, L.R.; Garcia, N.; John, O.P.; Keltner, D. Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proc. Natl. Acad. Sci. USA, 2009, 106(50), 21437-21441.
[http://dx.doi.org/10.1073/pnas.0909579106] [PMID: 19934046]
[409]
Saphire-Bernstein, S.; Way, B.M.; Kim, H.S.; Sherman, D.K.; Taylor, S.E. Oxytocin receptor gene (OXTR) is related to psychological resources. Proc. Natl. Acad. Sci. USA, 2011, 108(37), 15118-15122.
[http://dx.doi.org/10.1073/pnas.1113137108] [PMID: 21896752]
[410]
Kumsta, R.; Heinrichs, M. Oxytocin, stress and social behavior: Neurogenetics of the human oxytocin system. Curr. Opin. Neurobiol., 2013, 23(1), 11-16.
[http://dx.doi.org/10.1016/j.conb.2012.09.004] [PMID: 23040540]
[411]
Klahr, A.M.; Klump, K.; Burt, S.A. A constructive replication of the association between the oxytocin receptor genotype and parenting. J. Fam. Psychol., 2015, 29(1), 91-99.
[http://dx.doi.org/10.1037/fam0000034] [PMID: 25419912]
[412]
Bakermans-Kranenburg, M.J.; van IJzendoorn, M.H. Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Soc. Cogn. Affect. Neurosci., 2008, 3(2), 128-134.
[http://dx.doi.org/10.1093/scan/nsn004] [PMID: 19015103]
[413]
Bradley, B.; Davis, T.A.; Wingo, A.P.; Mercer, K.B.; Ressler, K.J. Family environment and adult resilience: Contributions of positive parenting and the oxytocin receptor gene. Eur. J. Psychotraumatol., 2013, 4(1), 21659.
[http://dx.doi.org/10.3402/ejpt.v4i0.21659] [PMID: 24058725]
[414]
Dannlowski, U.; Kugel, H.; Grotegerd, D.; Redlich, R.; Opel, N.; Dohm, K.; Zaremba, D.; Grögler, A.; Schwieren, J.; Suslow, T.; Ohrmann, P.; Bauer, J.; Krug, A.; Kircher, T.; Jansen, A.; Domschke, K.; Hohoff, C.; Zwitserlood, P.; Heinrichs, M.; Arolt, V.; Heindel, W.; Baune, B.T. Disadvantage of social sensitivity: Interaction of oxytocin receptor genotype and child maltreatment on brain structure. Biol. Psychiatry, 2016, 80(5), 398-405.
[http://dx.doi.org/10.1016/j.biopsych.2015.12.010] [PMID: 26858213]
[415]
Hostinar, C.E.; Cicchetti, D.; Rogosch, F.A. Oxytocin receptor gene polymorphism, perceived social support, and psychological symptoms in maltreated adolescents. Dev. Psychopathol., 2014, 26(2), 465-477.
[http://dx.doi.org/10.1017/S0954579414000066] [PMID: 24621832]
[416]
McQuaid, R.J.; McInnis, O.A.; Stead, J.D.; Matheson, K.; Anisman, H. A paradoxical association of an oxytocin receptor gene polymorphism: Early-life adversity and vulnerability to depression. Front. Neurosci., 2013, 7, 128.
[http://dx.doi.org/10.3389/fnins.2013.00128] [PMID: 23898235]
[417]
Notzon, S.; Domschke, K.; Holitschke, K.; Ziegler, C.; Arolt, V.; Pauli, P.; Reif, A.; Deckert, J.; Zwanzger, P. Attachment style and oxytocin receptor gene variation interact in influencing social anxiety. World J. Biol. Psychiatry, 2016, 17(1), 76-83.
[http://dx.doi.org/10.3109/15622975.2015.1091502] [PMID: 26488131]
[418]
Moons, W.G.; Way, B.M.; Taylor, S.E. Oxytocin and vasopressin receptor polymorphisms interact with circulating neuropeptides to predict human emotional reactions to stress. Emotion, 2014, 14(3), 562-572.
[http://dx.doi.org/10.1037/a0035503] [PMID: 24660771]
[419]
van Roekel, E.; Verhagen, M.; Scholte, R.H.J.; Kleinjan, M.; Goossens, L.; Engels, R.C.M.E. The oxytocin receptor gene (OXTR) in relation to state levels of loneliness in adolescence: Evidence for micro-level gene-environment interactions. PLoS One, 2013, 8(11), , e77689..
[http://dx.doi.org/10.1371/journal.pone.0077689] [PMID: 24223720]
[420]
Lucht, M.J.; Barnow, S.; Sonnenfeld, C.; Rosenberger, A.; Grabe, H.J.; Schroeder, W.; Völzke, H.; Freyberger, H.J.; Herrmann, F.H.; Kroemer, H.; Rosskopf, D. Associations between the oxytocin receptor gene (OXTR) and affect, loneliness and intelligence in normal subjects. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(5), 860-866.
[http://dx.doi.org/10.1016/j.pnpbp.2009.04.004] [PMID: 19376182]
[421]
Nelemans, S.A.; van Assche, E.; Bijttebier, P.; Colpin, H.; van Leeuwen, K.; Verschueren, K.; Claes, S.; van den Noortgate, W.; Goossens, L. Parenting interacts with oxytocin polymorphisms to predict adolescent social anxiety symptom development: A novel polygenic approach. J. Abnorm. Child Psychol., 2019, 47(7), 1107-1120.
[http://dx.doi.org/10.1007/s10802-018-0432-8] [PMID: 29696435]
[422]
Olofsdotter, S.; Åslund, C.; Furmark, T.; Comasco, E.; Nilsson, K.W. Differential susceptibility effects of oxytocin gene ( OXT ) polymorphisms and perceived parenting on social anxiety among adolescents. Dev. Psychopathol., 2018, 30(2), 449-459.
[http://dx.doi.org/10.1017/S0954579417000967] [PMID: 28606214]
[423]
Ziegler, C.; Dannlowski, U.; Bräuer, D.; Stevens, S.; Laeger, I.; Wittmann, H.; Kugel, H.; Dobel, C.; Hurlemann, R.; Reif, A.; Lesch, K.P.; Heindel, W.; Kirschbaum, C.; Arolt, V.; Gerlach, A.L.; Hoyer, J.; Deckert, J.; Zwanzger, P.; Domschke, K. Oxytocin receptor gene methylation: Converging multi-level evidence for a role in social anxiety. Neuropsychopharmacology, 2015, 40(6), 1528-1538.
[http://dx.doi.org/10.1038/npp.2015.2] [PMID: 25563749]
[424]
Hoge, E.A.; Pollack, M.H.; Kaufman, R.E.; Zak, P.J.; Simon, N.M. Oxytocin levels in social anxiety disorder. CNS Neurosci. Ther., 2008, 14(3), 165-170.
[http://dx.doi.org/10.1111/j.1755-5949.2008.00051.x] [PMID: 18801109]
[425]
Hoge, E.A.; Lawson, E.A.; Metcalf, C.A.; Keshaviah, A.; Zak, P.J.; Pollack, M.H.; Simon, N.M. Plasma oxytocin immunoreactive products and response to trust in patients with social anxiety disorder. Depress. Anxiety, 2012, 29(11), 924-930.
[http://dx.doi.org/10.1002/da.21973] [PMID: 22807189]
[426]
Oh, K.S.; Kim, E.J.; Ha, J.W.; Woo, H.Y.; Kwon, M.J.; Shin, D.W.; Shin, Y.C.; Lim, S.W. The rela-tionship between plasma oxytocin levels and social anxiety symptoms. Psychiatry Investig., 2018, 15(11), 1079-1086.
[http://dx.doi.org/10.30773/pi.2018.08.31] [PMID: 30301300]
[427]
Tabak, B.A.; McCullough, M.E.; Szeto, A.; Mendez, A.J.; McCabe, P.M. Oxytocin indexes relational distress following interpersonal harms in women. Psychoneuroendocrinology, 2011, 36(1), 115-122.
[http://dx.doi.org/10.1016/j.psyneuen.2010.07.004] [PMID: 20688437]
[428]
Labuschagne, I.; Phan, K.L.; Wood, A.; Angstadt, M.; Chua, P.; Heinrichs, M.; Stout, J.C.; Nathan, P.J. Oxytocin attenuates amygdala reactivity to fear in generalized social anxiety disorder. Neuropsychopharmacology, 2010, 35(12), 2403-2413.
[http://dx.doi.org/10.1038/npp.2010.123] [PMID: 20720535]
[429]
Ditzen, B.; Schaer, M.; Gabriel, B.; Bodenmann, G.; Ehlert, U.; Heinrichs, M. Intranasal oxytocin increases positive communication and reduces cortisol levels during couple conflict. Biol. Psychiatry, 2009, 65(9), 728-731.
[http://dx.doi.org/10.1016/j.biopsych.2008.10.011] [PMID: 19027101]
[430]
Domes, G.; Heinrichs, M.; Michel, A.; Berger, C.; Herpertz, S.C. Oxytocin improves “mind-reading” in humans. Biol. Psychiatry, 2007, 61(6), 731-733.
[http://dx.doi.org/10.1016/j.biopsych.2006.07.015] [PMID: 17137561]
[431]
Kosfeld, M.; Heinrichs, M.; Zak, P.J.; Fischbacher, U.; Fehr, E. Oxytocin increases trust in humans. Nature, 2005, 435(7042), 673-676.
[http://dx.doi.org/10.1038/nature03701] [PMID: 15931222]
[432]
Linnen, A.M.; Ellenbogen, M.A.; Cardoso, C.; Joober, R. Intranasal oxytocin and salivary cortisol concentrations during social rejection in university students. Stress, 2012, 15(4), 393-402.
[http://dx.doi.org/10.3109/10253890.2011.631154] [PMID: 22044077]
[433]
Mikolajczak, M.; Pinon, N.; Lane, A.; de Timary, P.; Luminet, O. Oxytocin not only increases trust when money is at stake, but also when confidential information is in the balance. Biol. Psychol., 2010, 85(1), 182-184.
[http://dx.doi.org/10.1016/j.biopsycho.2010.05.010] [PMID: 20678992]
[434]
Cardoso, C.; Ellenbogen, M.A.; Serravalle, L.; Linnen, A.M. Stress-induced negative mood moderates the relation between oxytocin administration and trust: Evidence for the tend-and-befriend response to stress? Psychoneuroendocrinology, 2013, 38(11), 2800-2804.
[http://dx.doi.org/10.1016/j.psyneuen.2013.05.006] [PMID: 23768973]
[435]
Alvares, G.A.; Hickie, I.B.; Guastella, A.J. Acute effects of intranasal oxytocin on subjective and behavioral responses to social rejection. Exp. Clin. Psychopharmacol., 2010, 18(4), 316-321.
[http://dx.doi.org/10.1037/a0019719] [PMID: 20695687]
[436]
Guastella, A.J.; Howard, A.L.; Dadds, M.R.; Mitchell, P.; Carson, D.S. A randomized controlled trial of intranasal oxytocin as an adjunct to exposure therapy for social anxiety disorder. Psychoneuroendocrinology, 2009, 34(6), 917-923.
[http://dx.doi.org/10.1016/j.psyneuen.2009.01.005] [PMID: 19246160]
[437]
Di Simplicio, M.; Harmer, C.J. Oxytocin and emotion processing. J. Psychopharmacol., 2016, 30(11), 1156-1159.
[http://dx.doi.org/10.1177/0269881116641872] [PMID: 27071915]
[438]
Geng, Y.; Zhao, W.; Zhou, F.; Ma, X.; Yao, S.; Hurlemann, R.; Becker, B.; Kendrick, K.M. Oxytocin enhancement of emotional empathy: Generalization across cultures and effects on amygdala activity. Front. Neurosci., 2018, 12, 512.
[http://dx.doi.org/10.3389/fnins.2018.00512] [PMID: 30108475]
[439]
Clark-Elford, R.; Nathan, P.J.; Auyeung, B.; Mogg, K.; Bradley, B.P.; Sule, A.; Müller, U.; Dudas, R.B.; Sahakian, B.J.; Baron-Cohen, S. Effects of oxytocin on attention to emotional faces in healthy volunteers and highly socially anxious males. Int. J. Neuropsychopharmacol., 2014, 18(2), , pyu012..
[PMID: 25552432]
[440]
Domes, G.; Sibold, M.; Schulze, L.; Lischke, A.; Herpertz, S.C.; Heinrichs, M. Intranasal oxytocin increases covert attention to positive social cues. Psychol. Med., 2013, 43(8), 1747-1753.
[http://dx.doi.org/10.1017/S0033291712002565] [PMID: 23146328]
[441]
Bartz, J.A.; Zaki, J.; Bolger, N.; Hollander, E.; Ludwig, N.N.; Kolevzon, A.; Ochsner, K.N. Oxytocin selectively improves empathic accuracy. Psychol. Sci., 2010, 21(10), 1426-1428.
[http://dx.doi.org/10.1177/0956797610383439] [PMID: 20855907]
[442]
Gamer, M.; Zurowski, B.; Büchel, C. Different amygdala subregions mediate valence-related and attentional effects of oxytocin in humans. Proc. Natl. Acad. Sci. USA, 2010, 107(20), 9400-9405.
[http://dx.doi.org/10.1073/pnas.1000985107] [PMID: 20421469]
[443]
Marsh, A.A.; Yu, H.H.; Pine, D.S.; Blair, R.J.R. Oxytocin improves specific recognition of positive facial expressions. Psychopharmacology (Berl.), 2010, 209(3), 225-232.
[http://dx.doi.org/10.1007/s00213-010-1780-4] [PMID: 20186397]
[444]
Evans, S.; Shergill, S.S.; Averbeck, B.B. Oxytocin decreases aversion to angry faces in an associative learning task. Neuropsychopharmacology, 2010, 35(13), 2502-2509.
[http://dx.doi.org/10.1038/npp.2010.110] [PMID: 20844475]
[445]
Shahrestani, S.; Kemp, A.H.; Guastella, A.J. The impact of a single administration of intranasal oxytocin on the recognition of basic emotions in humans: A meta-analysis. Neuropsychopharmacology, 2013, 38(10), 1929-1936.
[http://dx.doi.org/10.1038/npp.2013.86] [PMID: 23575742]
[446]
Schulze, L.; Lischke, A.; Greif, J.; Herpertz, S.C.; Heinrichs, M.; Domes, G. Oxytocin increases recognition of masked emotional faces. Psychoneuroendocrinology, 2011, 36(9), 1378-1382.
[http://dx.doi.org/10.1016/j.psyneuen.2011.03.011] [PMID: 21477929]
[447]
Rimmele, U.; Hediger, K.; Heinrichs, M.; Klaver, P. Oxytocin makes a face in memory familiar. J. Neurosci., 2009, 29(1), 38-42.
[http://dx.doi.org/10.1523/JNEUROSCI.4260-08.2009] [PMID: 19129382]
[448]
Tabak, B.A.; Meyer, M.L.; Dutcher, J.M.; Castle, E.; Irwin, M.R.; Lieberman, M.D.; Eisenberger, N.I. Oxytocin, but not vasopressin, impairs social cognitive ability among individuals with higher levels of social anxiety: A randomized controlled trial. Soc. Cogn. Affect. Neurosci., 2016, 11(8), 1272-1279.
[http://dx.doi.org/10.1093/scan/nsw041] [PMID: 27053769]
[449]
Petrovic, P.; Kalisch, R.; Singer, T.; Dolan, R.J. Oxytocin attenuates affective evaluations of conditioned faces and amygdala activity. J. Neurosci., 2008, 28(26), 6607-6615.
[http://dx.doi.org/10.1523/JNEUROSCI.4572-07.2008] [PMID: 18579733]
[450]
Lischke, A.; Gamer, M.; Berger, C.; Grossmann, A.; Hauenstein, K.; Heinrichs, M.; Herpertz, S.C.; Domes, G. Oxytocin increases amygdala reactivity to threatening scenes in females. Psychoneuroendocrinology, 2012, 37(9), 1431-1438.
[http://dx.doi.org/10.1016/j.psyneuen.2012.01.011] [PMID: 22365820]
[451]
Domes, G.; Lischke, A.; Berger, C.; Grossmann, A.; Hauenstein, K.; Heinrichs, M.; Herpertz, S.C. Effects of intranasal oxytocin on emotional face processing in women. Psychoneuroendocrinology, 2010, 35(1), 83-93.
[http://dx.doi.org/10.1016/j.psyneuen.2009.06.016] [PMID: 19632787]
[452]
Gorka, S.M.; Fitzgerald, D.A.; Labuschagne, I.; Hosanagar, A.; Wood, A.G.; Nathan, P.J.; Phan, K.L. Oxytocin modulation of amygdala functional connectivity to fearful faces in generalized social anxiety disorder. Neuropsychopharmacology, 2015, 40(2), 278-286.
[http://dx.doi.org/10.1038/npp.2014.168] [PMID: 24998619]
[453]
Dodhia, S.; Hosanagar, A.; Fitzgerald, D.A.; Labuschagne, I.; Wood, A.G.; Nathan, P.J.; Phan, K.L. Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in generalized social anxiety disorder. Neuropsychopharmacology, 2014, 39(9), 2061-2069.
[http://dx.doi.org/10.1038/npp.2014.53] [PMID: 24594871]
[454]
Hu, J.; Qi, S.; Becker, B.; Luo, L.; Gao, S.; Gong, Q.; Hurlemann, R.; Kendrick, K.M. Oxytocin selectively facilitates learning with social feedback and increases activity and functional connectivity in emotional memory and reward processing regions. Hum. Brain Mapp., 2015, 36(6), 2132-2146.
[http://dx.doi.org/10.1002/hbm.22760] [PMID: 25664702]
[455]
Fang, A.; Hoge, E.A.; Heinrichs, M.; Hofmann, S.G. Attachment style moderates the effects of oxytocin on social behaviors and cognitions during social rejection. Clin. Psychol. Sci., 2014, 2(6), 740-747.
[http://dx.doi.org/10.1177/2167702614527948] [PMID: 25419499]
[456]
Eckstein, M.; Scheele, D.; Patin, A.; Preckel, K.; Becker, B.; Walter, A.; Domschke, K.; Grinevich, V.; Maier, W.; Hurlemann, R. Oxytocin facilitates pavlovian fear learning in males. Neuropsychopharmacology, 2016, 41(4), 932-939.
[http://dx.doi.org/10.1038/npp.2015.245] [PMID: 26272050]
[457]
Baumgartner, T.; Heinrichs, M.; Vonlanthen, A.; Fischbacher, U.; Fehr, E. Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron, 2008, 58(4), 639-650.
[http://dx.doi.org/10.1016/j.neuron.2008.04.009] [PMID: 18498743]
[458]
Rilling, J.K.; DeMarco, A.C.; Hackett, P.D.; Chen, X.; Gautam, P.; Stair, S.; Haroon, E.; Thompson, R.; Ditzen, B.; Patel, R.; Pagnoni, G. Sex differences in the neural and behavioral response to intranasal oxytocin and vasopressin during human social interaction. Psychoneuroendocrinology, 2014, 39, 237-248.
[http://dx.doi.org/10.1016/j.psyneuen.2013.09.022] [PMID: 24157401]
[459]
Feng, C.; Lori, A.; Waldman, I.D.; Binder, E.B.; Haroon, E.; Rilling, J.K. A common oxytocin receptor gene (OXTR) polymorphism modulates intranasal oxytocin effects on the neural response to social cooperation in humans. Genes Brain Behav., 2015, 14(7), 516-525.
[http://dx.doi.org/10.1111/gbb.12234] [PMID: 26178189]
[460]
Gradus, J. Prevalence and prognosis of stress disorders: A review of the epidemiologic literature. Clin. Epidemiol., 2017, 9, 251-260.
[http://dx.doi.org/10.2147/CLEP.S106250] [PMID: 28496365]
[461]
Olff, M.; Langeland, W.; Gersons, B.P.R. The psychobiology of PTSD: Coping with trauma. Psychoneuroendocrinology, 2005, 30(10), 974-982.
[http://dx.doi.org/10.1016/j.psyneuen.2005.04.009] [PMID: 15964146]
[462]
Broekman, B.F.P.; Olff, M.; Boer, F. The genetic background to PTSD. Neurosci. Biobehav. Rev., 2007, 31(3), 348-362.
[http://dx.doi.org/10.1016/j.neubiorev.2006.10.001] [PMID: 17126903]
[463]
Afifi, T.O.; Asmundson, G.J.G.; Taylor, S.; Jang, K.L. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: A review of twin studies. Clin. Psychol. Rev., 2010, 30(1), 101-112.
[http://dx.doi.org/10.1016/j.cpr.2009.10.002] [PMID: 19892451]
[464]
Schumacher, S.; Niemeyer, H.; Engel, S.; Cwik, J.C.; Laufer, S.; Klusmann, H.; Knaevelsrud, C. HPA axis regulation in posttraumatic stress disorder: A meta-analysis focusing on potential moderators. Neurosci. Biobehav. Rev., 2019, 100, 35-57.
[http://dx.doi.org/10.1016/j.neubiorev.2019.02.005] [PMID: 30790632]
[465]
Grinevich, V.; Neumann, I.D. Brain oxytocin: How puzzle stones from animal studies translate into psychiatry. Mol. Psychiatry, 2021, 26(1), 265-279.
[http://dx.doi.org/10.1038/s41380-020-0802-9] [PMID: 32514104]
[466]
Landgraf, R.; Neumann, I.D. Vasopressin and oxytocin release within the brain: A dynamic concept of multiple and variable modes of neuropeptide communication. Front. Neuroendocrinol., 2004, 25(3-4), 150-176.
[http://dx.doi.org/10.1016/j.yfrne.2004.05.001] [PMID: 15589267]
[467]
DeVries, A.C.; Glasper, E.R.; Detillion, C.E. Social modulation of stress responses. Physiol. Behav., 2003, 79(3), 399-407.
[http://dx.doi.org/10.1016/S0031-9384(03)00152-5] [PMID: 12954434]
[468]
Love, T.M. The impact of oxytocin on stress: The role of sex. Curr. Opin. Behav. Sci., 2018, 23, 136-142.
[http://dx.doi.org/10.1016/j.cobeha.2018.06.018] [PMID: 31745496]
[469]
Porges, S.W. Love: An emergent property of the mammalian autonomic nervous system. Psychoneuroendocrinology, 1998, 23(8), 837-861.
[http://dx.doi.org/10.1016/S0306-4530(98)00057-2] [PMID: 9924740]
[470]
Brewin, C.R.; Andrews, B.; Valentine, J.D. Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults. J. Consult. Clin. Psychol., 2000, 68(5), 748-766.
[http://dx.doi.org/10.1037/0022-006X.68.5.748] [PMID: 11068961]
[471]
Amico, J.A.R. Oxytocin: Clinical and laboratory studies; Excerpta Medica: Netherlands, 1985.
[472]
Maroun, M.; Wagner, S. Oxytocin and memory of emotional stimuli: Some dance to remember, some dance to forget. Biol. Psychiatry, 2016, 79(3), 203-212.
[http://dx.doi.org/10.1016/j.biopsych.2015.07.016] [PMID: 26300273]
[473]
Mitre, M.; Minder, J.; Morina, E.X.; Chao, M.V.; Froemke, R.C. Oxytocin modulation of neural circuits. Curr. Top. Behav. Neurosci., 2017, 35, 31-53.
[http://dx.doi.org/10.1007/7854_2017_7] [PMID: 28864972]
[474]
Teicher, M.H.; Andersen, S.L.; Polcari, A.; Anderson, C.M.; Navalta, C.P. Developmental neurobiology of childhood stress and trauma. Psychiatr. Clin. North Am., 2002, 25(2), 397-426. , vii-viii.
[http://dx.doi.org/10.1016/S0193-953X(01)00003-X] [PMID: 12136507]
[475]
Yehuda, R.; LeDoux, J. Response variation following trauma: A translational neuroscience approach to understanding PTSD. Neuron, 2007, 56(1), 19-32.
[http://dx.doi.org/10.1016/j.neuron.2007.09.006] [PMID: 17920012]
[476]
Ellis, B.J.; Horn, A.J.; Carter, C.S.; van IJzendoorn, M.H.; Bakermans-Kranenburg, M.J. Developmental programming of oxytocin through variation in early-life stress: Four meta-analyses and a theoretical reinterpretation. Clin. Psychol. Rev., 2021, 86, , 101985..
[http://dx.doi.org/10.1016/j.cpr.2021.101985] [PMID: 33770582]
[477]
Bertsch, K.; Schmidinger, I.; Neumann, I.D.; Herpertz, S.C. Reduced plasma oxytocin levels in female patients with borderline personality disorder. Horm. Behav., 2013, 63(3), 424-429.
[http://dx.doi.org/10.1016/j.yhbeh.2012.11.013] [PMID: 23201337]
[478]
Bomann, A.C.; Jørgensen, M.B.; Bo, S.; Nielsen, M.; Gede, L.B.; Elfving, B.; Simonsen, E. The neurobiology of social deficits in female patients with borderline personality disorder: The importance of oxytocin. Pers. Ment. Health, 2017, 11(2), 91-100.
[http://dx.doi.org/10.1002/pmh.1369] [PMID: 28397403]
[479]
Bizik, G.; Bob, P.; Pavlat, J.; Raboch, J.; Uhrova, J.; Benakova, H.; Zima, T. P-473 - Oxytocin reflects levels of trauma-related and dissociative symptoms in patients with severe depression. Eur. Psychiatry, 2012, 27(S1), 1-1.
[http://dx.doi.org/10.1016/S0924-9338(12)74640-0]
[480]
Crowley, S.K.; Pedersen, C.A.; Leserman, J.; Girdler, S.S. The influence of early life sexual abuse on oxytocin concentrations and premenstrual symptomatology in women with a menstrually related mood disorder. Biol. Psychol., 2015, 109, 1-9.
[http://dx.doi.org/10.1016/j.biopsycho.2015.04.003] [PMID: 25892085]
[481]
Cao, C.; Wang, L.; Wang, R.; Qing, Y.; Zhang, J. Oxytocin is associated with PTSD’s anxious arousal symptoms in Chinese male earthquake survivors. Eur. J. Psychotraumatol., 2014, 5(1), 26530.
[http://dx.doi.org/10.3402/ejpt.v5.26530] [PMID: 25511734]
[482]
Munro, M.L.; Brown, S.L.; Pournajafi-Nazarloo, H.; Carter, C.S.; Lopez, W.D.; Seng, J.S. In search of an adult attachment stress provocation to measure effect on the oxytocin system: A pilot validation study. J. Am. Psychiatr. Nurses Assoc., 2013, 19(4), 180-191.
[http://dx.doi.org/10.1177/1078390313492173] [PMID: 23950541]
[483]
Bradley, B. Peripheral oxytocin, social support and psychological functioning in a highly traumatized sample. Eur. J. Psychotraumatol., 2012, 3(0), 3.
[http://dx.doi.org/10.3402/ejpt.v3i0.19450]
[484]
Seng, J.; Miller, J.; Sperlich, M.; van de Ven, C.J.M.; Brown, S.; Carter, C.S.; Liberzon, I. Exploring dissociation and oxytocin as pathways between trauma exposure and trauma-related hyperemesis gravidarum: A test-of-concept pilot. J. Trauma Dissociation, 2013, 14(1), 40-55.
[http://dx.doi.org/10.1080/15299732.2012.694594] [PMID: 23282046]
[485]
Mielke, E.L.; Neukel, C.; Bertsch, K.; Reck, C.; Möhler, E.; Herpertz, S.C. Alterations of brain volumes in women with early life maltreatment and their associations with oxytocin. Horm. Behav., 2018, 97, 128-136.
[http://dx.doi.org/10.1016/j.yhbeh.2017.11.005] [PMID: 29129623]
[486]
Reijnen, A.; Geuze, E.; Vermetten, E. Individual variation in plasma oxytocin and vasopressin levels in relation to the development of combat-related PTSD in a large military cohort. J. Psychiatr. Res., 2017, 94, 88-95.
[http://dx.doi.org/10.1016/j.jpsychires.2017.06.010] [PMID: 28689067]
[487]
Sippel, L.M.; King, C.E.; Wahlquist, A.E.; Flanagan, J.C. A Preliminary examination of endogenous peripheral oxytocin in a pilot randomized clinical trial of oxytocin-enhanced psychotherapy for post-traumatic stress disorder. J. Clin. Psychopharmacol., 2020, 40(4), 401-404.
[http://dx.doi.org/10.1097/JCP.0000000000001226] [PMID: 32639293]
[488]
Nishi, D.; Hashimoto, K.; Noguchi, H.; Kim, Y.; Matsuoka, Y. Serum oxytocin, posttraumatic coping and C-reactive protein in motor vehicle accident survivors by gender. Neuropsychobiology, 2015, 71(4), 196-201.
[http://dx.doi.org/10.1159/000382021] [PMID: 26044751]
[489]
Mizushima, S.G.; Fujisawa, T.X.; Takiguchi, S.; Kumazaki, H.; Tanaka, S.; Tomoda, A. Effect of the nature of subsequent environment on oxytocin and cortisol secretion in maltreated children. Front. Psychiatry, 2015, 6, 173.
[http://dx.doi.org/10.3389/fpsyt.2015.00173] [PMID: 26696910]
[490]
Ulmer-Yaniv, A.; Djalovski, A.; Yirmiya, K.; Halevi, G.; Zagoory-Sharon, O.; Feldman, R. Maternal immune and affiliative biomarkers and sensitive parenting mediate the effects of chronic early trauma on child anxiety. Psychol. Med., 2018, 48(6), 1020-1033.
[http://dx.doi.org/10.1017/S0033291717002550] [PMID: 28889808]
[491]
Suzuki, S.; Fujisawa, T.X.; Sakakibara, N.; Fujioka, T.; Takiguchi, S.; Tomoda, A. Development of social attention and oxytocin levels in maltreated children. Sci. Rep., 2020, 10(1), 7407.
[http://dx.doi.org/10.1038/s41598-020-64297-6] [PMID: 32366913]
[492]
Frijling, J.L.; van Zuiden, M.; Nawijn, L.; Koch, S.B.J.; Neumann, I.D.; Veltman, D.J.; Olff, M. Salivary oxytocin and vasopressin levels in police officers with and without post-traumatic stress disorder. J. Neuroendocrinol., 2015, 27(10), 743-751.
[http://dx.doi.org/10.1111/jne.12300] [PMID: 26184739]
[493]
Valstad, M.; Alvares, G.A.; Egknud, M.; Matziorinis, A.M.; Andreassen, O.A.; Westlye, L.T.; Quintana, D.S. The correlation between central and peripheral oxytocin concentrations: A systematic review and meta-analysis. Neurosci. Biobehav. Rev., 2017, 78, 117-124.
[http://dx.doi.org/10.1016/j.neubiorev.2017.04.017] [PMID: 28442403]
[494]
Dadds, M.R.; Moul, C.; Cauchi, A.; Dobson-Stone, C.; Hawes, D.J.; Brennan, J.; Ebstein, R.E. Methylation of the oxytocin receptor gene and oxytocin blood levels in the development of psychopathy. Dev. Psychopathol., 2014, 26(1), 33-40.
[http://dx.doi.org/10.1017/S0954579413000497] [PMID: 24059811]
[495]
Martin, J.; Kagerbauer, S.M.; Gempt, J.; Podtschaske, A.; Hapfelmeier, A.; Schneider, G. Oxytocin levels in saliva correlate better than plasma levels with concentrations in the cerebrospinal fluid of patients in neurocritical care. J. Neuroendocrinol., 2018, 30(5), , e12596..
[http://dx.doi.org/10.1111/jne.12596] [PMID: 29611254]
[496]
Lucas-Thompson, R.G.; Holman, E.A. Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress. Horm. Behav., 2013, 63(4), 615-624.
[http://dx.doi.org/10.1016/j.yhbeh.2013.02.015] [PMID: 23470776]
[497]
Sippel, L.M.; Han, S.; Watkins, L.E.; Harpaz-Rotem, I.; Southwick, S.M.; Krystal, J.H.; Olff, M.; Sherva, R.; Farrer, L.A.; Kranzler, H.R.; Gelernter, J.; Pietrzak, R.H. Oxytocin receptor gene polymorphisms, attachment, and PTSD: Results from the National Health and Resilience in Veterans study. J. Psychiatr. Res., 2017, 94, 139-147.
[http://dx.doi.org/10.1016/j.jpsychires.2017.07.008] [PMID: 28715704]
[498]
Cao, C.; Wang, L.; Wu, J.; Li, G.; Fang, R.; Liu, P.; Luo, S.; Elhai, J.D. Association between the OXTR rs53576 genotype and latent profiles of post-traumatic stress disorder and depression symptoms in a representative sample of earthquake survivors. Anxiety Stress Coping, 2020, 33(2), 140-147.
[http://dx.doi.org/10.1080/10615806.2019.1695604] [PMID: 31771350]
[499]
Kučukalić, S.; Ferić Bojić, E.; Babić, R.; Avdibegović, E.; Babić, D.; Agani, F.; Jakovljević, M.; Kučukalić, A.; Bravo Mehmedbašić, A.; Šabić Džananović, E.; Marjanović, D.; Kravic, N.; Pavlović, M.; Aukst Margetic, B.; Jaksic, N.; Cima Franc, A.; Rudan, D.; Haxhibeqiri, S.; Goci Uka, A.; Hoxha, B.; Haxhibeqiri, V.; Muminović Umihanić, M.; Sinanović, O.; Božina, N.; Ziegler, C.; Wolf, C.; Warrings, B.; Domschke, K.; Deckert, J.; Džubur Kulenović, A. Genetic susceptibility to posttraumatic stress disorder: Analyses of the oxytocin receptor, retinoic acid receptor-related orphan receptor A and cannabinoid receptor 1 genes. Psychiatr. Danub., 2019, 31(2), 219-226.
[http://dx.doi.org/10.24869/psyd.2019.219] [PMID: 31291229]
[500]
Feldman, R.; Vengrober, A.; Ebstein, R.P. Affiliation buffers stress: Cumulative genetic risk in oxytocin–vasopressin genes combines with early caregiving to predict PTSD in war-exposed young children. Transl. Psychiatry, 2014, 4(3), , e370..
[http://dx.doi.org/10.1038/tp.2014.6] [PMID: 24618689]
[501]
Zeev-Wolf, M.; Levy, J.; Ebstein, R.P.; Feldman, R. Cumulative risk on oxytocin-pathway genes impairs default mode network connectivity in trauma-exposed youth. Front. Endocrinol. (Lausanne), 2020, 11, 335.
[http://dx.doi.org/10.3389/fendo.2020.00335] [PMID: 32528417]
[502]
Palgi, S.; Klein, E.; Shamay-Tsoory, S. The role of oxytocin in empathy in PTSD. Psychol. Trauma, 2017, 9(1), 70-75.
[http://dx.doi.org/10.1037/tra0000142] [PMID: 27243570]
[503]
Zhang, K.; Li, G.; Wang, L.; Cao, C.; Fang, R.; Luo, S.; Liu, P.; Zhang, X. An epistasis between dopaminergic and oxytocinergic systems confers risk of post-traumatic stress disorder in a traumatized Chinese cohort. Sci. Rep., 2019, 9(1), 19252.
[http://dx.doi.org/10.1038/s41598-019-55936-8] [PMID: 31848444]
[504]
Dunn, E.C.; Solovieff, N.; Lowe, S.R.; Gallagher, P.J.; Chaponis, J.; Rosand, J.; Koenen, K.C.; Waters, M.C.; Rhodes, J.E.; Smoller, J.W. Interaction between genetic variants and exposure to Hurricane Katrina on post-traumatic stress and post-traumatic growth: A prospective analysis of low income adults. J. Affect. Disord., 2014, 152-154, 243-249.
[http://dx.doi.org/10.1016/j.jad.2013.09.018] [PMID: 24161451]
[505]
Nawijn, L.; Krzyzewska, I.M.; van Zuiden, M.; Henneman, P.; Koch, S.B.J.; Mul, A.N.; Frijling, J.L.; Veltman, D.J.; Mannens, M.M.A.M.; Olff, M. Oxytocin receptor gene methylation in male and female PTSD patients and trauma-exposed controls. Eur. Neuropsychopharmacol., 2019, 29(1), 147-155.
[http://dx.doi.org/10.1016/j.euroneuro.2018.10.006] [PMID: 30415783]
[506]
Pitman, R.K.; Orr, S.P.; Lasko, N.B. Effects of intranasal vasopressin and oxytocin on physiologic responding during personal combat imagery in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res., 1993, 48(2), 107-117.
[http://dx.doi.org/10.1016/0165-1781(93)90035-F] [PMID: 8416021]
[507]
Sack, M.; Spieler, D.; Wizelman, L.; Epple, G.; Stich, J.; Zaba, M.; Schmidt, U. Intranasal oxytocin reduces provoked symptoms in female patients with posttraumatic stress disorder despite exerting sympathomimetic and positive chronotropic effects in a randomized controlled trial. BMC Med., 2017, 15(1), 40.
[http://dx.doi.org/10.1186/s12916-017-0801-0] [PMID: 28209155]
[508]
Flanagan, J.C.; Sippel, L.M.; Wahlquist, A.; Moran-Santa Maria, M.M.; Back, S.E. Augmenting prolonged exposure therapy for PTSD with intranasal oxytocin: A randomized, placebo-controlled pilot trial. J. Psychiatr. Res., 2018, 98, 64-69.
[http://dx.doi.org/10.1016/j.jpsychires.2017.12.014] [PMID: 29294429]
[509]
Frijling, J.L.; van Zuiden, M.; Koch, S.B.J.; Nawijn, L.; Veltman, D.J.; Olff, M. Effects of intranasal oxytocin on amygdala reactivity to emotional faces in recently trauma-exposed individuals. Soc. Cogn. Affect. Neurosci., 2016, 11(2), 327-336.
[http://dx.doi.org/10.1093/scan/nsv116] [PMID: 26382634]
[510]
Frijling, J.L.; van Zuiden, M.; Koch, S.B.J.; Nawijn, L.; Veltman, D.J.; Olff, M. Intranasal oxytocin affects amygdala functional connectivity after trauma script-driven imagery in distressed recently trauma-exposed individuals. Neuropsychopharmacology, 2016, 41(5), 1286-1296.
[http://dx.doi.org/10.1038/npp.2015.278] [PMID: 26346640]
[511]
Flanagan, J.C.; Sippel, L.M.; Santa Maria, M.M.M.; Hartwell, K.J.; Brady, K.T.; Joseph, J.E. Impact of Oxytocin on the neural correlates of fearful face processing in PTSD related to childhood trauma. Eur. J. Psychotraumatol., 2019, 10(1), , 1606626..
[http://dx.doi.org/10.1080/20008198.2019.1606626] [PMID: 31105906]
[512]
Flanagan, J.C.; Allan, N.P.; Calhoun, C.D.; Badour, C.L.; Moran-Santa Maria, M.; Brady, K.T.; Back, S.E. Effects of oxytocin on stress reactivity and craving in veterans with co-occurring PTSD and alcohol use disorder. Exp. Clin. Psychopharmacol., 2019, 27(1), 45-54.
[http://dx.doi.org/10.1037/pha0000232] [PMID: 30382728]
[513]
van Zuiden, M.; Frijling, J.L.; Nawijn, L.; Koch, S.B.J.; Goslings, J.C.; Luitse, J.S.; Biesheuvel, T.H.; Honig, A.; Veltman, D.J.; Olff, M. Intranasal oxytocin to prevent posttraumatic stress disorder symptoms: A randomized controlled trial in emergency department patients. Biol. Psychiatry, 2017, 81(12), 1030-1040.
[http://dx.doi.org/10.1016/j.biopsych.2016.11.012] [PMID: 28087128]
[514]
Eidelman-Rothman, M.; Goldstein, A.; Levy, J.; Weisman, O.; Schneiderman, I.; Mankuta, D.; Zagoory-Sharon, O.; Feldman, R. Oxytocin affects spontaneous neural oscillations in trauma-exposed war veterans. Front. Behav. Neurosci., 2015, 9, 165.
[http://dx.doi.org/10.3389/fnbeh.2015.00165] [PMID: 26175673]
[515]
Koch, S.B.J.; van Zuiden, M.; Nawijn, L.; Frijling, J.L.; Veltman, D.J.; Olff, M. Intranasal oxytocin administration dampens amygdala reactivity towards emotional faces in male and female PTSD Patients. Neuropsychopharmacology, 2016, 41(6), 1495-1504.
[http://dx.doi.org/10.1038/npp.2015.299] [PMID: 26404844]
[516]
Koch, S.B.J.; van Zuiden, M.; Nawijn, L.; Frijling, J.L.; Veltman, D.J.; Olff, M. Intranasal oxytocin normalizes amygdala functional connectivity in posttraumatic stress disorder. Neuropsychopharmacology, 2016, 41(8), 2041-2051.
[http://dx.doi.org/10.1038/npp.2016.1] [PMID: 26741286]
[517]
Koch, S.B.J.; van Zuiden, M.; Nawijn, L.; Frijling, J.L.; Veltman, D.J.; Olff, M. Effects of intranasal oxytocin on distraction as emotion regulation strategy in patients with post-traumatic stress disorder. Eur. Neuropsychopharmacol., 2019, 29(2), 266-277.
[http://dx.doi.org/10.1016/j.euroneuro.2018.12.002] [PMID: 30554861]
[518]
Nawijn, L.; van Zuiden, M.; Koch, S.B.J.; Frijling, J.L.; Veltman, D.J.; Olff, M. Intranasal oxytocin enhances neural processing of monetary reward and loss in post-traumatic stress disorder and traumatized controls. Psychoneuroendocrinology, 2016, 66, 228-237.
[http://dx.doi.org/10.1016/j.psyneuen.2016.01.020] [PMID: 26851698]
[519]
Flanagan, J.C.; Hand, A.; Jarnecke, A.M.; Moran-Santa Maria, M.M.; Brady, K.T.; Joseph, J.E. Effects of oxytocin on working memory and executive control system connectivity in posttraumatic stress disorder. Exp. Clin. Psychopharmacol., 2018, 26(4), 391-402.
[http://dx.doi.org/10.1037/pha0000197] [PMID: 30070567]
[520]
Nawijn, L.; van Zuiden, M.; Koch, S.B.J.; Frijling, J.L.; Veltman, D.J.; Olff, M. Intranasal oxytocin increases neural responses to social reward in post-traumatic stress disorder. Soc. Cogn. Affect. Neurosci., 2017, 12(2), 212-223.
[http://dx.doi.org/10.1093/scan/nsw123] [PMID: 27614769]
[521]
Palgi, S.; Klein, E.; Shamay-Tsoory, S.G. Oxytocin improves compassion toward women among patients with PTSD. Psychoneuroendocrinology, 2016, 64, 143-149.
[http://dx.doi.org/10.1016/j.psyneuen.2015.11.008] [PMID: 26671007]
[522]
Stauffer, C.S.; Meinzer, N.K.; Morrison, T.; Wen, J.H.; Radanovich, L.; Leung, D.; Niles, A.; O’Donovan, A.; Batki, S.L.; Woolley, J.D. Effects of oxytocin administration on Cue‐induced craving in Co‐occurring alcohol use disorder and PTSD: A within‐participant randomized clinical trial. Alcohol. Clin. Exp. Res., 2019, 43(12), 2627-2636.
[http://dx.doi.org/10.1111/acer.14217] [PMID: 31610033]
[523]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[524]
Chen, P.; Dols, A.; Rej, S.; Sajatovic, M. Update on the epidemiology, diagnosis, and treatment of mania in older-age bipolar disorder. Curr. Psychiatry Rep., 2017, 19(8), 46.
[http://dx.doi.org/10.1007/s11920-017-0804-8] [PMID: 28647815]
[525]
Ferrari, A.J.; Charlson, F.J.; Norman, R.E.; Patten, S.B.; Freedman, G.; Murray, C.J.L.; Vos, T.; Whiteford, H.A. Burden of depressive disorders by country, sex, age, and year: Findings from the global burden of disease study 2010. PLoS Med., 2013, 10(11), , e1001547..
[http://dx.doi.org/10.1371/journal.pmed.1001547] [PMID: 24223526]
[526]
Neumann, I.D. Stimuli and consequences of dendritic release of oxytocin within the brain. Biochem. Soc. Trans., 2007, 35(5), 1252-1257.
[http://dx.doi.org/10.1042/BST0351252] [PMID: 17956324]
[527]
Neumann, I.D.; Wigger, A.; Torner, L.; Holsboer, F.; Landgraf, R. Brain oxytocin inhibits basal and stress-induced activity of the hypothalamo-pituitary-adrenal axis in male and female rats: Partial action within the paraventricular nucleus. J. Neuroendocrinol., 2000, 12(3), 235-243.
[http://dx.doi.org/10.1046/j.1365-2826.2000.00442.x] [PMID: 10718919]
[528]
Rotzinger, S.; Lovejoy, D.A.; Tan, L.A. Behavioral effects of neuropeptides in rodent models of depression and anxiety. Peptides, 2010, 31(4), 736-756.
[http://dx.doi.org/10.1016/j.peptides.2009.12.015] [PMID: 20026211]
[529]
Legros, J.J.; Louis, F. Identification of a vasopressin-neurophysin and of an oxytocin-neurophysin in man. Neuroendocrinology, 1973, 13(6), 371-375.
[http://dx.doi.org/10.1159/000122223] [PMID: 4366879]
[530]
Jones, P.M.; Robinson, I.C.A.F. Differential clearance of neurophysin and neurohypophysial peptides from the cerebrospinal fluid in conscious guinea pigs. Neuroendocrinology, 1982, 34(4), 297-302.
[http://dx.doi.org/10.1159/000123316] [PMID: 7070597]
[531]
Linkowski, P.; Geenen, V.; Kerkhofs, M.; Mendlewicz, J.; Legros, J.J. Cerebrospinal fluid neurophysins in affective illness and in schizophrenia. Eur. Arch. Psychiatry Neurol. Sci., 1984, 234(3), 162-165.
[http://dx.doi.org/10.1007/BF00461555] [PMID: 6489403]
[532]
Legros, J.J.G.V.; Linkowski, P.; Mendlewicz, J. Increased neurophysin I and II cerbrospinal fluid concentration from bipolar versus unipolar depressed patients. Neuroendocrinol. Lett., 1983, 5(4), 201-205.
[533]
Pitts, A.F.; Samuelson, S.D.; Meller, W.H.; Bissette, G.; Nemeroff, C.B.; Kathol, R.G. Cerebrospinal fluid corticotropin-releasing hormone, vasopressin, and oxytocin concentrations in treated patients with major depression and controls. Biol. Psychiatry, 1995, 38(5), 330-335.
[http://dx.doi.org/10.1016/0006-3223(95)00229-A] [PMID: 7495928]
[534]
Scantamburlo, G.; Hansenne, M.; Fuchs, S.; Pitchot, W.; Pinto, E.; Reggers, J.; Ansseau, M.; Legros, J.J. AVP- and OT-neurophysins response to apomorphine and clonidine in major depression. Psychoneuroendocrinology, 2005, 30(9), 839-845.
[http://dx.doi.org/10.1016/j.psyneuen.2005.04.015] [PMID: 15964147]
[535]
Sasayama, D.; Hattori, K.; Teraishi, T.; Hori, H.; Ota, M.; Yoshida, S.; Arima, K.; Higuchi, T.; Amano, N.; Kunugi, H. Negative correlation between cerebrospinal fluid oxytocin levels and negative symptoms of male patients with schizophrenia. Schizophr. Res., 2012, 139(1-3), 201-206.
[http://dx.doi.org/10.1016/j.schres.2012.06.016] [PMID: 22742979]
[536]
van Londen, L.; Goekoop, J.G.; van Kempen, G.M.; Frankhuijzen-Sierevogel, A.C.; Wiegant, V.M.; van der Velde, E.A.; De Wied, D. Plasma levels of arginine vasopressin elevated in patients with major depression. Neuropsychopharmacology, 1997, 17(4), 284-292.
[http://dx.doi.org/10.1016/S0893-133X(97)00054-7] [PMID: 9326754]
[537]
Jobst, A.; Sabass, L.; Palagyi, A.; Bauriedl-Schmidt, C.; Mauer, M.C.; Sarubin, N.; Buchheim, A.; Renneberg, B.; Falkai, P.; Zill, P.; Padberg, F. Effects of social exclusion on emotions and oxytocin and cortisol levels in patients with chronic depression. J. Psychiatr. Res., 2015, 60, 170-177.
[http://dx.doi.org/10.1016/j.jpsychires.2014.11.001] [PMID: 25466833]
[538]
Tang, A.L.; Thomas, S.J.; Larkin, T. Cortisol, oxytocin, and quality of life in major depressive disorder. Qual. Life Res., 2019, 28(11), 2919-2928.
[http://dx.doi.org/10.1007/s11136-019-02236-3] [PMID: 31227958]
[539]
Thomas, S.J.; Larkin, T. Cognitive distortions in relation to plasma cortisol and oxytocin levels in major depressive disorder. Front. Psychiatry, 2020, 10, 971.
[http://dx.doi.org/10.3389/fpsyt.2019.00971] [PMID: 32038321]
[540]
van Londen, L.; Kerkhof, G.A.; van den Berg, F.; Goekoop, J.G.; Zwinderman, K.H.; Frankhuijzen-Sierevogel, A.C.; Wiegant, V.M.; de Wied, D. Plasma arginine vasopressin and motor activity in major depression. Biol. Psychiatry, 1998, 43(3), 196-204.
[http://dx.doi.org/10.1016/S0006-3223(97)80433-7] [PMID: 9494701]
[541]
Van Londen, L.; Goekoop, J.G.; Zwinderman, A.H.; Lanser, J.B.K.; Wiegant, V.M.; De Wied, D. Neuropsychological performance and plasma cortisol, arginine vasopressin and oxytocin in patients with major depression. Psychol. Med., 1998, 28(2), 275-284.
[http://dx.doi.org/10.1017/S0033291797006284] [PMID: 9572085]
[542]
Rubin, L.H.; Carter, C.S.; Bishop, J.R.; Pournajafi-Nazarloo, H.; Drogos, L.L.; Hill, S.K.; Ruocco, A.C.; Keedy, S.K.; Reilly, J.L.; Keshavan, M.S.; Pearlson, G.D.; Tamminga, C.A.; Gershon, E.S.; Sweeney, J.A. Reduced levels of vasopressin and reduced behavioral modulation of oxytocin in psychotic disorders. Schizophr. Bull., 2014, 40(6), 1374-1384.
[http://dx.doi.org/10.1093/schbul/sbu027] [PMID: 24619535]
[543]
Frasch, A.; Zetzsche, T.; Steiger, A.; Jirikowski, G.F. Reduction of plasma oxytocin levels in patients suffering from major depression. Adv. Exp. Med. Biol., 1995, 395, 257-258.
[PMID: 8713975]
[544]
Zetzsche, T.; Frasch, A.; Jirikowski, G.; Murck, H.; Steiger, A. Nocturnal oxytocin secretion is reduced in major depression. Biol. Psychiatry, 1996, 290, 39.
[545]
Ozsoy, S.; Esel, E.; Kula, M. Serum oxytocin levels in patients with depression and the effects of gender and antidepressant treatment. Psychiatry Res., 2009, 169(3), 249-252.
[http://dx.doi.org/10.1016/j.psychres.2008.06.034] [PMID: 19732960]
[546]
Yuen, K.W.; Garner, J.P.; Carson, D.S.; Keller, J.; Lembke, A.; Hyde, S.A.; Kenna, H.A.; Tennakoon, L.; Schatzberg, A.F.; Parker, K.J. Plasma oxytocin concentrations are lower in depressed vs. healthy control women and are independent of cortisol. J. Psychiatr. Res., 2014, 51, 30-36.
[http://dx.doi.org/10.1016/j.jpsychires.2013.12.012] [PMID: 24405552]
[547]
Bergant, A.M.; Nguyen, T.; Heim, K.; Ulmer, H.; Dapunt, O. German language version and validation of the Edinburgh postnatal depression scale. Dtsch. Med. Wochenschr., 1998, 123(3), 35-40.
[http://dx.doi.org/10.1055/s-2007-1023895] [PMID: 9472218]
[548]
Cox, J.L.; Holden, J.M.; Sagovsky, R. Detection of postnatal depression. development of the 10-item edinburgh postnatal depression scale. Br. J. Psychiatry, 1987, 150(6), 782-786.
[http://dx.doi.org/10.1192/bjp.150.6.782] [PMID: 3651732]
[549]
Austin, M.P.; Hadzi-Pavlovic, D.; Saint, K.; Parker, G. Antenatal screening for the prediction of postnatal depression: Validation of a psychosocial pregnancy risk questionnaire. Acta Psychiatr. Scand., 2005, 112(4), 310-317.
[http://dx.doi.org/10.1111/j.1600-0447.2005.00594.x] [PMID: 16156839]
[550]
Cyranowski, J.M.; Hofkens, T.L.; Frank, E.; Seltman, H.; Cai, H.M.; Amico, J.A. Evidence of dysregulated peripheral oxytocin release among depressed women. Psychosom. Med., 2008, 70(9), 967-975.
[http://dx.doi.org/10.1097/PSY.0b013e318188ade4] [PMID: 19005082]
[551]
Seay, J.S.; Lattie, E.; Schneiderman, N.; Antoni, M.H.; Fekete, E.M.; Mendez, A.J.; Szeto, A.; Fletcher, M.A. Linear and quadratic associations of plasma oxytocin with depressive symptoms in ethnic minority women living with HIV. J. Appl. Biobehav. Res., 2014, 19(1), 70-78.
[http://dx.doi.org/10.1111/jabr.12016]
[552]
Parker, K.J.; Kenna, H.A.; Zeitzer, J.M.; Keller, J.; Blasey, C.M.; Amico, J.A.; Schatzberg, A.F. Preliminary evidence that plasma oxytocin levels are elevated in major depression. Psychiatry Res., 2010, 178(2), 359-362.
[http://dx.doi.org/10.1016/j.psychres.2009.09.017] [PMID: 20494448]
[553]
Turan, T.; Uysal, C.; Asdemir, A.; Kılıç, E. May oxytocin be a trait marker for bipolar disorder? Psychoneuroendocrinology, 2013, 38(12), 2890-2896.
[http://dx.doi.org/10.1016/j.psyneuen.2013.07.017] [PMID: 24080188]
[554]
Lien, Y-J.; Chang, H.H.; Yang, Y.K.; Lu, R-B.; Chen, P.S. PS50. The serum oxytocin levels among major depressive and bipolar II disorder. Int. J. Neuropsychopharmacol., 2016, 19(Suppl. 1), 17-17.
[http://dx.doi.org/10.1093/ijnp/pyw043.050]
[555]
Lien, Y.J.; Chang, H.H.; Tsai, H.C.; Kuang Yang, Y.; Lu, R.B. See Chen, P. Plasma oxytocin levels in major depressive and bipolar II disorders. Psychiatry Res., 2017, 258, 402-406.
[http://dx.doi.org/10.1016/j.psychres.2017.08.080] [PMID: 28865715]
[556]
Parris, M.S.; Grunebaum, M.F.; Galfalvy, H.C.; Andronikashvili, A.; Burke, A.K.; Yin, H.; Min, E.; Huang, Y.; Mann, J.J. Attempted suicide and oxytocin-related gene polymorphisms. J. Affect. Disord., 2018, 238, 62-68.
[http://dx.doi.org/10.1016/j.jad.2018.05.022] [PMID: 29860184]
[557]
Na, K.S.; Won, E.; Kang, J.; Kim, A.; Choi, S.; Kim, Y.K.; Lee, M.S.; Ham, B.J. Interaction effects of oxytocin receptor gene polymorphism and depression on hippocampal volume. Psychiatry Res. Neuroimaging, 2018, 282, 18-23.
[http://dx.doi.org/10.1016/j.pscychresns.2018.10.004] [PMID: 30384146]
[558]
Choi, D.; Tsuchiya, K.J.; Takei, N. Interaction effect of oxytocin receptor (OXTR) rs53576 genotype and maternal postpartum depression on child behavioural problems. Sci. Rep., 2019, 9(1), 7685.
[http://dx.doi.org/10.1038/s41598-019-44175-6] [PMID: 31118457]
[559]
Purba, J.S.; Hoogendijk, W.J.; Hofman, M.A.; Swaab, D.F. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch. Gen. Psychiatry, 1996, 53(2), 137-143.
[http://dx.doi.org/10.1001/archpsyc.1996.01830020055007] [PMID: 8629889]
[560]
Meynen, G.; Unmehopa, U.A.; Hofman, M.A.; Swaab, D.F.; Hoogendijk, W.J.G. Hypothalamic oxytocin mRNA expression and melancholic depression. Mol. Psychiatry, 2007, 12(2), 118-119.
[http://dx.doi.org/10.1038/sj.mp.4001911] [PMID: 17252002]
[561]
Mah, B.L.; Van IJzendoorn, M.H.; Smith, R.; Bakermans-Kranenburg, M.J. Oxytocin in postnatally depressed mothers: Its influence on mood and expressed emotion. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 40, 267-272.
[http://dx.doi.org/10.1016/j.pnpbp.2012.10.005] [PMID: 23085508]
[562]
Pincus, D.; Kose, S.; Arana, A.; Johnson, K.; Morgan, P.S.; Borckardt, J.; Herbsman, T.; Hardaway, F.; George, M.S.; Panksepp, J.; Nahas, Z. Inverse effects of oxytocin on attributing mental activity to others in depressed and healthy subjects: A double-blind placebo controlled fMRI study. Front. Psychiatry, 2010, 1, 134.
[http://dx.doi.org/10.3389/fpsyt.2010.00134] [PMID: 21423444]
[563]
Mah, B.L.; Bakermans-Kranenburg, M.J.; Van IJzendoorn, M.H.; Smith, R. Oxytocin promotes protective behavior in depressed mothers: A pilot study with the enthusiastic stranger paradigm. Depress. Anxiety, 2015, 32(2), 76-81.
[http://dx.doi.org/10.1002/da.22245] [PMID: 24523054]
[564]
MacDonald, K.; MacDonald, T.M.; Brüne, M.; Lamb, K.; Wilson, M.P.; Golshan, S.; Feifel, D. Oxytocin and psychotherapy: A pilot study of its physiological, behavioral and subjective effects in males with depression. Psychoneuroendocrinology, 2013, 38(12), 2831-2843.
[http://dx.doi.org/10.1016/j.psyneuen.2013.05.014] [PMID: 23810433]
[565]
Domes, G.; Normann, C.; Heinrichs, M. The effect of oxytocin on attention to angry and happy faces in chronic depression. BMC Psychiatry, 2016, 16(1), 92.
[http://dx.doi.org/10.1186/s12888-016-0794-9] [PMID: 27048333]
[566]
Scantamburlo, G.; Hansenne, M.; Geenen, V.; Legros, J.J.; Ansseau, M. Additional intranasal oxytocin to escitalopram improves depressive symptoms in resistant depression: An open trial. Eur. Psychiatry, 2015, 30(1), 65-68.
[http://dx.doi.org/10.1016/j.eurpsy.2014.08.007] [PMID: 25282363]
[567]
Donadon, M.F.; Martin-Santos, R.; L. Osório, F. Oxytocin effects on the cognition of women with postpartum depression: A randomized, placebo-controlled clinical trial. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 111, , 110098..
[http://dx.doi.org/10.1016/j.pnpbp.2020.110098] [PMID: 32937192]
[568]
Newlin, E.; Weinstein, B. Personality disorders. Continuum (Minneap. Minn.), 2015, 21(3), 806-817.
[http://dx.doi.org/10.1212/01.CON.0000466668.02477.0c] [PMID: 26039856]
[569]
Ekselius, L. Personality disorder: A disease in disguise. Ups. J. Med. Sci., 2018, 123(4), 194-204.
[http://dx.doi.org/10.1080/03009734.2018.1526235] [PMID: 30539674]
[570]
Gunderson, J.G. Clinical practice. Borderline personality disorder. N. Engl. J. Med., 2011, 364(21), 2037-2042.
[http://dx.doi.org/10.1056/NEJMcp1007358] [PMID: 21612472]
[571]
Stanley, B.; Siever, L.J. The interpersonal dimension of borderline personality disorder: Toward a neuropeptide model. Am. J. Psychiatry, 2010, 167(1), 24-39.
[http://dx.doi.org/10.1176/appi.ajp.2009.09050744] [PMID: 19952075]
[572]
Jobst, A.; Albert, A.; Bauriedl-Schmidt, C.; Mauer, M.C.; Renneberg, B.; Buchheim, A.; Sabass, L.; Falkai, P.; Zill, P.; Padberg, F. Social exclusion leads to divergent changes of oxytocin levels in borderline patients and healthy subjects. Psychother. Psychosom., 2014, 83(4), 252-254.
[http://dx.doi.org/10.1159/000358526] [PMID: 24969030]
[573]
Jobst, A.; Padberg, F.; Mauer, M.C.; Daltrozzo, T.; Bauriedl-Schmidt, C.; Sabass, L.; Sarubin, N.; Falkai, P.; Renneberg, B.; Zill, P.; Gander, M.; Buchheim, A. Lower oxytocin plasma levels in borderline patients with unresolved attachment representations. Front. Hum. Neurosci., 2016, 10, 125.
[http://dx.doi.org/10.3389/fnhum.2016.00125] [PMID: 27064696]
[574]
Hammen, C.; Bower, J.E.; Cole, S.W. Oxytocin receptor gene variation and differential susceptibility to family environment in predicting youth borderline symptoms. J. Pers. Disord., 2015, 29(2), 177-192.
[http://dx.doi.org/10.1521/pedi_2014_28_152] [PMID: 25102084]
[575]
Cicchetti, D.; Rogosch, F.A.; Hecht, K.F.; Crick, N.R.; Hetzel, S. Moderation of maltreatment effects on childhood borderline personality symptoms by gender and oxytocin receptor and FK506 binding protein 5 genes. Dev. Psychopathol., 2014, 26(3), 831-849.
[http://dx.doi.org/10.1017/S095457941400042X] [PMID: 25047302]
[576]
Simeon, D.; Bartz, J.; Hamilton, H.; Crystal, S.; Braun, A.; Ketay, S.; Hollander, E. Oxytocin administration attenuates stress reactivity in borderline personality disorder: A pilot study. Psychoneuroendocrinology, 2011, 36(9), 1418-1421.
[http://dx.doi.org/10.1016/j.psyneuen.2011.03.013] [PMID: 21546164]
[577]
Bartz, J.; Simeon, D.; Hamilton, H.; Kim, S.; Crystal, S.; Braun, A.; Vicens, V.; Hollander, E. Oxytocin can hinder trust and cooperation in borderline personality disorder. Soc. Cogn. Affect. Neurosci., 2011, 6(5), 556-563.
[http://dx.doi.org/10.1093/scan/nsq085] [PMID: 21115541]
[578]
Ebert, A.; Kolb, M.; Heller, J.; Edel, M.A.; Roser, P.; Brüne, M. Modulation of interpersonal trust in borderline personality disorder by intranasal oxytocin and childhood trauma. Soc. Neurosci., 2013, 8(4), 305-313.
[http://dx.doi.org/10.1080/17470919.2013.807301] [PMID: 23802121]
[579]
Bertsch, K.; Gamer, M.; Schmidt, B.; Schmidinger, I.; Walther, S.; Kästel, T.; Schnell, K.; Büchel, C.; Domes, G.; Herpertz, S.C. Oxytocin and reduction of social threat hypersensitivity in women with borderline personality disorder. Am. J. Psychiatry, 2013, 170(10), 1169-1177.
[http://dx.doi.org/10.1176/appi.ajp.2013.13020263] [PMID: 23982273]
[580]
Lischke, A.; Herpertz, S.C.; Berger, C.; Domes, G.; Gamer, M. Divergent effects of oxytocin on (para-)limbic reactivity to emotional and neutral scenes in females with and without borderline personality disorder. Soc. Cogn. Affect. Neurosci., 2017, 12(11), 1783-1792.
[http://dx.doi.org/10.1093/scan/nsx107] [PMID: 29036358]
[581]
Brüne, M.; Kolb, M.; Ebert, A.; Roser, P.; Edel, M.A. Nonverbal communication of patients with borderline personality disorder during clinical interviews: A double-blind placebo-controlled study using intranasal oxytocin. J. Nerv. Ment. Dis., 2015, 203(2), 107-111.
[http://dx.doi.org/10.1097/NMD.0000000000000240] [PMID: 25594788]
[582]
Brüne, M.; Ebert, A.; Kolb, M.; Tas, C.; Edel, M.A.; Roser, P. Oxytocin influences avoidant reactions to social threat in adults with borderline personality disorder. Hum. Psychopharmacol., 2013, 28(6), 552-561.
[http://dx.doi.org/10.1002/hup.2343] [PMID: 23950057]
[583]
Timmermann, M.; Jeung, H.; Schmitt, R.; Boll, S.; Freitag, C.M.; Bertsch, K.; Herpertz, S.C. Oxytocin improves facial emotion recognition in young adults with antisocial personality disorder. Psychoneuroendocrinology, 2017, 85, 158-164.
[http://dx.doi.org/10.1016/j.psyneuen.2017.07.483] [PMID: 28865940]
[584]
Alcorn, J.L., III; Rathnayaka, N.; Swann, A.C.; Moeller, F.G.; Lane, S.D. Effects of intranasal oxytocin on aggressive responding in antisocial personality disorder. Psychol. Rec., 2015, 65(4), 691-703.
[http://dx.doi.org/10.1007/s40732-015-0139-y] [PMID: 27022201]
[585]
Blanchard, J.J.; Savage, C.L.G.; Orth, R.D.; Jacome, A.M.; Bennett, M.E. Sleep problems and social impairment in psychosis: A transdiagnostic study examining multiple social domains. Front. Psychiatry, 2020, 11, 486.
[http://dx.doi.org/10.3389/fpsyt.2020.00486] [PMID: 32547433]
[586]
Díaz-Caneja, C.M.; Pina-Camacho, L.; Rodríguez-Quiroga, A.; Fraguas, D.; Parellada, M.; Arango, C. Predictors of outcome in early-onset psychosis: A systematic review. NPJ Schizophr., 2015, 1(1), 14005.
[http://dx.doi.org/10.1038/npjschz.2014.5] [PMID: 27336027]
[587]
Charlson, F.J.; Ferrari, A.J.; Santomauro, D.F.; Diminic, S.; Stockings, E.; Scott, J.G.; McGrath, J.J.; Whiteford, H.A. Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016. Schizophr. Bull., 2018, 44(6), 1195-1203.
[http://dx.doi.org/10.1093/schbul/sby058] [PMID: 29762765]
[588]
Yang, A.; Tsai, S.J. New targets for schizophrenia treatment beyond the dopamine hypothesis. Int. J. Mol. Sci., 2017, 18(8), 1689.
[http://dx.doi.org/10.3390/ijms18081689] [PMID: 28771182]
[589]
Lieberman, J.A.; Girgis, R.R.; Brucato, G.; Moore, H.; Provenzano, F.; Kegeles, L.; Javitt, D.; Kantrowitz, J.; Wall, M.M.; Corcoran, C.M.; Schobel, S.A.; Small, S.A. Hippocampal dysfunction in the pathophysiology of schizophrenia: A selective review and hypothesis for early detection and intervention. Mol. Psychiatry, 2018, 23(8), 1764-1772.
[http://dx.doi.org/10.1038/mp.2017.249] [PMID: 29311665]
[590]
Grace, A.A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci., 2016, 17(8), 524-532.
[http://dx.doi.org/10.1038/nrn.2016.57] [PMID: 27256556]
[591]
Balu, D.T. The NMDA receptor and schizophrenia. Adv. Pharmacol., 2016, 76, 351-382.
[http://dx.doi.org/10.1016/bs.apha.2016.01.006] [PMID: 27288082]
[592]
Mai, J.K.; Berger, K.; Sofroniew, M.V. Morphometric evaluation of neurophysin-immunoreactivity in the human brain: Pronounced inter-individual variability and evidence for altered staining patterns in schizophrenia. J. Hirnforsch., 1993, 34(2), 133-154.
[PMID: 8228177]
[593]
Rosenfeld, A.J.; Lieberman, J.A.; Jarskog, L.F. Oxytocin, dopamine, and the amygdala: A neurofunctional model of social cognitive deficits in schizophrenia. Schizophr. Bull., 2011, 37(5), 1077-1087.
[http://dx.doi.org/10.1093/schbul/sbq015] [PMID: 20308198]
[594]
Dumais, K.M.; Veenema, A.H. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. Front. Neuroendocrinol., 2016, 40, 1-23.
[http://dx.doi.org/10.1016/j.yfrne.2015.04.003] [PMID: 25951955]
[595]
Strauss, G.P.; Keller, W.R.; Koenig, J.I.; Gold, J.M.; Ossenfort, K.L.; Buchanan, R.W. Plasma oxytocin levels predict olfactory identification and negative symptoms in individuals with schizophrenia. Schizophr. Res., 2015, 162(1-3), 57-61.
[http://dx.doi.org/10.1016/j.schres.2014.12.023] [PMID: 25583247]
[596]
Strauss, G.P.; Keller, W.R.; Koenig, J.I.; Gold, J.M.; Frost, K.H.; Buchanan, R.W. Plasma oxytocin levels predict social cue recognition in individuals with schizophrenia. Schizophr. Res., 2015, 162(1-3), 47-51.
[http://dx.doi.org/10.1016/j.schres.2015.01.034] [PMID: 25673435]
[597]
Brown, E.C.; Tas, C.; Kuzu, D.; Esen-Danaci, A.; Roelofs, K.; Brüne, M. Social approach and avoidance behaviour for negative emotions is modulated by endogenous oxytocin and paranoia in schizophrenia. Psychiatry Res., 2014, 219(3), 436-442.
[http://dx.doi.org/10.1016/j.psychres.2014.06.038] [PMID: 25048758]
[598]
Speck, L.G.; Schöner, J.; Bermpohl, F.; Heinz, A.; Gallinat, J.; Majić, T.; Montag, C. Endogenous oxytocin response to film scenes of attachment and loss is pronounced in schizophrenia. Soc. Cogn. Affect. Neurosci., 2019, 14(1), 109-117.
[http://dx.doi.org/10.1093/scan/nsy110] [PMID: 30481342]
[599]
Jobst, A.; Dehning, S.; Ruf, S.; Notz, T.; Buchheim, A.; Henning-Fast, K.; Meißner, D.; Meyer, S.; Bondy, B.; Müller, N.; Zill, P. Oxytocin and vasopressin levels are decreased in the plasma of male schizophrenia patients. Acta Neuropsychiatr., 2014, 26(6), 347-355.
[http://dx.doi.org/10.1017/neu.2014.20] [PMID: 25288094]
[600]
Aydın, O.; Lysaker, P.H.; Balıkçı, K.; Ünal-Aydın, P.; Esen-Danacı, A. Associations of oxytocin and vasopressin plasma levels with neurocognitive, social cognitive and meta cognitive function in schizophrenia. Psychiatry Res., 2018, 270, 1010-1016.
[http://dx.doi.org/10.1016/j.psychres.2018.03.048] [PMID: 29609987]
[601]
Aydın, O.; Balıkçı, K.; Taş, C.; Ünal-Aydın, P.; Taneli, F.; Esen-Danacı, A. Assessing the relationship between attachment, parental attitude and plasma oxytocin in schizophrenia patients and their unaffected siblings. Nord. J. Psychiatry, 2019, 73(1), 51-57.
[http://dx.doi.org/10.1080/08039488.2018.1554698] [PMID: 30636461]
[602]
Strauss, G.P.; Chapman, H.C.; Keller, W.R.; Koenig, J.I.; Gold, J.M.; Carpenter, W.T.; Buchanan, R.W. Endogenous oxytocin levels are associated with impaired social cognition and neurocognition in schizophrenia. J. Psychiatr. Res., 2019, 112, 38-43.
[http://dx.doi.org/10.1016/j.jpsychires.2019.02.017] [PMID: 30849617]
[603]
Rubin, L.H.; Carter, C.S.; Drogos, L.; Pournajafi-Nazarloo, H.; Sweeney, J.A.; Maki, P.M. Peripheral oxytocin is associated with reduced symptom severity in schizophrenia. Schizophr. Res., 2010, 124(1-3), 13-21.
[http://dx.doi.org/10.1016/j.schres.2010.09.014] [PMID: 20947304]
[604]
Rubin, L.H.; Carter, C.S.; Drogos, L.; Jamadar, R.; Pournajafi-Nazarloo, H.; Sweeney, J.A.; Maki, P.M. Sex-specific associations between peripheral oxytocin and emotion perception in schizophrenia. Schizophr. Res., 2011, 130(1-3), 266-270.
[http://dx.doi.org/10.1016/j.schres.2011.06.002] [PMID: 21684122]
[605]
Walss-Bass, C.; Fernandes, J.M.; Roberts, D.L.; Service, H.; Velligan, D. Differential correlations between plasma oxytocin and social cognitive capacity and bias in schizophrenia. Schizophr. Res., 2013, 147(2-3), 387-392.
[http://dx.doi.org/10.1016/j.schres.2013.04.003] [PMID: 23628601]
[606]
Goldman, M.; Marlow-O’Connor, M.; Torres, I.; Carter, C.S. Diminished plasma oxytocin in schizophrenic patients with neuroendocrine dysfunction and emotional deficits. Schizophr. Res., 2008, 98(1-3), 247-255.
[http://dx.doi.org/10.1016/j.schres.2007.09.019] [PMID: 17961988]
[607]
Kéri, S.; Kiss, I.; Kelemen, O. Sharing secrets: Oxytocin and trust in schizophrenia. Soc. Neurosci., 2009, 4(4), 287-293.
[http://dx.doi.org/10.1080/17470910802319710] [PMID: 18671168]
[608]
Beckmann, H.; Lang, R.E.; Gattaz, W.F. Vasopressin-oxytocin in cerebrospinal fluid of schizophrenic patients and normal controls. Psychoneuroendocrinology, 1985, 10(2), 187-191.
[http://dx.doi.org/10.1016/0306-4530(85)90056-3] [PMID: 4034849]
[609]
Glovinsky, D.; Kalogeras, K.; Kirch, D.; Suddath, R.; Wyatt, R. Cerebrospinal fluid oxytocin concentration in schizophrenic patients does not differ from control subjects and is not changed by neuroleptic medication. Schizophr. Res., 1994, 11(3), 273-276.
[http://dx.doi.org/10.1016/0920-9964(94)90021-3] [PMID: 7910756]
[610]
Montag, C.; Schöner, J.; Speck, L.G.; Just, S.; Stuke, F.; Rentzsch, J.; Gallinat, J.; Majić, T. Peripheral oxytocin is inversely correlated with cognitive, but not emotional empathy in schizophrenia. PLoS One, 2020, 15(4), e0231257.
[http://dx.doi.org/10.1371/journal.pone.0231257] [PMID: 32255800]
[611]
Rubin, L.H.; Li, S.; Yao, L.; Keedy, S.K.; Reilly, J.L.; Hill, S.K.; Bishop, J.R.; Sue Carter, C.; Pour-najafi-Nazarloo, H.; Drogos, L.L.; Gershon, E.; Pearlson, G.D.; Tamminga, C.A.; Clementz, B.A.; Keshavan, M.S.; Lui, S.; Sweeney, J.A. Peripheral oxytocin and vasopressin modulates regional brain activity differently in men and women with schizophrenia. Schizophr. Res., 2018, 202, 173-179.
[http://dx.doi.org/10.1016/j.schres.2018.07.003] [PMID: 30539769]
[612]
Wehring, H.J.; Buchanan, R.W.; Feldman, S.; Carpenter, W.T.; McMahon, R.P.; Weiner, E.; Gold, J.M.; Adams, H.A.; Strauss, G.P.; Rubin, L.H.; Kelly, D.L. Oxytocin and sexual function in males and females with schizophrenia. Schizophr. Res., 2018, 199, 431-432.
[http://dx.doi.org/10.1016/j.schres.2018.03.013] [PMID: 29551232]
[613]
Bakharev, V.D.; Tikhomirov, S.M.; Lozhkina, T.K. Psychotropic properties of oxytocin. Neurosci. Behav. Physiol., 1986, 16(2), 160-164.
[http://dx.doi.org/10.1007/BF01186517] [PMID: 3748373]
[614]
Pedersen, C.A.; Gibson, C.M.; Rau, S.W.; Salimi, K.; Smedley, K.L.; Casey, R.L.; Leserman, J.; Jarskog, L.F.; Penn, D.L. Intranasal oxytocin reduces psychotic symptoms and improves theory of mind and social perception in schizophrenia. Schizophr. Res., 2011, 132(1), 50-53.
[http://dx.doi.org/10.1016/j.schres.2011.07.027] [PMID: 21840177]
[615]
Gibson, C.M.; Penn, D.L.; Smedley, K.L.; Leserman, J.; Elliott, T.; Pedersen, C.A. A pilot six-week randomized controlled trial of oxytocin on social cognition and social skills in schizophrenia. Schizophr. Res., 2014, 156(2-3), 261-265.
[http://dx.doi.org/10.1016/j.schres.2014.04.009] [PMID: 24799299]
[616]
Averbeck, B.B.; Bobin, T.; Evans, S.; Shergill, S.S. Emotion recognition and oxytocin in patients with schizophrenia. Psychol. Med., 2012, 42(2), 259-266.
[http://dx.doi.org/10.1017/S0033291711001413] [PMID: 21835090]
[617]
Goldman, M.B.; Gomes, A.M.; Carter, C.S.; Lee, R. Divergent effects of two different doses of intranasal oxytocin on facial affect discrimination in schizophrenic patients with and without polydipsia. Psychopharmacology (Berl.), 2011, 216(1), 101-110.
[http://dx.doi.org/10.1007/s00213-011-2193-8] [PMID: 21301811]
[618]
De Coster, L.; Lin, L.; Mathalon, D.H.; Woolley, J.D. Neural and behavioral effects of oxytocin administration during theory of mind in schizophrenia and controls: A randomized control trial. Neuropsychopharmacology, 2019, 44(11), 1925-1931.
[http://dx.doi.org/10.1038/s41386-019-0417-5] [PMID: 31103018]
[619]
Caravaggio, F.; Gerretsen, P.; Mar, W.; Chung, J.K.; Plitman, E.; Nakajima, S.; Kim, J.; Iwata, Y.; Patel, R.; Chakravarty, M.M.; Remington, G.; Graff-Guerrero, A.; Menon, M. Intranasal oxytocin does not modulate jumping to conclusions in schizophrenia: Potential interactions with caudate volume and baseline social functioning. Psychoneuroendocrinology, 2017, 81, 80-87.
[http://dx.doi.org/10.1016/j.psyneuen.2017.03.020] [PMID: 28431278]
[620]
Woolley, J.D.; Chuang, B.; Lam, O.; Lai, W.; O’Donovan, A.; Rankin, K.P.; Mathalon, D.H.; Vinogradov, S. Oxytocin administration enhances controlled social cognition in patients with schizophrenia. Psychoneuroendocrinology, 2014, 47, 116-125.
[http://dx.doi.org/10.1016/j.psyneuen.2014.04.024] [PMID: 25001961]
[621]
Fischer-Shofty, M.; Shamay-Tsoory, S.G.; Levkovitz, Y. Characterization of the effects of oxytocin on fear recognition in patients with schizophrenia and in healthy controls. Front. Neurosci., 2013, 7, 127.
[http://dx.doi.org/10.3389/fnins.2013.00127] [PMID: 23882178]
[622]
Davis, M.C.; Green, M.F.; Lee, J.; Horan, W.P.; Senturk, D.; Clarke, A.D.; Marder, S.R. Oxytocin-augmented social cognitive skills training in schizophrenia. Neuropsychopharmacology, 2014, 39(9), 2070-2077.
[http://dx.doi.org/10.1038/npp.2014.68] [PMID: 24637803]
[623]
Davis, M.C.; Lee, J.; Horan, W.P.; Clarke, A.D.; McGee, M.R.; Green, M.F.; Marder, S.R. Effects of single dose intranasal oxytocin on social cognition in schizophrenia. Schizophr. Res., 2013, 147(2-3), 393-397.
[http://dx.doi.org/10.1016/j.schres.2013.04.023] [PMID: 23676253]
[624]
Bradley, E.R.; Seitz, A.; Niles, A.N.; Rankin, K.P.; Mathalon, D.H.; O’Donovan, A.; Woolley, J.D. Oxytocin increases eye gaze in schizophrenia. Schizophr. Res., 2019, 212, 177-185.
[http://dx.doi.org/10.1016/j.schres.2019.07.039] [PMID: 31416746]
[625]
Woolley, J.D.; Chuang, B.; Fussell, C.; Scherer, S.; Biagianti, B.; Fulford, D.; Mathalon, D.H.; Vinogradov, S. Intranasal oxytocin increases facial expressivity, but not ratings of trustworthiness, in patients with schizophrenia and healthy controls. Psychol. Med., 2017, 47(7), 1311-1322.
[http://dx.doi.org/10.1017/S0033291716003433] [PMID: 28091349]
[626]
Bradley, E.R.; Brustkern, J.; De Coster, L.; van den Bos, W.; McClure, S.M.; Seitz, A.; Woolley, J.D. Victory is its own reward: Oxytocin increases costly competitive behavior in schizophrenia. Psychol. Med., 2020, 50(4), 674-682.
[http://dx.doi.org/10.1017/S0033291719000552] [PMID: 30944045]
[627]
Ota, M.; Yoshida, S.; Nakata, M.; Yada, T.; Kunugi, H. The effects of adjunctive intranasal oxytocin in patients with schizophrenia. Postgrad. Med., 2018, 130(1), 122-128.
[http://dx.doi.org/10.1080/00325481.2018.1398592] [PMID: 29105546]
[628]
Feifel, D.; Macdonald, K.; Nguyen, A.; Cobb, P.; Warlan, H.; Galangue, B.; Minassian, A.; Becker, O.; Cooper, J.; Perry, W.; Lefebvre, M.; Gonzales, J.; Hadley, A. Adjunctive intranasal oxytocin reduces symptoms in schizophrenia patients. Biol. Psychiatry, 2010, 68(7), 678-680.
[http://dx.doi.org/10.1016/j.biopsych.2010.04.039] [PMID: 20615494]
[629]
Feifel, D.; MacDonald, K.; Cobb, P.; Minassian, A. Adjunctive intranasal oxytocin improves verbal memory in people with schizophrenia. Schizophr. Res., 2012, 139(1-3), 207-210.
[http://dx.doi.org/10.1016/j.schres.2012.05.018] [PMID: 22682705]
[630]
Zheng, W.; Zhu, X.M.; Zhang, Q.E.; Yang, X.H.; Cai, D.B.; Li, L.; Li, X.B.; Ng, C.H.; Ungvari, G.S.; Ning, Y.P.; Xiang, Y.T. Adjunctive intranasal oxytocin for schizophrenia: A meta-analysis of randomized, double-blind, placebo-controlled trials. Schizophr. Res., 2019, 206, 13-20.
[http://dx.doi.org/10.1016/j.schres.2018.12.007] [PMID: 30573406]
[631]
Modabbernia, A.; Rezaei, F.; Salehi, B.; Jafarinia, M.; Ashrafi, M.; Tabrizi, M.; Hosseini, S.M.R.; Tajdini, M.; Ghaleiha, A.; Akhondzadeh, S. Intranasal oxytocin as an adjunct to risperidone in patients with schizophrenia: An 8-week, randomized, double-blind, placebo-controlled study. CNS Drugs, 2013, 27(1), 57-65.
[http://dx.doi.org/10.1007/s40263-012-0022-1] [PMID: 23233269]
[632]
Buchanan, R.W.; Kelly, D.L.; Weiner, E.; Gold, J.M.; Strauss, G.P.; Koola, M.M.; McMahon, R.P.; Carpenter, W.T. A randomized clinical trial of oxytocin or galantamine for the treatment of negative symptoms and cognitive impairments in people with schizophrenia. J. Clin. Psychopharmacol., 2017, 37(4), 394-400.
[http://dx.doi.org/10.1097/JCP.0000000000000720] [PMID: 28590362]
[633]
Cacciotti-Saija, C.; Langdon, R.; Ward, P.B.; Hickie, I.B.; Scott, E.M.; Naismith, S.L.; Moore, L.; Alvares, G.A.; Redoblado Hodge, M.A.; Guastella, A.J. A double-blind randomized controlled trial of oxytocin nasal spray and social cognition training for young people with early psychosis. Schizophr. Bull., 2015, 41(2), 483-493.
[http://dx.doi.org/10.1093/schbul/sbu094] [PMID: 24962607]
[634]
Strauss, G.P.; Granholm, E.; Holden, J.L.; Ruiz, I.; Gold, J.M.; Kelly, D.L.; Buchanan, R.W. The effects of combined oxytocin and cognitive behavioral social skills training on social cognition in schizophrenia. Psychol. Med., 2019, 49(10), 1731-1739.
[http://dx.doi.org/10.1017/S0033291718002465] [PMID: 30180918]
[635]
Halverson, T.; Jarskog, L.F.; Pedersen, C.; Penn, D. Effects of oxytocin on empathy, introspective accuracy, and social symptoms in schizophrenia: A 12-week twice-daily randomized controlled trial. Schizophr. Res., 2019, 204, 178-182.
[http://dx.doi.org/10.1016/j.schres.2018.09.013] [PMID: 30243853]
[636]
Busnelli, M.; Dagani, J.; de Girolamo, G.; Balestrieri, M.; Pini, S.; Saviotti, F.M.; Scocco, P.; Sisti, D.; Rocchi, M.; Chini, B. Unaltered oxytocin and vasopressin plasma levels in patients with schizophrenia after 4 months of daily treatment with intranasal oxytocin. J. Neuroendocrinol., 2016, 28(4)
[http://dx.doi.org/10.1111/jne.12359] [PMID: 26715485]
[637]
Abu-Akel, A.; Fischer-Shofty, M.; Levkovitz, Y.; Decety, J.; Shamay-Tsoory, S. The role of oxytocin in empathy to the pain of conflictual out-group members among patients with schizophrenia. Psychol. Med., 2014, 44(16), 3523-3532.
[http://dx.doi.org/10.1017/S003329171400097X] [PMID: 25065955]
[638]
Fulford, D.; Treadway, M.; Woolley, J. Social motivation in schizophrenia: The impact of oxytocin on vigor in the context of social and nonsocial reinforcement. J. Abnorm. Psychol., 2018, 127(1), 116-128.
[http://dx.doi.org/10.1037/abn0000320] [PMID: 29369669]
[639]
Bradley, E.R.; van Nieuwenhuizen, A.; Abram, S.; Niles, A.N.; Woolley, J.D. Oxytocin does not improve working memory in schizophrenia. Schizophr. Res., 2019, 208, 486-487.
[http://dx.doi.org/10.1016/j.schres.2019.01.020] [PMID: 30712813]
[640]
Tas, C.; Brown, E.C.; Eskikurt, G.; Irmak, S.; Aydın, O.; Esen-Danaci, A.; Brüne, M. Cortisol response to stress in schizophrenia: Associations with oxytocin, social support and social functioning. Psychiatry Res., 2018, 270, 1047-1052.
[http://dx.doi.org/10.1016/j.psychres.2018.05.011] [PMID: 29960725]
[641]
Warren, K.R.; Wehring, H.J.; Liu, F.; McMahon, R.P.; Chen, S.; Chester, C.; Kelly, D.L. Effects of intranasal oxytocin on satiety signaling in people with schizophrenia. Physiol. Behav., 2018, 189, 86-91.
[http://dx.doi.org/10.1016/j.physbeh.2018.03.008] [PMID: 29524451]
[642]
Watanabe, Y.; Kaneko, N.; Nunokawa, A.; Shibuya, M.; Egawa, J.; Someya, T. Oxytocin receptor (OXTR) gene and risk of schizophrenia: Case-control and family-based analyses and meta-analysis in a Japanese population. Psychiatry Clin. Neurosci., 2012, 66(7), 622.
[http://dx.doi.org/10.1111/j.1440-1819.2012.02396.x] [PMID: 23252931]
[643]
Montag, C.; Brockmann, E.M.; Bayerl, M.; Rujescu, D.; Müller, D.J.; Gallinat, J. Oxytocin and oxytocin receptor gene polymorphisms and risk for schizophrenia: A case–control study. World J. Biol. Psychiatry, 2013, 14(7), 500-508.
[http://dx.doi.org/10.3109/15622975.2012.677547] [PMID: 22651577]
[644]
Montag, C.; Brockmann, E.M.; Lehmann, A.; Müller, D.J.; Rujescu, D.; Gallinat, J. Association between oxytocin receptor gene polymorphisms and self-rated ‘empathic concern’ in schizophrenia. PLoS One, 2012, 7(12), , e51882..
[http://dx.doi.org/10.1371/journal.pone.0051882] [PMID: 23284802]
[645]
Souza, R.P.; de Luca, V.; Meltzer, H.Y.; Lieberman, J.A.; Kennedy, J.L. Schizophrenia severity and clozapine treatment outcome association with oxytocinergic genes. Int. J. Neuropsychopharmacol., 2010, 13(6), 793-798.
[http://dx.doi.org/10.1017/S1461145710000167] [PMID: 20196918]
[646]
Souza, R.P.; Ismail, P.; Meltzer, H.Y.; Kennedy, J.L. Variants in the oxytocin gene and risk for schizophrenia. Schizophr. Res., 2010, 121(1-3), 279-280.
[http://dx.doi.org/10.1016/j.schres.2010.04.019] [PMID: 20547038]
[647]
Teltsh, O.; Kanyas-Sarner, K.; Rigbi, A.; Greenbaum, L.; Lerer, B.; Kohn, Y. Oxytocin and vasopressin genes are significantly associated with schizophrenia in a large Arab-Israeli pedigree. Int. J. Neuropsychopharmacol., 2012, 15(3), 309-319.
[http://dx.doi.org/10.1017/S1461145711001374] [PMID: 21899794]
[648]
Veras, A.B.; Getz, M.; Froemke, R.C.; Nardi, A.E.; Alves, G.S.; Walsh-Messinger, J.; Chao, M.V.; Kranz, T.M.; Malaspina, D. Rare missense coding variants in oxytocin receptor (OXTR) in schizophrenia cases are associated with early trauma exposure, cognition and emotional processing. J. Psychiatr. Res., 2018, 97, 58-64.
[http://dx.doi.org/10.1016/j.jpsychires.2017.11.011] [PMID: 29190530]
[649]
Bang, M.; Kang, J.I.; Kim, S.J.; Park, J.Y.; Kim, K.R.; Lee, S.Y.; Park, K.; Lee, E.; Lee, S.K.; An, S.K.; Reduced, DNA Methylation of the oxytocin receptor gene is associated with anhedonia-asociality in women with recent-onset schizophrenia and ultra-high risk for psychosis. Schizophr. Bull., 2019, 45(6), 1279-1290.
[http://dx.doi.org/10.1093/schbul/sbz016] [PMID: 31220321]
[650]
Uhrig, S.; Hirth, N.; Broccoli, L.; von Wilmsdorff, M.; Bauer, M.; Sommer, C.; Zink, M.; Steiner, J.; Frodl, T.; Malchow, B.; Falkai, P.; Spanagel, R.; Hansson, A.C.; Schmitt, A. Reduced oxytocin receptor gene expression and binding sites in different brain regions in schizophrenia: A post-mortem study. Schizophr. Res., 2016, 177(1-3), 59-66.
[http://dx.doi.org/10.1016/j.schres.2016.04.019] [PMID: 27132494]
[651]
Zhang, J.; Zhou, L.; Yang, Y.; Peng, W.; Wang, W.; Chen, X. Therapeutic and triage strategies for 2019 novel coronavirus disease in fever clinics. Lancet Respir. Med., 2020, 8(3), e11-e12.
[http://dx.doi.org/10.1016/S2213-2600(20)30071-0] [PMID: 32061335]
[652]
Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.R.W.; Pollard, A.J. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect. Dis., 2021, 21(2), e26-e35.
[http://dx.doi.org/10.1016/S1473-3099(20)30773-8] [PMID: 33125914]
[653]
Chakraborty, S.; Mallajosyula, V.; Tato, C.M.; Tan, G.S.; Wang, T.T. SARS-CoV-2 vaccines in advanced clinical trials: Where do we stand? Adv. Drug Deliv. Rev., 2021, 172, 314-338.
[http://dx.doi.org/10.1016/j.addr.2021.01.014] [PMID: 33482248]
[654]
Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J., 2020, 41(32), 3038-3044.
[http://dx.doi.org/10.1093/eurheartj/ehaa623] [PMID: 32882706]
[655]
Alharthy, A.; Faqihi, F.; Memish, Z.A.; Karakitsos, D. Fragile endothelium and brain dysregulated neurochemical activity in COVID-19. ACS Chem. Neurosci., 2020, 11(15), 2159-2162.
[http://dx.doi.org/10.1021/acschemneuro.0c00437] [PMID: 32786343]
[656]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[657]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[658]
Buemann, B.; Marazziti, D.; Uvnäs-Moberg, K. Can intravenous oxytocin infusion counteract hyper-inflammation in COVID-19 infected patients? World J. Biol. Psychiatry, 2021, 22(5), 387-398.
[http://dx.doi.org/10.1080/15622975.2020.1814408] [PMID: 32914674]
[659]
Soumier, A.; Sirigu, A. Oxytocin as a potential defence against COVID-19? Med. Hypotheses, 2020, 140, , 109785..
[http://dx.doi.org/10.1016/j.mehy.2020.109785] [PMID: 32344303]
[660]
Korkmaz, H.; Önal, D.; Alışık, M.; Erel, Ö.; Pehlivanoğlu, B. The impact of oxytocin on thiol/disulphide and malonyldialdehyde/glutathione homeostasis in stressed rats. Biol. Chem., 2020, 401(11), 1283-1292.
[http://dx.doi.org/10.1515/hsz-2020-0190] [PMID: 32554831]
[661]
Panaro, M.A.; Benameur, T.; Porro, C. Hypothalamic neuropeptide brain protection: Focus on oxytocin. J. Clin. Med., 2020, 9(5), 1534.
[http://dx.doi.org/10.3390/jcm9051534] [PMID: 32438751]
[662]
Jankowski, M.; Broderick, T.L.; Gutkowska, J. The role of oxytocin in cardiovascular protection. Front. Psychol., 2020, 11, 2139.
[http://dx.doi.org/10.3389/fpsyg.2020.02139] [PMID: 32982875]
[663]
Zahran, A.M.; Zahran, Z.A.M.; Mady, Y.H.; Mahran, E.E.M.O.; Rashad, A.; Makboul, A.; Nasif, K.A.; Abdelmaksoud, A.A.; El-Badawy, O. Differential alterations in peripheral lymphocyte subsets in COVID-19 patients: Upregulation of double-positive and double-negative T cells. Multidiscip. Respir. Med., 2021, 16(2), 758.
[http://dx.doi.org/10.4081/mrm.2021.758] [PMID: 34221400]
[664]
Kratzer, B.; Trapin, D.; Ettel, P.; Körmöczi, U.; Rottal, A.; Tuppy, F.; Feichter, M.; Gattinger, P.; Borochova, K.; Dorofeeva, Y.; Tulaeva, I.; Weber, M.; Grabmeier-Pfistershammer, K.; Tauber, P.A.; Gerdov, M.; Mühl, B.; Perkmann, T.; Fae, I.; Wenda, S.; Führer, H.; Henning, R.; Valenta, R.; Pickl, W.F. Immunological imprint of COVID‐19 on human peripheral blood leukocyte populations. Allergy, 2021, 76(3), 751-765.
[http://dx.doi.org/10.1111/all.14647] [PMID: 33128792]
[665]
Gan, J.; Li, J.; Li, S.; Yang, C. Leucocyte subsets effectively predict the clinical outcome of patients with COVID-19 pneumonia: A retrospective case-control study. Front. Public Health, 2020, 8, 299.
[http://dx.doi.org/10.3389/fpubh.2020.00299] [PMID: 32626680]
[666]
Rezaei, M.; Marjani, M.; Mahmoudi, S.; Mortaz, E.; Mansouri, D. Dynamic changes of lymphocyte subsets in the course of COVID-19. Int. Arch. Allergy Immunol., 2021, 182(3), 254-262.
[http://dx.doi.org/10.1159/000514202] [PMID: 33498051]
[667]
Schultze-Florey, C.R.; Chukhno, E.; Goudeva, L.; Blasczyk, R.; Ganser, A.; Prinz, I.; Förster, R.; Koenecke, C.; Odak, I. Distribution of major lymphocyte subsets and memory T-cell subpopulations in healthy adults employing GLP-conforming multicolor flow cytometry. Leukemia, 2021, 35(10), 3021-3025.
[http://dx.doi.org/10.1038/s41375-021-01348-5] [PMID: 34290358]
[668]
Lagunas-Rangel, F.A. Neutrophil‐to‐lymphocyte ratio and lymphocyte‐to‐C‐reactive protein ratio in patients with severe coronavirus disease 2019 (COVID‐19): A meta‐analysis. J. Med. Virol., 2020, 92(10), 1733-1734.
[http://dx.doi.org/10.1002/jmv.25819] [PMID: 32242950]
[669]
Wang, F.; Nie, J.; Wang, H.; Zhao, Q.; Xiong, Y.; Deng, L.; Song, S.; Ma, Z.; Mo, P.; Zhang, Y. Characteristics of peripheral lymphocyte subset alteration in COVID-19 Pneumonia. J. Infect. Dis., 2020, 221(11), 1762-1769.
[http://dx.doi.org/10.1093/infdis/jiaa150] [PMID: 32227123]
[670]
Middleton, E.A.; He, X.Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; Cody, M.J.; Manne, B.K.; Portier, I.; Harris, E.S.; Petrey, A.C.; Beswick, E.J.; Caulin, A.F.; Iovino, A.; Abegglen, L.M.; Weyrich, A.S.; Rondina, M.T.; Egeblad, M.; Schiffman, J.D.; Yost, C.C. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 2020, 136(10), 1169-1179.
[http://dx.doi.org/10.1182/blood.2020007008] [PMID: 32597954]
[671]
Parackova, Z.; Bloomfield, M.; Klocperk, A.; Sediva, A. Neutrophils mediate Th17 promotion in COVID‐19 patients. J. Leukoc. Biol., 2021, 109(1), 73-76.
[http://dx.doi.org/10.1002/JLB.4COVCRA0820-481RRR] [PMID: 33289169]
[672]
Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; Loda, M.; Looney, M.R.; McAllister, F.; Rayes, R.; Renaud, S.; Rousseau, S.; Salvatore, S.; Schwartz, R.E.; Spicer, J.D.; Yost, C.C.; Weber, A.; Zuo, Y.; Egeblad, M. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J. Exp. Med., 2020, 217(6), , e20200652..
[http://dx.doi.org/10.1084/jem.20200652] [PMID: 32302401]
[673]
Wang, J.; Li, Q.; Yin, Y.; Zhang, Y.; Cao, Y.; Lin, X.; Huang, L.; Hoffmann, D.; Lu, M.; Qiu, Y. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front. Immunol., 2020, 11, 2063.
[http://dx.doi.org/10.3389/fimmu.2020.02063] [PMID: 33013872]
[674]
Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M.; Galli, M.; Catena, E.; Tosoni, A.; Gianatti, A.; Nebuloni, M. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect. Dis., 2020, 20(10), 1135-1140.
[http://dx.doi.org/10.1016/S1473-3099(20)30434-5] [PMID: 32526193]
[675]
Paidi, R.K.; Jana, M.; Mishra, R.K.; Dutta, D.; Raha, S.; Pahan, K. ACE-2-interacting domain of SARS-CoV-2 (AIDS) peptide suppresses inflammation to reduce fever and protect lungs and heart in mice: Implications for COVID-19 therapy. J. Neuroimmune Pharmacol., 2021, 16(1), 59-70.
[http://dx.doi.org/10.1007/s11481-020-09979-8] [PMID: 33426604]
[676]
Kelesoglu, S.; Yilmaz, Y.; Ozkan, E.; Calapkorur, B.; Gok, M.; Dursun, Z.B.; Kilic, A.U.; Demirelli, S.; Simsek, Z.; Elcık, D. New onset atrial fibrilation and risk faktors in COVID-19. J. Electrocardiol., 2021, 65, 76-81.
[http://dx.doi.org/10.1016/j.jelectrocard.2020.12.005] [PMID: 33556739]
[677]
Wang, S.C.; Wang, Y.F. Cardiovascular protective properties of oxytocin against COVID-19. Life Sci., 2021, 270, , 119130..
[http://dx.doi.org/10.1016/j.lfs.2021.119130] [PMID: 33513400]
[678]
Gustine, J.N.; Jones, D. Immunopathology of hyperinflammation in COVID-19. Am. J. Pathol., 2021, 191(1), 4-17.
[http://dx.doi.org/10.1016/j.ajpath.2020.08.009] [PMID: 32919977]
[679]
McGonagle, D.; Sharif, K.; O’Regan, A.; Bridgewood, C. The role of cytokines including Interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev., 2020, 19(6), , 102537..
[http://dx.doi.org/10.1016/j.autrev.2020.102537] [PMID: 32251717]
[680]
Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol., 2020, 20(6), 355-362.
[http://dx.doi.org/10.1038/s41577-020-0331-4] [PMID: 32376901]
[681]
Soy, M.; Keser, G.; Atagündüz, P.; Tabak, F.; Atagündüz, I.; Kayhan, S. Cytokine storm in COVID-19: Pathogenesis and overview of anti-inflammatory agents used in treatment. Clin. Rheumatol., 2020, 39(7), 2085-2094.
[http://dx.doi.org/10.1007/s10067-020-05190-5] [PMID: 32474885]
[682]
İşeri, S.Ö.; Şener, G.; Sağlam, B.; Gedik, N.; Ercan, F.; Yeğen, B.Ç. Oxytocin ameliorates oxidative colonic inflammation by a neutrophil-dependent mechanism. Peptides, 2005, 26(3), 483-491.
[http://dx.doi.org/10.1016/j.peptides.2004.10.005] [PMID: 15652655]
[683]
İşeri, S.Ö.; Şener, G.; Saǧlam, B.; Gedik, N.; Ercan, F.; Yeǧen, B.Ç. Oxytocin protects against sepsis-induced multiple organ damage: Role of neutrophils. J. Surg. Res., 2005, 126(1), 73-81.
[http://dx.doi.org/10.1016/j.jss.2005.01.021] [PMID: 15916978]
[684]
Bıyıklı, N.K.; Tuğtepe, H.; Şener, G.; Velioğlu-Öğünç, A.; Çetinel, Ş.; Midillioğlu, Ş.; Gedik, N.; Yeğen, B.Ç. Oxytocin alleviates oxidative renal injury in pyelonephritic rats via a neutrophil-dependent mechanism. Peptides, 2006, 27(9), 2249-2257.
[http://dx.doi.org/10.1016/j.peptides.2006.03.029] [PMID: 16707192]
[685]
Düşünceli, F.; İşeri, S.Ö.; Ercan, F.; Gedik, N.; Yeğen, C.; Yeğen, B.Ç. Oxytocin alleviates hepatic ischemia–reperfusion injury in rats. Peptides, 2008, 29(7), 1216-1222.
[http://dx.doi.org/10.1016/j.peptides.2008.02.010] [PMID: 18403049]
[686]
Mou, X.; Fang, J.; Yang, A.; Du, G. Oxytocin ameliorates bone cancer pain by suppressing toll-like receptor 4 and proinflammatory cytokines in rat spinal cord. J. Neurogenet., 2020, 34(2), 216-222.
[http://dx.doi.org/10.1080/01677063.2019.1711077] [PMID: 32116108]
[687]
Hu, G.; Malik, A.B.; Minshall, R.D. Toll-like receptor 4 mediates neutrophil sequestration and lung injury induced by endotoxin and hyperinflation. Crit. Care Med., 2010, 38(1), 194-201.
[http://dx.doi.org/10.1097/CCM.0b013e3181bc7c17] [PMID: 19789446]
[688]
Tuğtepe, H.; Şener, G.; Bıyıklı, N.K.; Yüksel, M.; Çetinel, Ş.; Gedik, N.; Yeğen, B.Ç. The protective effect of oxytocin on renal ischemia/reperfusion injury in rats. Regul. Pept., 2007, 140(3), 101-108.
[http://dx.doi.org/10.1016/j.regpep.2006.11.026] [PMID: 17261335]
[689]
Deing, V.; Roggenkamp, D.; Kühnl, J.; Gruschka, A.; Stäb, F.; Wenck, H.; Bürkle, A.; Neufang, G. Oxytocin modulates proliferation and stress responses of human skin cells: Implications for atopic dermatitis. Exp. Dermatol., 2013, 22(6), 399-405.
[http://dx.doi.org/10.1111/exd.12155] [PMID: 23711064]
[690]
Jankowski, M.; Bissonauth, V.; Gao, L.; Gangal, M.; Wang, D.; Danalache, B.; Wang, Y.; Stoyanova, E.; Cloutier, G.; Blaise, G.; Gutkowska, J. Anti-inflammatory effect of oxytocin in rat myocardial infarction. Basic Res. Cardiol., 2010, 105(2), 205-218.
[http://dx.doi.org/10.1007/s00395-009-0076-5] [PMID: 20012748]
[691]
Dou, D.; Liang, J.; Zhai, X.; Li, G.; Wang, H.; Han, L.; Lin, L.; Ren, Y.; Liu, S.; Liu, C.; Guo, W.; Li, J. Oxytocin signalling in dendritic cells regulates immune tolerance in the intestine and alleviates DSS-induced colitis. Clin. Sci. (Lond.), 2021, 135(4), 597-611.
[http://dx.doi.org/10.1042/CS20201438] [PMID: 33564880]
[692]
Fekete, E.M.; Antoni, M.H.; Lopez, C.; Mendez, A.J.; Szeto, A.; Fletcher, M.A.; Klimas, N.; Kumar, M.; Schneiderman, N. Stress buffering effects of oxytocin on HIV status in low-income ethnic minority women. Psychoneuroendocrinology, 2011, 36(6), 881-890.
[http://dx.doi.org/10.1016/j.psyneuen.2010.12.003] [PMID: 21215526]
[693]
Singh, B.; Schwartz, J.A.; Sandrock, C.; Bellemore, S.M.; Nikoopour, E. Modulation of autoimmune diseases by interleukin (IL)-17 producing regulatory T helper (Th17) cells. Indian J. Med. Res., 2013, 138(5), 591-594.
[PMID: 24434314]
[694]
Hansenne, I.; Rasier, G.; Péqueux, C.; Brilot, F.; Renard, C.; Breton, C.; Greimers, R.; Legros, J.J.; Geenen, V.; Martens, H.J. Ontogenesis and functional aspects of oxytocin and vasopressin gene expression in the thymus network. J. Neuroimmunol., 2005, 158(1-2), 67-75.
[http://dx.doi.org/10.1016/j.jneuroim.2004.08.007] [PMID: 15589039]
[695]
Macciò, A.; Madeddu, C.; Chessa, P.; Panzone, F.; Lissoni, P.; Mantovani, G. Oxytocin both increases proliferative response of peripheral blood lymphomonocytes to phytohemagglutinin and reverses immunosuppressive estrogen activity. In Vivo, 2010, 24(2), 157-163.
[PMID: 20363988]
[696]
Stanić, D.; Plećaš-Solarović, B.; Petrović, J.; Bogavac-Stanojević, N.; Sopić, M.; Kotur-Stevuljević, J.; Ignjatović, S.; Pešić, V. Hydrogen peroxide-induced oxidative damage in peripheral blood lymphocytes from rats chronically treated with corticosterone: The protective effect of oxytocin treatment. Chem. Biol. Interact., 2016, 256, 134-141.
[http://dx.doi.org/10.1016/j.cbi.2016.07.006] [PMID: 27402529]
[697]
Tang, Y.; Shi, Y.; Gao, Y.; Xu, X.; Han, T.; Li, J.; Liu, C. Oxytocin system alleviates intestinal inflammation by regulating macrophages polarization in experimental colitis. Clin. Sci. (Lond.), 2019, 133(18), 1977-1992.
[http://dx.doi.org/10.1042/CS20190756] [PMID: 31519790]
[698]
Garrido-Urbani, S.; Deblon, N.; Poher, A.L.; Caillon, A.; Ropraz, P.; Rohner-Jeanrenaud, F.; Altirriba, J. Inhibitory role of oxytocin on TNFα expression assessed in vitro and in vivo. Diabetes Metab., 2018, 44(3), 292-295.
[http://dx.doi.org/10.1016/j.diabet.2017.10.004] [PMID: 29129540]
[699]
Szeto, A.; Nation, D.A.; Mendez, A.J.; Dominguez-Bendala, J.; Brooks, L.G.; Schneiderman, N.; McCabe, P.M. Oxytocin attenuates NADPH-dependent superoxide activity and IL-6 secretion in macrophages and vascular cells. Am. J. Physiol. Endocrinol. Metab., 2008, 295(6), E1495-E1501.
[http://dx.doi.org/10.1152/ajpendo.90718.2008] [PMID: 18940936]
[700]
Huang, S.; Zhu, B.; Cheon, I.S.; Goplen, N.P.; Jiang, L.; Zhang, R.; Peebles, R.S.; Mack, M.; Kaplan, M.H.; Limper, A.H.; Sun, J. PPAR-γ in macrophages limits pulmonary inflammation and promotes host recovery following respiratory viral infection. J. Virol., 2019, 93(9), e00030-19.
[http://dx.doi.org/10.1128/JVI.00030-19] [PMID: 30787149]
[701]
Eckertova, M.; Ondrejcakova, M.; Krskova, K.; Zorad, S.; Jezova, D. Subchronic treatment of rats with oxytocin results in improved adipocyte differentiation and increased gene expression of factors involved in adipogenesis. Br. J. Pharmacol., 2011, 162(2), 452-463.
[http://dx.doi.org/10.1111/j.1476-5381.2010.01037.x] [PMID: 20846187]
[702]
Rashed, L.A.; Hashem, R.M.; Soliman, H.M. Oxytocin inhibits NADPH oxidase and P38 MAPK in cisplatin-induced nephrotoxicity. Biomed. Pharmacother., 2011, 65(7), 474-480.
[http://dx.doi.org/10.1016/j.biopha.2011.07.001] [PMID: 21993003]
[703]
Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Plesnicher, C.L.; Dweik, R.A.; Erzurum, S.C. Human vascular endothelial cells express oxytocin receptors. Endocrinology, 1999, 140(3), 1301-1309.
[http://dx.doi.org/10.1210/endo.140.3.6546] [PMID: 10067857]
[704]
Gonzalez-Reyes, A.; Menaouar, A.; Yip, D.; Danalache, B.; Plante, E.; Noiseux, N.; Gutkowska, J.; Jankowski, M. Molecular mechanisms underlying oxytocin-induced cardiomyocyte protection from simulated ischemia–reperfusion. Mol. Cell. Endocrinol., 2015, 412, 170-181.
[http://dx.doi.org/10.1016/j.mce.2015.04.028] [PMID: 25963797]
[705]
Khan, R.; Kirschenbaum, L.A.; LaRow, C.; Berna, G.; Griffin, K.; Astiz, M.E. Augmentation of platelet and endothelial cell eNOS activity decreases sepsis-related neutrophilendothelial cell interactions. Shock, 2010, 33(3), 242-246.
[http://dx.doi.org/10.1097/SHK.0b013e3181b0f96f] [PMID: 19536045]
[706]
Furube, E.; Mannari, T.; Morita, S.; Nishikawa, K.; Yoshida, A.; Itoh, M.; Miyata, S. VEGF-dependent and PDGF-dependent dynamic neurovascular reconstruction in the neurohypophysis of adult mice. J. Endocrinol., 2014, 222(1), 161-179.
[http://dx.doi.org/10.1530/JOE-14-0075] [PMID: 24860149]
[707]
Mei, S.H.J.; Haitsma, J.J.; Dos Santos, C.C.; Deng, Y.; Lai, P.F.H.; Slutsky, A.S.; Liles, W.C.; Stewart, D.J. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am. J. Respir. Crit. Care Med., 2010, 182(8), 1047-1057.
[http://dx.doi.org/10.1164/rccm.201001-0010OC] [PMID: 20558630]
[708]
Kim, Y.S.; Ahn, Y.; Kwon, J.S.; Cho, Y.K.; Jeong, M.H.; Cho, J.G.; Park, J.C.; Kang, J.C. Priming of mesenchymal stem cells with oxytocin enhances the cardiac repair in ischemia/reperfusion injury. Cells Tissues Organs, 2012, 195(5), 428-442.
[http://dx.doi.org/10.1159/000329234] [PMID: 21893931]
[709]
Plante, E.; Menaouar, A.; Danalache, B.A.; Yip, D.; Broderick, T.L.; Chiasson, J.L.; Jankowski, M.; Gutkowska, J. Oxytocin treatment prevents the cardiomyopathy observed in obese diabetic male db/db mice. Endocrinology, 2015, 156(4), 1416-1428.
[http://dx.doi.org/10.1210/en.2014-1718] [PMID: 25562615]
[710]
Noiseux, N.; Borie, M.; Desnoyers, A.; Menaouar, A.; Stevens, L.M.; Mansour, S.; Danalache, B.A.; Roy, D.C.; Jankowski, M.; Gutkowska, J. Preconditioning of stem cells by oxytocin to improve their therapeutic potential. Endocrinology, 2012, 153(11), 5361-5372.
[http://dx.doi.org/10.1210/en.2012-1402] [PMID: 23024264]
[711]
Everett, N.A.; Turner, A.J.; Costa, P.A.; Baracz, S.J.; Cornish, J.L. The vagus nerve mediates the suppressing effects of peripherally administered oxytocin on methamphetamine self-administration and seeking in rats. Neuropsychopharmacology, 2021, 46(2), 297-304.
[http://dx.doi.org/10.1038/s41386-020-0719-7] [PMID: 32450570]
[712]
Chen, X.; Zhao, C.; Zhang, C.; Li, Q.; Chen, J.; Cheng, L.; Zhou, J.; Su, X.; Song, Y. Vagal-α7nAChR signaling promotes lung stem cells regeneration via fibroblast growth factor 10 during lung injury repair. Stem Cell Res. Ther., 2020, 11(1), 230.
[http://dx.doi.org/10.1186/s13287-020-01757-w] [PMID: 32522255]
[713]
Iwasaki, Y.; Maejima, Y.; Suyama, S.; Yoshida, M.; Arai, T.; Katsurada, K.; Kumari, P.; Nakabayashi, H.; Kakei, M.; Yada, T. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: A route for ameliorating hyperphagia and obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2015, 308(5), R360-R369.
[http://dx.doi.org/10.1152/ajpregu.00344.2014] [PMID: 25540101]
[714]
Uvnäs-Moberg, K.; Handlin, L.; Petersson, M. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation. Front. Psychol., 2015, 5, 1529.
[http://dx.doi.org/10.3389/fpsyg.2014.01529] [PMID: 25628581]
[715]
Borovikova, L.V.; Ivanova, S.; Nardi, D.; Zhang, M.; Yang, H.; Ombrellino, M.; Tracey, K.J. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton. Neurosci., 2000, 85(1-3), 141-147.
[http://dx.doi.org/10.1016/S1566-0702(00)00233-2] [PMID: 11189021]
[716]
Aa, S. Exogenous oxytocin (OT) ameliorates pulmonary damage caused by Escherichia coli (E. coli) infection in chronically stressed rats. FASEB, 2011, 25(1), 999.4.
[http://dx.doi.org/10.1096/fasebj.25.1_supplement.999.4]
[717]
Wang, P.; Wang, S.C.; Yang, H.; Lv, C.; Jia, S.; Liu, X.; Wang, X.; Meng, D.; Qin, D.; Zhu, H.; Wang, Y.F. Therapeutic potential of oxytocin in atherosclerotic cardiovascular disease: Mechanisms and signaling pathways. Front. Neurosci., 2019, 13, 454.
[http://dx.doi.org/10.3389/fnins.2019.00454] [PMID: 31178679]
[718]
Mukaddam-Daher, S.; Yin, Y.L.; Roy, J.; Gutkowska, J.; Cardinal, R. Negative inotropic and chronotropic effects of oxytocin. Hypertension, 2001, 38(2), 292-296.
[http://dx.doi.org/10.1161/01.HYP.38.2.292] [PMID: 11509492]
[719]
Michelini, L.C.; Marcelo, M.C.; Amico, J.; Morris, M. Oxytocinergic regulation of cardiovascular function: Studies in oxytocin-deficient mice. Am. J. Physiol. Heart Circ. Physiol., 2003, 284(6), H2269-H2276.
[http://dx.doi.org/10.1152/ajpheart.00774.2002] [PMID: 12531722]
[720]
De Melo, V.U.; Saldanha, R.R.M.; Dos Santos, C.R.; De Campos Cruz, J.; Lira, V.A.; Santana-Filho, V.J.; Michelini, L.C. Ovarian hormone deprivation reduces oxytocin expression in paraventricular nucleus preautonomic neurons and correlates with baroreflex impairment in rats. Front. Physiol., 2016, 7, 461.
[http://dx.doi.org/10.3389/fphys.2016.00461] [PMID: 27790154]
[721]
Garrott, K.; Dyavanapalli, J.; Cauley, E.; Dwyer, M.K.; Kuzmiak-Glancy, S.; Wang, X.; Mendelowitz, D.; Kay, M.W. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure. Cardiovasc. Res., 2017, 113(11), 1318-1328.
[http://dx.doi.org/10.1093/cvr/cvx084] [PMID: 28472396]
[722]
Gutkowska, J.; Jankowski, M.; Lambert, C.; Mukaddam-Daher, S.; Zingg, H.H.; McCann, S.M. Oxytocin releases atrial natriuretic peptide by combining with oxytocin receptors in the heart. Proc. Natl. Acad. Sci. USA, 1997, 94(21), 11704-11709.
[http://dx.doi.org/10.1073/pnas.94.21.11704] [PMID: 9326674]
[723]
Ishii, H.; Amano, T.; Matsubara, T.; Murohara, T. Pharmacological intervention for prevention of left ventricular remodeling and improving prognosis in myocardial infarction. Circulation, 2008, 118(25), 2710-2718.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.748772] [PMID: 19106394]
[724]
Breidenbach, J.; Dube, P.; Ghosh, S.; Abdullah, B.; Modyanov, N.; Malhotra, D.; Dworkin, L.; Haller, S.; Kennedy, D. Impact of comorbidities on SARS-CoV-2 viral entry-related genes. J. Pers. Med., 2020, 10(4), 146.
[http://dx.doi.org/10.3390/jpm10040146] [PMID: 32992731]
[725]
Kobayashi, H.; Yasuda, S.; Bao, N.; Iwasa, M.; Kawamura, I.; Yamada, Y.; Yamaki, T.; Sumi, S.; Ushikoshi, H.; Nishigaki, K.; Takemura, G.; Fujiwara, T.; Fujiwara, H.; Minatoguchi, S. Postinfarct treatment with oxytocin improves cardiac function and remodeling via activating cell-survival signals and angiogenesis. J. Cardiovasc. Pharmacol., 2009, 54(6), 510-519.
[http://dx.doi.org/10.1097/FJC.0b013e3181bfac02] [PMID: 19755919]
[726]
Polshekan, M.; Khori, V.; Alizadeh, A.M.; Ghayour-Mobarhan, M.; Saeidi, M.; Jand, Y.; Rajaei, M.; Farnoosh, G.; Jamialahmadi, K. The SAFE pathway is involved in the postconditioning mechanism of oxytocin in isolated rat heart. Peptides, 2019, 111, 142-151.
[http://dx.doi.org/10.1016/j.peptides.2018.04.002] [PMID: 29635063]
[727]
Xiong, W.; Yao, M.; Zhou, R.; Qu, Y.; Yang, Y.; Wang, Z.; Song, N.; Chen, H.; Qian, J. Oxytocin ameliorates ischemia/reperfusion-induced injury by inhibiting mast cell degranulation and inflammation in the rat heart. Biomed. Pharmacother., 2020, 128, , 110358..
[http://dx.doi.org/10.1016/j.biopha.2020.110358] [PMID: 32526456]
[728]
Houshmand, F.; Faghihi, M.; Zahediasl, S. Biphasic protective effect of oxytocin on cardiac ischemia/reperfusion injury in anaesthetized rats. Peptides, 2009, 30(12), 2301-2308.
[http://dx.doi.org/10.1016/j.peptides.2009.09.010] [PMID: 19761809]
[729]
Vitalo, A.; Fricchione, J.; Casali, M.; Berdichevsky, Y.; Hoge, E.A.; Rauch, S.L.; Berthiaume, F.; Yarmush, M.L.; Benson, H.; Fricchione, G.L.; Levine, J.B. Nest making and oxytocin comparably promote wound healing in isolation reared rats. PLoS One, 2009, 4(5), , e5523..
[http://dx.doi.org/10.1371/journal.pone.0005523] [PMID: 19436750]
[730]
Xu, P.F.; Fang, M.J.; Jin, Y.Z.; Wang, L.S.; Lin, D.S. Effect of oxytocin on the survival of random skin flaps. Oncotarget, 2017, 8(54), 92955-92965.
[http://dx.doi.org/10.18632/oncotarget.21696] [PMID: 29190969]
[731]
Poutahidis, T.; Kearney, S.M.; Levkovich, T.; Qi, P.; Varian, B.J.; Lakritz, J.R.; Ibrahim, Y.M.; Chatzigiagkos, A.; Alm, E.J.; Erdman, S.E. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One, 2013, 8(10), , e78898..
[http://dx.doi.org/10.1371/journal.pone.0078898] [PMID: 24205344]
[732]
Petersson, M.; Lundeberg, T.; Sohlström, A.; Wiberg, U.; Uvnäs-Moberg, K. Oxytocin increases the survival of musculocutaneous flaps. Naunyn Schmiedebergs Arch. Pharmacol., 1998, 357(6), 701-704.
[http://dx.doi.org/10.1007/PL00005227] [PMID: 9686948]
[733]
Thomas, P.A.; Kim, S. Lost touch? Implications of physical touch for physical health. J. Gerontol. B Psychol. Sci. Soc. Sci., 2021, 76(3), e111-e115.
[http://dx.doi.org/10.1093/geronb/gbaa134] [PMID: 32845008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy