Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Role of Fine Silica as Amorphous Solid Dispersion Carriers for Enhancing Drug Load and Preventing Recrystallization- A Comprehensive Review

Author(s): Rishab Trivedi, Bappaditya Chatterjee*, Sana Kalave and Mrugank Pandya

Volume 20, Issue 6, 2023

Published on: 29 August, 2022

Page: [694 - 707] Pages: 14

DOI: 10.2174/1567201819666220721111852

Price: $65

Abstract

Amorphous solid dispersion (ASD) is a popular concept for improving the dissolution and oral bioavailability of poorly water-soluble drugs. ASD faces two primary challenges of low drug loading and recrystallization upon storage. Several polymeric carriers are used to fabricate a stable ASD formulation with a high drug load. The role of silica in this context has been proven significant. Different types of silica, porous and nonporous, have been used to develop ASD. Amorphous drugs get entrapped into silica pores or adsorbed on their surface. Due to high porosity and wide surface area, silica provides better drug dissolution and high drug loading. Recrystallization of amorphous drugs is inhibited by limited molecular ability inside the delicate pores due to hydrogen bonding with the surface silanol groups. A handful of researches have been published on silica-based ASD, where versatile types of silica have been used. However, the effect of different kinds of silica on product stability and drug loading has been rarely addressed. The present study analyzes multiple porous and nonporous silica types and their distinct role in developing a stable ASD. Emphasis has been given to various types of silica which are commonly used in the pharmaceutical industry.

Keywords: Silica, mesoporous silica, amorphous solid dispersion, dissolution, drug loading, carrier.

Graphical Abstract

[1]
Qian, K.K.; Bogner, R.H. Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J. Pharm. Sci., 2012, 101(2), 444-463.
[http://dx.doi.org/10.1002/jps.22779] [PMID: 21976048]
[2]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[3]
Ting, J.M.; Porter, W.W.; Mecca, J.M.; Bates, F.S.; Reineke, T.M. Advances in polymer design for enhancing oral drug solubility and delivery. Bioconjug. Chem., 2018, 29, 939-952.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00646]
[4]
Slámová, M.; Školáková, T.; Školáková, A.; Patera, J.; Zámostný, P. Preparation of solid dispersions with respect to the dissolution rate of active substance. J. Drug Deliv. Sci. Technol., 2020, 56, 101518.
[http://dx.doi.org/10.1016/j.jddst.2020.101518]
[5]
Silva, I.R.; Kronenberger, T.; Gomes, E.C.L.; César, I.C.; Oliveira, R.B.; Maltarollo, V.G. Improving the solubility of an antifungal thiazolyl hydrazone derivative by cyclodextrin complexation. Eur. J. Pharm. Sci., 2021, 156, 105575.
[http://dx.doi.org/10.1016/j.ejps.2020.105575] [PMID: 32987113]
[6]
Suresh, A.; Gonde, S.; Mondal, P.K.; Sahoo, J.; Chopra, D. Improving solubility and intrinsic dissolution rate of ofloxacin API through salt formation via mechanochemical synthesis with diphenic acid. J. Mol. Struct., 2020, 1221, 128806.
[http://dx.doi.org/10.1016/j.molstruc.2020.128806]
[7]
Higashino, H.; Minami, K.; Kataoka, M.; Tomimori, N.; Rogi, T.; Shibata, H.; Yamashita, S. Control of oral absorption of nutritional supplement using lipid-based formulations (LBFs): Application to the poorly water-soluble ingredient. J. Drug Deliv. Sci. Technol., 2020, 57, 101675.
[http://dx.doi.org/10.1016/j.jddst.2020.101675]
[8]
Sun Sohn, J.; Park, J.W.; Choi, D.H.; Choi, J.S. Design of telmisartan-weak acid solid dispersion to improve its solubility and stability. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2020, 261, 114649.
[http://dx.doi.org/10.1016/j.mseb.2020.114649]
[9]
Zografi, G.; Newman, A. Introduction to amorphous solid dispersions.In: Pharmaceutical Sciences Encyclopedia; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2010, pp. 1-41.
[10]
Sekiguchi, K.; Obi, N.; Ueda, Y. Studies on absorption of eutectic mixture. II.1-2 absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem. Pharm. Bull. (Tokyo), 1964, 12(2), 134-144.
[http://dx.doi.org/10.1248/cpb.12.134] [PMID: 14126741]
[11]
El-Badry, M.; Haq, N.; Fetih, G.; Shakeel, F. Solubility and dissolution enhancement of tadalafil using self-nanoemulsifying drug delivery system. J. Oleo Sci., 2014, 63(6), 567-576.
[http://dx.doi.org/10.5650/jos.ess13236] [PMID: 24770562]
[12]
Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm., 2020, 586, 119560.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119560] [PMID: 32565285]
[13]
Al-Japairai, K.A.S.; Alkhalidi, H.M.; Mahmood, S.; Almurisi, S.H.; Doolaanea, A.A.; Al-Sindi, T.A.; Chatterjee, B. Lyophilized amorphous dispersion of telmisartan in a combined carrier-alkalizer system: Formulation development and in vivo study. ACS Omega, 2020, 5(50), 32466-32480.
[http://dx.doi.org/10.1021/acsomega.0c04588] [PMID: 33376884]
[14]
Shi, N-Q.; Wang, S-R.; Zhang, Y.; Huo, J-S.; Wang, L-N.; Cai, J-H.; Li, Z.Q.; Xiang, B.; Qi, X.R. Hot melt extrusion technology for improved dissolution, solubility and “spring-parachute” processes of amorphous self-micellizing solid dispersions containing BCS II drugs indomethacin and fenofibrate: Profiles and mechanisms. Eur. J. Pharm. Sci., 2019, 130, 78-90.
[http://dx.doi.org/10.1016/j.ejps.2019.01.019] [PMID: 30684657]
[15]
Kyaw Oo, M.; Mandal, U.K.; Chatterjee, B. Polymeric behavior evaluation of PVP K30-poloxamer binary carrier for solid dispersed nisoldipine by experimental design. Pharm. Dev. Technol., 2017, 22(1), 2-12.
[http://dx.doi.org/10.3109/10837450.2015.1116568] [PMID: 26616399]
[16]
Oo, M.K.; Mahmood, S.; Wui, W.T.; Mandal, U.K.; Chatterjee, B. Effects of different formulation methods on drug crystallinity, drug-carrier interaction, and ex vivo permeation of a ternary solid dispersion containing nisoldipine. J. Pharm. Innov., 2021, 16, 26-37.
[17]
Wu, H.; Liu, Y.; Ci, T.; Ke, X. Application of HPMC HME polymer as hot melt extrusion carrier in carbamazepine solid dispersion. Drug Dev. Ind. Pharm., 2020, 46(12), 1911-1918.
[http://dx.doi.org/10.1080/03639045.2020.1821045] [PMID: 32942902]
[18]
Solanki, N.G.; Lam, K.; Tahsin, M.; Gumaste, S.G.; Shah, A.V.; Serajuddin, A.T.M. Effects of surfactants on itraconazole-HPMCAS solid dispersion prepared by hot-melt extrusion I: Miscibility and drug release. J. Pharm. Sci., 2019, 108(4), 1453-1465.
[http://dx.doi.org/10.1016/j.xphs.2018.10.058] [PMID: 30395834]
[19]
Milovanovic, S.; Djuris, J. Dapčević, A.; Medarevic, D.; Ibric, S.; Zizovic, I. Soluplus®, Eudragit®, HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. Polym. Test., 2019, 76, 54-64.
[http://dx.doi.org/10.1016/j.polymertesting.2019.03.001]
[20]
Browne, E.; Charifou, R.; Worku, Z.A.; Babu, R.P.; Healy, A.M. Amorphous solid dispersions of ketoprofen and poly-vinyl polymers prepared via electrospraying and spray drying: A comparison of particle characteristics and performance. Int. J. Pharm., 2019, 566, 173-184.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.062] [PMID: 31132449]
[21]
Sohn, J.S.; Kim, J.S.; Choi, J.S. Development of a naftopidil-chitosan-based fumaric acid solid dispersion to improve the dissolution rate and stability of naftopidil. Int. J. Biol. Macromol., 2021, 176, 520-529.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.096] [PMID: 33607140]
[22]
Krstić M.; Manić, L.; Martić, N.; Vasiljević D.; Mračević, S.Đ Vukmirović S.; Rašković A. Binary polymeric amorphous carvedilol solid dispersions: In vitro and in vivo characterization. Eur. J. Pharm. Sci., 2020, 150, 105343.
[http://dx.doi.org/10.1016/j.ejps.2020.105343] [PMID: 32376386]
[23]
Dukhan, A.A.M.; Amalina, N.; Oo, M.K.; Sengupta, P.; Doolaanea, A.A.M.; Aljapairai, K.A.S. Formulation of dispersed gliclazide powder in polyethylene glycol-polyvinyl caprolactam–polyvinyl acetate grafted copolymer carrier for capsulation and improved dissolution. Indian J. Pharm. Educ. Res., 2018, 52(4), S210-S219.
[http://dx.doi.org/10.5530/ijper.52.4s.100]
[24]
Kawaguchi, M. Dispersion stability and rheological properties of silica suspensions in aqueous solutions. Adv. Colloid Interface Sci., 2020, 284, 102248.
[http://dx.doi.org/10.1016/j.cis.2020.102248] [PMID: 32916455]
[25]
Van Eerdenbrugh, B.; Van Speybroeck, M.; Mols, R.; Houthoofd, K.; Martens, J.A.; Froyen, L.; Van Humbeeck, J.; Augustijns, P.; Van den Mooter, G. Itraconazole/TPGS/Aerosil200 solid dispersions: Characterization, physical stability and in vivo performance. Eur. J. Pharm. Sci., 2009, 38(3), 270-278.
[http://dx.doi.org/10.1016/j.ejps.2009.08.002] [PMID: 19686846]
[26]
Zhang, S.; Sun, Y.; Zhou, L.; Jiang, Z.; Yang, X.; Feng, Y. Osmotic pump tablets with solid dispersions synergized by hydrophilic polymers and mesoporous silica improve in vitro/in vivo performance of cilostazol. Int. J. Pharm., 2020, 588, 119759.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119759] [PMID: 32800938]
[27]
Wairkar, S.; Gaud, R. Development and characterization of microstructured, spray-dried co-amorphous mixture of antidiabetic agents stabilized by silicate. AAPS PharmSciTech, 2019, 20(3), 141.
[http://dx.doi.org/10.1208/s12249-019-1352-9] [PMID: 30868308]
[28]
Li, X.; Peng, H.; Tian, B.; Gou, J.; Yao, Q.; Tao, X.; He, H.; Zhang, Y.; Tang, X.; Cai, C. Preparation and characterization of azithromycin--Aerosil 200 solid dispersions with enhanced physical stability. Int. J. Pharm., 2015, 486(1-2), 175-184.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.029] [PMID: 25794608]
[29]
Barmpalexis, P.; Karagianni, A.; Nikolakakis, I.; Kachrimanis, K. Preparation of pharmaceutical cocrystal formulations via melt mixing technique: A thermodynamic perspective. Eur. J. Pharm. Biopharm., 2018, 131, 130-140.
[http://dx.doi.org/10.1016/j.ejpb.2018.08.002] [PMID: 30092346]
[30]
Tian, Y.; Jacobs, E.; Jones, D.S.; McCoy, C.P.; Wu, H.; Andrews, G.P. The design and development of high drug loading amorphous solid dispersion for hot-melt extrusion platform. Int. J. Pharm., 2020, 586, 119545.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119545] [PMID: 32553496]
[31]
Mudie, D.M.; Buchanan, S.; Stewart, A.M.; Smith, A.; Shepard, K.B.; Biswas, N.; Marshall, D.; Ekdahl, A.; Pluntze, A.; Craig, C.D.; Morgen, M.M.; Baumann, J.M.; Vodak, D.T. A novel architecture for achieving high drug loading in amorphous spray dried dispersion tablets. Int. J. Pharm. X, 2020, 2, 100042.
[http://dx.doi.org/10.1016/j.ijpx.2020.100042] [PMID: 32154509]
[32]
Pas, T.; Vergauwen, B.; Van den Mooter, G. Exploring the feasibility of the use of biopolymers as a carrier in the formulation of amorphous solid dispersions - Part I: Gelatin. Int. J. Pharm., 2018, 535(1-2), 47-58.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.050] [PMID: 29097142]
[33]
Schönfeld, B.; Westedt, U.; Wagner, K.G. Vacuum drum drying - A novel solvent-evaporation based technology to manufacture amorphous solid dispersions in comparison to spray drying and hot melt extrusion. Int. J. Pharm., 2021, 596, 120233.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120233] [PMID: 33484914]
[34]
Davis, D.A., Jr; Thakkar, R.; Su, Y.; Williams, R.O., III; Maniruzzaman, M. Selective laser sintering 3-dimensional printing as a single step process to prepare amorphous solid dispersion dosage forms for improved solubility and dissolution rate. J. Pharm. Sci., 2021, 110(4), 1432-1443.
[http://dx.doi.org/10.1016/j.xphs.2020.11.012] [PMID: 33227241]
[35]
Démuth, B.; Farkas, A.; Pataki, H.; Balogh, A.; Szabó, B.; Borbás, E.; Sóti, P.L.; Vigh, T.; Kiserdei, É.; Farkas, B.; Mensch, J.; Verreck, G.; Van Assche, I.; Marosi, G.; Nagy, Z.K. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning. Int. J. Pharm., 2016, 498(1-2), 234-244.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.029] [PMID: 26705153]
[36]
Huang, W.; Yang, Y.; Zhao, B.; Liang, G.; Liu, S.; Liu, X.L.; Yu, D.G. Fast dissolving of ferulic acid via electrospun ternary amorphous composites produced by a coaxial process. Pharmaceutics, 2018, 10(3), 1-13.
[http://dx.doi.org/10.3390/pharmaceutics10030115] [PMID: 30072675]
[37]
Ziaee, A.; O’Dea, S.; Howard-Hildige, A.; Padrela, L.; Potter, C.; Iqbal, J.; Albadarin, A.B.; Walker, G.; O’Reilly, E.J. Amorphous solid dispersion of ibuprofen: A comparative study on the effect of solution based techniques. Int. J. Pharm., 2019, 572, 118816.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118816] [PMID: 31678527]
[38]
Yu, D.G.; Zhu, L.M.; Branford-White, C.J.; Yang, J.H.; Wang, X.; Li, Y.; Qian, W. Solid dispersions in the form of electrospun core-sheath nanofibers. Int. J. Nanomedicine, 2011, 6, 3271-3280.
[http://dx.doi.org/10.2147/IJN.S27468] [PMID: 22228995]
[39]
Azad, M.; Moreno, J.; Davé, R. Stable and fast-dissolving amorphous drug composites preparation via impregnation of Neusilin® UFL2. J. Pharm. Sci., 2018, 107(1), 170-182.
[http://dx.doi.org/10.1016/j.xphs.2017.10.007] [PMID: 29031953]
[40]
Vojinović T.; Medarević D.; Vranić E.; Potpara, Z.; Krstić M.; Djuriš, J.; Ibrić S. Development of ternary solid dispersions with hydrophilic polymer and surface adsorbent for improving dissolution rate of carbamazepine. Saudi Pharm. J., 2018, 26(5), 725-732.
[http://dx.doi.org/10.1016/j.jsps.2018.02.017] [PMID: 29991917]
[41]
Mutch, N. Hydrated magnesium trisilicate in peptic ulceration. BMJ, 1936, 1(3918), 254-257.
[http://dx.doi.org/10.1136/bmj.1.3918.254] [PMID: 20779714]
[42]
Augsburger, L.L.; Shangraw, R.F. Effect of glidants in tableting. J. Pharm. Sci., 1966, 55(4), 418-423.
[http://dx.doi.org/10.1002/jps.2600550414] [PMID: 4289661]
[43]
Comas-Vives, A. Amorphous SiO2 surface models: Energetics of the dehydroxylation process, strain, ab initio atomistic thermodynamics and IR spectroscopic signatures. Phys. Chem. Chem. Phys., 2016, 18(10), 7475-7482.
[http://dx.doi.org/10.1039/C6CP00602G] [PMID: 26898649]
[44]
Videira-Quintela, D.; Martin, O.; Montalvo, G. Emerging opportunities of silica-based materials within the food industry. Microchem. J., 2021, 167, 106318.
[http://dx.doi.org/10.1016/j.microc.2021.106318]
[45]
Singh, L.P.; Bhattacharyya, S.K.; Kumar, R.; Mishra, G.; Sharma, U.; Singh, G.; Ahalawat, S. Sol-Gel processing of silica nanoparticles and their applications. Adv. Colloid Interface Sci., 2014, 214, 17-37.
[http://dx.doi.org/10.1016/j.cis.2014.10.007] [PMID: 25466691]
[46]
Midha, K.; Nagpal, M.; Singh, G.; Aggarwal, G. Prospectives of solid self-microemulsifying systems in novel drug delivery. Curr. Drug Deliv., 2017, 14(8), 1078-1096.
[http://dx.doi.org/10.2174/1567201813666160824123504] [PMID: 27557673]
[47]
Wang, L.; Cui, F.D.; Sunada, H. Preparation and evaluation of solid dispersions of nitrendipine prepared with fine silica particles using the melt-mixing method. Chem. Pharm. Bull. (Tokyo), 2006, 54(1), 37-43.
[http://dx.doi.org/10.1248/cpb.54.37] [PMID: 16394546]
[48]
John, P. Mesoporous silica and their applications | sigma-aldrich 1970. Available from: https://www.sigmaaldrich.com/technical-documents/articles/materials-science/renewable-alternative-energy/mesoporous-silica.html (Accessed on 2021 May 29).
[49]
Mozafarinia, M.; Karimi, S.; Farrokhnia, M.; Esfandiari, J. In vitro breast cancer targeting using Trastuzumab-conjugated mesoporous silica nanoparticles: Towards the new strategy for decreasing size and high drug loading capacity for drug delivery purposes in MSN synthesis. Microporous Mesoporous Mater., 2021, 316, 110950.
[http://dx.doi.org/10.1016/j.micromeso.2021.110950]
[50]
Miao, Y.; Feng, Y.; Bai, J.; Liu, Z.; Zhao, X. Optimized mesoporous silica nanoparticle-based drug delivery system with removable manganese oxide gatekeeper for controlled delivery of doxorubicin. J. Colloid Interface Sci., 2021, 592, 227-236.
[http://dx.doi.org/10.1016/j.jcis.2021.02.054] [PMID: 33662827]
[51]
Wu, L.; Gou, K.; Guo, X.; Guo, Y.; Chen, M.; Hou, J.; Li, S.; Li, H. Dual response to pH and chiral microenvironments for the release of a flurbiprofen-loaded chiral self-assembled mesoporous silica drug delivery system. Colloids Surf. B Biointerfaces, 2021, 199, 111501.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111501] [PMID: 33338882]
[52]
Kinnari, P.; Mäkilä, E.; Heikkilä, T.; Salonen, J.; Hirvonen, J.; Santos, H.A. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. Int. J. Pharm., 2011, 414(1-2), 148-156.
[http://dx.doi.org/10.1016/j.ijpharm.2011.05.021] [PMID: 21601623]
[53]
Hussain, T.; Waters, L.J.; Parkes, G.M.B.B.; Shahzad, Y. Microwave processed solid dispersions for enhanced dissolution of gemfibrozil using non-ordered mesoporous silica. Colloids Surf. A Physicochem. Eng. Asp., 2017, 520, 428-435.
[http://dx.doi.org/10.1016/j.colsurfa.2017.02.007]
[54]
Industries, E. Technical Information 1281: AEROSIL® and AEROPERL ® - Colloidal Silicon Dioxide for Pharmaceuticals. 1970.
[55]
AEROSIL® 200 Hydrophilic fumed silica. 2021. Available from: www.aerosil.jp
[56]
Panzade, P.S.; Shendarkar, G.R. Pharmaceutical cocrystal: An antique and multifaceted approach. Curr. Drug Deliv., 2017, 14(8), 1097-1105.
[http://dx.doi.org/10.2174/1567201813666161018152411] [PMID: 27758692]
[57]
Choi, J.S.; Park, J.W.; Park, J.S. Design of Coenzyme Q10 solid dispersion for improved solubilization and stability. Int. J. Pharm., 2019, 572, 118832.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118832] [PMID: 31726197]
[58]
Yang, R.; Li, Y.; Li, J.; Liu, C.; Du, P.; Zhang, T. Application of scCO2 technology for preparing CoQ10 solid dispersion and SFC-MS/MS for analyzing in vivo bioavailability. Drug Dev. Ind. Pharm., 2018, 44(2), 289-295.
[http://dx.doi.org/10.1080/03639045.2017.1391833] [PMID: 29082762]
[59]
Sohn, J.S.; Kim, E.J.; Park, J-W.W.; Choi, J-S.S. Piroxicam ternary solid dispersion system for improvement of dissolution (%) and in vitro anti-inflammation effects. Mater. Sci. Eng. B, 2020, 261, 114651.
[http://dx.doi.org/10.1016/j.mseb.2020.114651]
[60]
Chowdhury, M.A. The controlled release of drugs and bioactive compounds from mesoporous silica nanoparticles. Curr. Drug Deliv., 2016, 13(6), 839-856.
[http://dx.doi.org/10.2174/1567201813666151202195104] [PMID: 26638978]
[61]
Vadia, N.; Rajput, S. Applications of mesoporous material for drug delivery 1 MedDocs eBooks. 2019. Available from: http://meddocsonline.org/
[62]
Shah, N.; Sandhu, H.; Choi, D.S.; Chokshi, H.; Malick, A.W. Amorphous Solid Dispersions. New York: Springer, 2014.
[http://dx.doi.org/10.1007/978-1-4939-1598-9]
[63]
Bavnhøj, C.G.; Knopp, M.M.; Madsen, C.M.; Löbmann, K. The role interplay between mesoporous silica pore volume and surface area and their effect on drug loading capacity. Int. J. Pharm. X, 2019, 1, 100008.
[http://dx.doi.org/10.1016/j.ijpx.2019.100008] [PMID: 31517273]
[64]
Stephen, S.; Gorain, B.; Choudhury, H.; Chatterjee, B. Exploring the role of mesoporous silica nanoparticle in the development of novel drug delivery systems. Drug Deliv. Transl. Res., 2022, 12(1), 105-123.
[PMID: 33604837]
[65]
Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled drug release. Int. J. Pharm., 2004, 282(1-2), 1-18.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.013] [PMID: 15336378]
[66]
Rahikkala, A.; Rosenholm, J.M.; Santos, H.A. Biofunctionalized mesoporous silica nanomaterials for targeted drug delivery. Biomed. Appl. Funct. Nanomater., 2018, 489-520.
[http://dx.doi.org/10.1016/B978-0-323-50878-0.00016-1]
[67]
Bi, X.; Bian, P.; Li, Z. Synaptic acid encapsulated with selenium-mesoporous silica nanocomposite: A potential drug in treating cardiovascular disease. J. Cluster Sci., 2021, 32(2), 287-295.
[http://dx.doi.org/10.1007/s10876-020-01787-7]
[68]
Madhav, K.V.; Kishan, V.; Madhav, K.V.; Kishan, V. Improvement of anti-hyperlipidemic activity and oral bioavailability of fluvastatin via solid self-microemulsifying systems and comparative with liquisolid formulation. Curr. Drug Deliv., 2018, 15(9), 1245-1260.
[http://dx.doi.org/10.2174/1567201815666180723115141] [PMID: 30033871]
[69]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C-W.W.; Lin, V.S-Y.S.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[70]
Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57(4), 603-619.
[http://dx.doi.org/10.1351/pac198557040603]
[71]
Heikkilä, T.; Salonen, J.; Tuura, J.; Kumar, N.; Salmi, T.; Murzin, D.Y.; Hamdy, M.S.; Mul, G.; Laitinen, L.; Kaukonen, A.M.; Hirvonen, J.; Lehto, V.P. Evaluation of mesoporous TCPSi, MCM-41, SBA-15, and TUD-1 materials as API carriers for oral drug delivery. Drug Deliv., 2007, 14(6), 337-347.
[http://dx.doi.org/10.1080/10717540601098823] [PMID: 17701523]
[72]
Šoltys, M. Kovačík, P.; Dammer, O.; Beránek, J.; Štěpánek, F. Effect of solvent selection on drug loading and amorphisation in mesoporous silica particles. Int. J. Pharm., 2019, 555, 19-27.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.075] [PMID: 30395956]
[73]
Shen, S-C.C.; Ng, W.K.; Chia, L.; Hu, J.; Tan, R.B.H.H. Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: Effect of pore and particle size. Int. J. Pharm., 2011, 410(1-2), 188-195.
[http://dx.doi.org/10.1016/j.ijpharm.2011.03.018] [PMID: 21419202]
[74]
Vasoya, J.M.; Desai, H.H.; Gumaste, S.G.; Tillotson, J.; Kelemen, D.; Dalrymple, D.M.; Serajuddin, A.T.M. Development of solid dispersion by hot melt extrusion using mixtures of polyoxylglycerides with polymers as carriers for increasing dissolution rate of a poorly soluble drug model. J. Pharm. Sci., 2019, 108(2), 888-896.
[http://dx.doi.org/10.1016/j.xphs.2018.09.019] [PMID: 30257196]
[75]
Li, J.; Miao, X.; Chen, T.; Ouyang, D.; Zheng, Y. Preparation and characterization of pelletized solid dispersion of resveratrol with mesoporous silica microparticles to improve dissolution by fluid-bed coating techniques. asian. J. Pharm. Sci., 2016, 11(4), 528-535.
[76]
Feng, J.; Yang, J.; Shen, Y.; Deng, W.; Chen, W.; Ma, Y.; Chen, Z.; Dong, S. Mesoporous silica nanoparticles prepared via a one-pot method for controlled release of abamectin: Properties and applications. Microporous Mesoporous Mater., 2021, 311, 110688.
[http://dx.doi.org/10.1016/j.micromeso.2020.110688]
[77]
Patel, A.; Shelat, P.; Lalwani, A.; Patel, A.; Shelat, P.; Lalwani, A. Development and optimization of solid self nanoemulsifying drug delivery (S-SNEDDS) using D-optimal design for improvement of oral bioavailability of amiodarone hydrochloride. Curr. Drug Deliv., 2015, 12(6), 745-760.
[http://dx.doi.org/10.2174/1567201812666150302122501] [PMID: 25731867]
[78]
Shah, A.; Serajuddin, A.T.M. Conversion of solid dispersion prepared by acid-base interaction into free-flowing and tabletable powder by using Neusilin® US2. Int. J. Pharm., 2015, 484(1-2), 172-180.
[http://dx.doi.org/10.1016/j.ijpharm.2015.02.060] [PMID: 25724137]
[79]
Kim, S.J.; Lee, H.K.; Na, Y.G.; Bang, K.H.; Lee, H.J.H.K.; Wang, M.; Huh, H.W.; Cho, C.W. A novel composition of ticagrelor by solid dispersion technique for increasing solubility and intestinal permeability. Int. J. Pharm., 2019, 555, 11-18.
[http://dx.doi.org/10.1016/j.ijpharm.2018.11.038] [PMID: 30448313]
[81]
Fuji silysia chemicaL LTD. SYLYSIA Micronized Silica | Fuji Silysia Chemical. Available from: https://www.fujisilysia.com/products/sylysia/
[82]
Choi, J.S.; Byeon, J.C.; Park, J.S. Naftopidil-fumaric acid interaction in a solid dispersion system: Improving the dissolution rate and oral absorption of naftopidil in rats. Mater. Sci. Eng. C, 2019, 95, 264-274.
[http://dx.doi.org/10.1016/j.msec.2018.10.089] [PMID: 30573249]
[83]
Maulvi, F.A.; Dalwadi, S.J.; Thakkar, V.T.; Soni, T.G.; Gohel, M.C.; Gandhi, T.R. Improvement of dissolution rate of aceclofenac by solid dispersion technique. Powder Technol., 2011, 207(1-3), 47-54.
[http://dx.doi.org/10.1016/j.powtec.2010.10.009]
[84]
Takeuchi, H.; Nagira, S.; Yamamoto, H.; Kawashima, Y. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method. Int. J. Pharm., 2005, 293(1-2), 155-164.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.019] [PMID: 15778053]
[85]
Takeuchi, H.; Nagira, S.; Yamamoto, H.; Kawashima, Y. Solid dispersion particles of tolbutamide prepared with fine silica particles by the spray-drying method. Powder Technol., 2004, 141(3), 187-195.
[http://dx.doi.org/10.1016/j.powtec.2004.03.007]
[86]
Liu, C.; Tong, P.; Yang, R.; You, Y.; Liu, H.; Zhang, T. Solidified phospholipid-TPGS as an effective oral delivery system for improving the bioavailability of resveratrol. J. Drug Deliv. Sci. Technol., 2019, 52, 769-777.
[http://dx.doi.org/10.1016/j.jddst.2019.02.025]
[87]
Khanfar, M.; Al-Nimry, S. Stabilization and amorphization of lovastatin using different types of silica. AAPS PharmSciTech, 2017, 18(6), 2358-2367.
[http://dx.doi.org/10.1208/s12249-017-0717-1] [PMID: 28127721]
[88]
Khanfar, M.; Article, O.; Taani, A.L.; Mohammad, E. Enhancement of dissolution and stability of candesartan cilexetil-loaded silica polymers. Int. J. Appl. Pharm., 2019, 11(2), 64-70.
[http://dx.doi.org/10.22159/ijap.2019v11i2.30411]
[89]
Koch, N.; Jennotte, O.; Grignard, B.; Lechanteur, A.; Evrard, B. Impregnation of mesoporous silica with poor aqueous soluble molecule using pressurized carbon dioxide: Is the solubility in the supercritical and subcritical phase a critical parameter? Eur. J. Pharm. Sci., 2020, 150, 105332.
[http://dx.doi.org/10.1016/j.ejps.2020.105332] [PMID: 32361178]
[90]
Park, H.; Cha, K.H.; Hong, S.H.; Abuzar, S.M.; Ha, E.S.; Kim, J.S.; Kim, M.S.; Hwang, S.J. Melt amorphisation of orlistat with mesoporous silica using a supercritical carbon dioxide: Effects of pressure, temperature, and drug loading ratio and comparison with other conventional amorphisation methods. Pharmaceutics, 2020, 12(4), 377.
[http://dx.doi.org/10.3390/pharmaceutics12040377] [PMID: 32326103]
[91]
Lizoňová, D.; Mužík, J.; Šoltys, M.; Beránek, J.; Kazarian, S.G.; Štěpánek, F. Molecular-level insight into hot-melt loading and drug release from mesoporous silica carriers. Eur. J. Pharm. Biopharm., 2018, 130, 327-335.
[http://dx.doi.org/10.1016/j.ejpb.2018.07.013] [PMID: 30012403]
[92]
Zolotov, S.A.; Demina, N.B.; Zolotova, A.S.; Shevlyagina, N.V.; Buzanov, G.A.; Retivov, V.M.; Kozhukhova, E.I.; Zakhoda, O.Y.; Dain, I.A.; Filatov, A.R.; Cheremisin, A.M. Development of novel darunavir amorphous solid dispersions with mesoporous carriers. Eur. J. Pharm. Sci., 2021, 159, 105700.
[http://dx.doi.org/10.1016/j.ejps.2021.105700] [PMID: 33429047]
[93]
Baán, A.; Adriaensens, P.; Lammens, J.; Delgado Hernandez, R.; Vanden Berghe, W.; Pieters, L.; Vervaet, C.; Kiekens, F. Dry amorphisation of mangiferin, a poorly water-soluble compound, using mesoporous silica. Eur. J. Pharm. Biopharm., 2019, 141, 172-179.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.026] [PMID: 31150810]
[94]
Jennotte, O.; Koch, N.; Lechanteur, A.; Evrard, B. Three-dimensional printing technology as a promising tool in bioavailability enhancement of poorly water-soluble molecules: A review. Int. J. Pharm., 2020, 580, 119200.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119200] [PMID: 32156531]
[95]
Bouledjouidja, A.; Masmoudi, Y.; Van Speybroeck, M.; Schueller, L.; Badens, E. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide. Int. J. Pharm., 2016, 499(1-2), 1-9.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.049] [PMID: 26732521]
[96]
CFR - Code of Federal Regulations Title 21. 2020.
[97]
Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, B.; Dusemund, B. Reevaluation of silicon dioxide (E 551) as a food additive. EFSA J., 2018, 16(1), e05088.
[98]
Rubio, L.; Pyrgiotakis, G.; Beltran-Huarac, J.; Zhang, Y.; Gaurav, J.; Deloid, G.; Spyrogianni, A.; Sarosiek, K.A.; Bello, D.; Demokritou, P. Safer-by-design flame-sprayed silicon dioxide nanoparticles: The role of silanol content on ROS generation, surface activity and cytotoxicity. Part. Fibre Toxicol., 2019, 16(1), 40.
[http://dx.doi.org/10.1186/s12989-019-0325-1] [PMID: 31665028]
[99]
Zhang, H.; Dunphy, D.R.; Jiang, X.; Meng, H.; Sun, B.; Tarn, D.; Xue, M.; Wang, X.; Lin, S.; Ji, Z.; Li, R.; Garcia, F.L.; Yang, J.; Kirk, M.L.; Xia, T.; Zink, J.I.; Nel, A.; Brinker, C.J. Processing pathway dependence of amorphous silica nanoparticle toxicity: Colloidal vs. pyrolytic. J. Am. Chem. Soc., 2012, 134(38), 15790-15804.
[http://dx.doi.org/10.1021/ja304907c] [PMID: 22924492]
[100]
Cho, M.; Cho, W-S.; Choi, M.; Kim, S.J.; Han, B.S.; Kim, S.H.; Kim, H.O.; Sheen, Y.Y.; Jeong, J. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicol. Lett., 2009, 189(3), 177-183.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.017] [PMID: 19397964]
[101]
Nishimori, H.; Kondoh, M.; Isoda, K.; Tsunoda, S.; Tsutsumi, Y.; Yagi, K. Histological analysis of 70-nm silica particles-induced chronic toxicity in mice. Eur. J. Pharm. Biopharm., 2009, 72(3), 626-629.
[http://dx.doi.org/10.1016/j.ejpb.2009.03.007] [PMID: 19341796]
[102]
Li, L.; Liu, T.; Fu, C.; Tan, L.; Meng, X.; Liu, H. Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape. Nanomedicine, 2015, 11(8), 1915-1924.
[http://dx.doi.org/10.1016/j.nano.2015.07.004] [PMID: 26238077]
[103]
Kim, S.; Kang, S.W.; Kim, A.; Yusuf, M.; Park, J.C.; Park, K.H. A highly efficient nano-sized Cu2O/SiO2 egg-shell catalyst for C-C coupling reactions. RSC Adv, 2018, 8(12), 6200-6205.
[http://dx.doi.org/10.1039/C7RA13490H] [PMID: 35540388]
[104]
Janssens, S.; Van den Mooter, G. Review: Physical chemistry of solid dispersions. J. Pharm. Pharmacol., 2009, 61(12), 1571-1586.
[http://dx.doi.org/10.1211/jpp.61.12.0001] [PMID: 19958579]
[105]
Allgeier, M.C.; Piper, J.L.; Hinds, J.; Yates, M.H.; Kolodsick, K.J.; Meury, R.; Shaw, B.; Kulkarni, M.R.; Remick, D.M. Isolation and physical property optimization of an amorphous drug substance utilizing a high surface area magnesium aluminometasilicate (Neusilin® US2). J. Pharm. Sci., 2016, 105(10), 3105-3114.
[http://dx.doi.org/10.1016/j.xphs.2016.06.019] [PMID: 27492963]
[106]
Kamble, R.; Palve, P.; Mehta, P. Preparation and evaluation of amorphous olmesartan medoxomil with porous silica microparticles using spray-drying technique. J. Adv. Pharm. Educ. Res., 2014, 4(4)
[107]
Censi, R.; Gigliobianco, M.R.; Dubbini, A.; Malaj, L.; Di Martino, P. New nanometric solid dispersions of glibenclamide in Neusilin® UFL2. AAPS PharmSciTech, 2016, 17(5), 1204-1212.
[http://dx.doi.org/10.1208/s12249-015-0457-z] [PMID: 26645108]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy