Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Epilepsy and Autism Spectrum Disorder (ASD): The Underlying Mechanisms and Therapy Targets Related to Adenosine

Author(s): Mengyi Guo, Pandeng Xie, Siqi Liu, Guoming Luan and Tianfu Li*

Volume 21, Issue 1, 2023

Published on: 22 September, 2022

Page: [54 - 66] Pages: 13

DOI: 10.2174/1570159X20666220706100136

Price: $65

Abstract

Epilepsy and autism spectrum disorder (ASD) are highly mutually comorbid, suggesting potential overlaps in genetic etiology, pathophysiology, and neurodevelopmental abnormalities. Adenosine, an endogenous anticonvulsant and neuroprotective neuromodulator of the brain, has been proved to affect the process of epilepsy and ASD. On the one hand, adenosine plays a crucial role in preventing the progression and development of epilepsy through adenosine receptordependent and -independent ways. On the other hand, adenosine signaling can not only regulate core symptoms but also improve comorbid disorders in ASD. Given the important role of adenosine in epilepsy and ASD, therapeutic strategies related to adenosine, including the ketogenic diet, neuromodulation therapy, and adenosine augmentation therapy, have been suggested for the arrangement of epilepsy and ASD. There are several proposals in this review. Firstly, it is necessary to further discuss the relationship between both diseases based on the comorbid symptoms and mechanisms of epilepsy and ASD. Secondly, it is important to explore the role of adenosine involved in epilepsy and ASD. Lastly, potential therapeutic value and clinical approaches of adenosine-related therapies in treating epilepsy and ASD need to be emphasized.

Keywords: Epilepsy, ASD; Comorbidity, Adenosine, Adenosine Receptor, Ketogenic Diet

Graphical Abstract

[1]
Lindor, E.; Sivaratnam, C.; May, T.; Stefanac, N.; Howells, K.; Rinehart, N. Problem behavior in autism spectrum disorder: Considering core symptom severity and accompanying sleep disturbance. Front. Psychiatry, 2019, 10, 487.
[http://dx.doi.org/10.3389/fpsyt.2019.00487] [PMID: 31354548]
[2]
Landrigan, P.J. What causes autism? Exploring the environmental contribution. Curr. Opin. Pediatr., 2010, 22(2), 219-225.
[http://dx.doi.org/10.1097/MOP.0b013e328336eb9a] [PMID: 20087185]
[3]
Shen, H.Y.; Huang, N.; Reemmer, J.; Xiao, L. Adenosine actions on oligodendroglia and myelination in autism spectrum disorder. Front. Cell. Neurosci., 2018, 12, 482.
[http://dx.doi.org/10.3389/fncel.2018.00482] [PMID: 30581380]
[4]
Genovese, A.; Butler, M.G. Clinical assessment, genetics, and treatment approaches in Autism Spectrum Disorder (ASD). Int. J. Mol. Sci., 2020, 21(13), 4726.
[http://dx.doi.org/10.3390/ijms21134726] [PMID: 32630718]
[5]
Ewen, J.B.; Marvin, A.R.; Law, K.; Lipkin, P.H. Epilepsy and autism severity: A study of 6,975 children. Autism Res., 2019, 12(8), 1251-1259.
[http://dx.doi.org/10.1002/aur.2132] [PMID: 31124277]
[6]
Downs, J.; Giust, J.; Dunn, D.W. Considerations for ADHD in the child with epilepsy and the child with migraine. Expert Rev. Neurother., 2017, 17(9), 861-869.
[http://dx.doi.org/10.1080/14737175.2017.1360136] [PMID: 28749241]
[7]
Bolton, P.F.; Carcani-Rathwell, I.; Hutton, J.; Goode, S.; Howlin, P.; Rutter, M. Epilepsy in autism: Features and correlates. Br. J. Psychiatry, 2011, 198(4), 289-294.
[http://dx.doi.org/10.1192/bjp.bp.109.076877] [PMID: 21972278]
[8]
Danielsson, S.; Gillberg, I.C.; Billstedt, E.; Gillberg, C.; Olsson, I. Epilepsy in young adults with autism: A prospective population-based follow-up study of 120 individuals diagnosed in childhood. Epilepsia, 2005, 46(6), 918-923.
[http://dx.doi.org/10.1111/j.1528-1167.2005.57504.x] [PMID: 15946331]
[9]
Giovanardi Rossi, P.; Posar, A.; Parmeggiani, A. Epilepsy in adolescents and young adults with autistic disorder. Brain Dev., 2000, 22(2), 102-106.
[http://dx.doi.org/10.1016/S0387-7604(99)00124-2] [PMID: 10722961]
[10]
Forsgren, L.; Beghi, E.; Oun, A.; Sillanpää, M. The epidemiology of epilepsy in Europe - A systematic review. Eur. J. Neurol., 2005, 12(4), 245-253.
[http://dx.doi.org/10.1111/j.1468-1331.2004.00992.x] [PMID: 15804240]
[11]
Clarke, D.F.; Roberts, W.; Daraksan, M.; Dupuis, A.; McCabe, J.; Wood, H.; Snead, O.C., III; Weiss, S.K. The prevalence of autistic spectrum disorder in children surveyed in a tertiary care epilepsy clinic. Epilepsia, 2005, 46(12), 1970-1977.
[http://dx.doi.org/10.1111/j.1528-1167.2005.00343.x] [PMID: 16393164]
[12]
Tuchman, R.; Rapin, I. Epilepsy in autism. Lancet Neurol., 2002, 1(6), 352-358.
[http://dx.doi.org/10.1016/S1474-4422(02)00160-6] [PMID: 12849396]
[13]
Latini, S.; Pedata, F. Adenosine in the central nervous system: Release mechanisms and extracellular concentrations. J. Neurochem., 2001, 79(3), 463-484.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00607.x] [PMID: 11701750]
[14]
Dunwiddie, T.V.; Masino, S.A. The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci., 2001, 24(1), 31-55.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.31] [PMID: 11283304]
[15]
Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of adenosine receptors: The state of the art. Physiol. Rev., 2018, 98(3), 1591-1625.
[http://dx.doi.org/10.1152/physrev.00049.2017] [PMID: 29848236]
[16]
Li, T.; Lytle, N.; Lan, J.Q.; Sandau, U.S.; Boison, D. Local disruption of glial adenosine homeostasis in mice associates with focal electrographic seizures: A first step in epileptogenesis? Glia, 2012, 60(1), 83-95.
[http://dx.doi.org/10.1002/glia.21250] [PMID: 21964979]
[17]
Luan, G.; Wang, X.; Gao, Q.; Guan, Y.; Wang, J.; Deng, J.; Zhai, F.; Chen, Y.; Li, T. Upregulation of neuronal adenosine A1 receptor in human rasmussen encephalitis. J. Neuropathol. Exp. Neurol., 2017, 76(8), 720-731.
[http://dx.doi.org/10.1093/jnen/nlx053] [PMID: 28789481]
[18]
He, X.; Chen, F.; Zhang, Y.; Gao, Q.; Guan, Y.; Wang, J. Upregulation of adenosine A2A receptor and downregulation of GLT1 is associated with neuronal cell death in Rasmussen’s encephalitis. Brain Pathol., 2020, 30(2), 246-260.
[http://dx.doi.org/10.1111/bpa.12770]
[19]
Luan, G.; Gao, Q.; Guan, Y.; Zhai, F.; Zhou, J.; Liu, C.; Chen, Y.; Yao, K.; Qi, X.; Li, T. Upregulation of adenosine kinase in Rasmussen encephalitis. J. Neuropathol. Exp. Neurol., 2013, 72(11), 1000-1008.
[http://dx.doi.org/10.1097/01.jnen.0000435369.39388.5c] [PMID: 24128682]
[20]
Boison, D.; Jarvis, M.F. Adenosine kinase: A key regulator of purinergic physiology. Biochem. Pharmacol., 2021, 187, 114321.
[http://dx.doi.org/10.1016/j.bcp.2020.114321] [PMID: 33161022]
[21]
Masino, S.A.; Kawamura, M., Jr; Cote, J.L.; Williams, R.B.; Ruskin, D.N. Adenosine and autism: A spectrum of opportunities. Neuropharmacology, 2013, 68, 116-121.
[http://dx.doi.org/10.1016/j.neuropharm.2012.08.013] [PMID: 22940000]
[22]
Stubbs, G.; Litt, M.; Lis, E.; Jackson, R.; Voth, W.; Lindberg, A.; Litt, R. Adenosine deaminase activity decreased in autism. J. Am. Acad. Child Psychiatry, 1982, 21(1), 71-74.
[http://dx.doi.org/10.1097/00004583-198201000-00012] [PMID: 7096833]
[23]
Shen, H.Y.; Coelho, J.E.; Ohtsuka, N.; Canas, P.M.; Day, Y.J.; Huang, Q.Y.; Rebola, N.; Yu, L.; Boison, D.; Cunha, R.A.; Linden, J.; Tsien, J.Z.; Chen, J.F. A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J. Neurosci., 2008, 28(12), 2970-2975.
[http://dx.doi.org/10.1523/JNEUROSCI.5255-07.2008] [PMID: 18354001]
[24]
Masino, S.; Kawamura, M., Jr; Wasser, C.; Pomeroy, L.; Ruskin, D. Adenosine, ketogenic diet and epilepsy: The emerging therapeutic relationship between metabolism and brain activity. Curr. Neuropharmacol., 2009, 7(3), 257-268.
[http://dx.doi.org/10.2174/157015909789152164] [PMID: 20190967]
[25]
Freitag, C.M.; Agelopoulos, K.; Huy, E.; Rothermundt, M.; Krakowitzky, P.; Meyer, J.; Deckert, J.; von Gontard, A.; Hohoff, C. Adenosine A2A receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. Eur. Child Adolesc. Psychiatry, 2010, 19(1), 67-74.
[http://dx.doi.org/10.1007/s00787-009-0043-6] [PMID: 19565319]
[26]
Ansari, M.A.; Attia, S.M.; Nadeem, A.; Bakheet, S.A.; Raish, M.; Khan, T.H.; Al-Shabanah, O.A.; Ahmad, S.F. Activation of adenosine A2A receptor signaling regulates the expression of cytokines associated with immunologic dysfunction in BTBR T + Itpr3 tf/J mice. Mol. Cell. Neurosci., 2017, 82, 76-87.
[http://dx.doi.org/10.1016/j.mcn.2017.04.012] [PMID: 28465254]
[27]
Ahmad, S.F.; Ansari, M.A.; Nadeem, A.; Bakheet, S.A.; Al-Ayadhi, L.Y.; Attia, S.M. Toll-like receptors, NF-κB, and IL-27 mediate adenosine A2A receptor signaling in BTBR T(+) Itpr3(tf)/J mice. Progress in neuro-psychopharmacology & biological psychiatry, 2017, 79(Pt B), 184-191.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06.034]
[28]
Pavăl, D. A dopamine hypothesis of autism spectrum disorder. Dev. Neurosci., 2017, 39(5), 355-360.
[http://dx.doi.org/10.1159/000478725] [PMID: 28750400]
[29]
Seeman, P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin. Schizophr. Relat. Psychoses, 2010, 4(1), 56-73.
[http://dx.doi.org/10.3371/CSRP.4.1.5] [PMID: 20643630]
[30]
Mei, F.; Mayoral, S.R. Identification of the Kappa-Opioid Receptor as a Therapeutic Target for Oligodendrocyte Remyelination., 2016, 36(30), 7925-7935.
[31]
Masino, S.A.; Li, T.; Theofilas, P.; Sandau, U.S.; Ruskin, D.N.; Fredholm, B.B.; Geiger, J.D.; Aronica, E.; Boison, D. A ketogenic diet suppresses seizures in mice through adenosine A1 receptors. J. Clin. Invest., 2011, 121(7), 2679-2683.
[http://dx.doi.org/10.1172/JCI57813] [PMID: 21701065]
[32]
Gubbay, S.S.; Lobascher, M.; Kingerlee, P. A neurological appraisal of autistic children: Results of a Western Australian survey. Dev. Med. Child Neurol., 1970, 12(4), 422-429.
[http://dx.doi.org/10.1111/j.1469-8749.1970.tb01935.x] [PMID: 5457537]
[33]
Small, J.G. EEG and neurophysiological studies of early infantile autism. Biol. Psychiatry, 1975, 10(4), 385-397.
[PMID: 169919]
[34]
Lo-Castro, A.; Curatolo, P. Epilepsy associated with autism and attention deficit hyperactivity disorder: Is there a genetic link? Brain Dev., 2014, 36(3), 185-193.
[http://dx.doi.org/10.1016/j.braindev.2013.04.013] [PMID: 23726375]
[35]
Hildebrand, M.S.; Dahl, H.H.M.; Damiano, J.A.; Smith, R.J.H.; Scheffer, I.E.; Berkovic, S.F. Recent advances in the molecular genetics of epilepsy. J. Med. Genet., 2013, 50(5), 271-279.
[http://dx.doi.org/10.1136/jmedgenet-2012-101448] [PMID: 23468209]
[36]
Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The heritability of autism spectrum disorder. JAMA, 2017, 318(12), 1182-1184.
[http://dx.doi.org/10.1001/jama.2017.12141] [PMID: 28973605]
[37]
Tick, B.; Bolton, P.; Happé, F.; Rutter, M.; Rijsdijk, F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry, 2016, 57(5), 585-595.
[http://dx.doi.org/10.1111/jcpp.12499] [PMID: 26709141]
[38]
Colvert, E.; Tick, B.; McEwen, F.; Stewart, C.; Curran, S.R.; Woodhouse, E.; Gillan, N.; Hallett, V.; Lietz, S.; Garnett, T.; Ronald, A.; Plomin, R.; Rijsdijk, F.; Happé, F.; Bolton, P. Heritability of autism spectrum disorder in a UK population-based twin sample. JAMA Psychiatry, 2015, 72(5), 415-423.
[http://dx.doi.org/10.1001/jamapsychiatry.2014.3028] [PMID: 25738232]
[39]
Lee, B.H.; Smith, T.; Paciorkowski, A.R. Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav., 2015, 47, 191-201.
[40]
van Bon, B.W.M.; Koolen, D.A.; Brueton, L.; McMullan, D.; Lichtenbelt, K.D.; Adès, L.C.; Peters, G.; Gibson, K.; Novara, F.; Pramparo, T.; Bernardina, B.D.; Zoccante, L.; Balottin, U.; Piazza, F.; Pecile, V.; Gasparini, P.; Guerci, V.; Kets, M.; Pfundt, R.; de Brouwer, A.P.; Veltman, J.A.; de Leeuw, N.; Wilson, M.; Antony, J.; Reitano, S.; Luciano, D.; Fichera, M.; Romano, C.; Brunner, H.G.; Zuffardi, O.; de Vries, B.B.A.; de Vries, B.B. The 2q23.1 microdeletion syndrome: Clinical and behavioural phenotype. Eur. J. Hum. Genet., 2010, 18(2), 163-170.
[http://dx.doi.org/10.1038/ejhg.2009.152] [PMID: 19809484]
[41]
Bozzi, Y.; Provenzano, G.; Casarosa, S. Neurobiological bases of autism-epilepsy comorbidity: A focus on excitation/inhibition imbalance. Eur. J. Neurosci., 2018, 47(6), 534-548.
[http://dx.doi.org/10.1111/ejn.13595] [PMID: 28452083]
[42]
Oksenberg, N.; Stevison, L.; Wall, J.D.; Ahituv, N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet., 2013, 9(1), e1003221.
[http://dx.doi.org/10.1371/journal.pgen.1003221] [PMID: 23349641]
[43]
Specchio, N.; Pietrafusa, N.; Trivisano, M.; Moavero, R.; De Palma, L.; Ferretti, A.; Vigevano, F.; Curatolo, P. Autism and epilepsy in patients with tuberous sclerosis complex. Front. Neurol., 2020, 11, 639.
[http://dx.doi.org/10.3389/fneur.2020.00639] [PMID: 32849171]
[44]
Bagni, C.; Zukin, R.S. A synaptic perspective of fragile X syndrome and autism spectrum disorders. Neuron, 2019, 101(6), 1070-1088.
[http://dx.doi.org/10.1016/j.neuron.2019.02.041] [PMID: 30897358]
[45]
Borgatti, R.; Piccinelli, P.; Passoni, D.; Dalprà, L.; Miozzo, M.; Micheli, R.; Gagliardi, C.; Balottin, U. Relationship between clinical and genetic features in “inverted duplicated chromosome 15” patients. Pediatr. Neurol., 2001, 24(2), 111-116.
[http://dx.doi.org/10.1016/S0887-8994(00)00244-7] [PMID: 11275459]
[46]
Torrisi, L.; Sangiorgi, E.; Russo, L.; Gurrieri, F. Rearrangements of chromosome 15 in epilepsy. Am. J. Med. Genet., 2001, 106(2), 125-128.
[http://dx.doi.org/10.1002/ajmg.1570] [PMID: 11579432]
[47]
He, N.; Li, B.M.; Li, Z.X.; Wang, J.; Liu, X.R.; Meng, H. Few individuals with Lennox-Gastaut syndrome have autism spectrum disorder: A comparison with Dravet syndrome. J. Neurodev. Disord., 2018, 10(10), 10.
[http://dx.doi.org/10.1186/s11689-018-9229-x] [PMID: 29558884]
[48]
Li, B.M.; Liu, X.R.; Yi, Y.H.; Deng, Y.H.; Su, T.; Zou, X. Autism in Dravet syndrome: Prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy Behav., 2011, 21(3), 291-295.
[http://dx.doi.org/10.1016/j.yebeh.2011.04.060]
[49]
McKee, H.R.; Glasgow, B. Lennox–gastaut syndrome: Perspective of a parent and a physician. Neurol. Ther., 2021, 10(1), 1-5.
[http://dx.doi.org/10.1007/s40120-020-00222-3] [PMID: 33113098]
[50]
Ghacibeh, G.A.; Fields, C. Interictal epileptiform activity and autism. Epilepsy Behav., 2015, 47, 158-162.
[http://dx.doi.org/10.1016/j.yebeh.2015.02.025]
[51]
Canitano, R.; Luchetti, A.; Zappella, M. Epilepsy, electroencephalographic abnormalities, and regression in children with autism. J. Child Neurol., 2005, 20(1), 27-31.
[http://dx.doi.org/10.1177/08830738050200010401] [PMID: 15791919]
[52]
Hara, H. Autism and epilepsy: A retrospective follow-up study. Brain Dev., 2007, 29(8), 486-490.
[http://dx.doi.org/10.1016/j.braindev.2006.12.012] [PMID: 17321709]
[53]
Hughes, J.R.; Melyn, M. EEG and seizures in autistic children and adolescents: Further findings with therapeutic implications. Clin. EEG Neurosci., 2005, 36(1), 15-20.
[http://dx.doi.org/10.1177/155005940503600105] [PMID: 15683193]
[54]
McVicar, K.A.; Ballaban-Gil, K.; Rapin, I.; Moshé, S.L.; Shinnar, S. Epileptiform EEG abnormalities in children with language regression. Neurology, 2005, 65(1), 129-131.
[http://dx.doi.org/10.1212/01.wnl.0000167193.53817.0f] [PMID: 16009899]
[55]
Kagan-Kushnir, T.; Roberts, S.W.; Snead, O.C., III Screening electroencephalograms in autism spectrum disorders: Evidence-based guideline. J. Child Neurol., 2005, 20(3), 197-206.
[http://dx.doi.org/10.1177/08830738050200030601] [PMID: 15832609]
[56]
Chez, M.G.; Chang, M.; Krasne, V.; Coughlan, C.; Kominsky, M.; Schwartz, A. Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005. Epilepsy Behav., 2006, 8(1), 267-271.
[http://dx.doi.org/10.1016/j.yebeh.2005.11.001] [PMID: 16403678]
[57]
Olsson, I.; Steffenburg, S.; Gillberg, C. Epilepsy in autism and autisticlike conditions. A population-based study. Arch. Neurol., 1988, 45(6), 666-668.
[http://dx.doi.org/10.1001/archneur.1988.00520300086024] [PMID: 3369974]
[58]
Tuchman, R.F.; Rapin, I. Regression in pervasive developmental disorders: Seizures and epileptiform electroencephalogram correlates. Pediatrics, 1997, 99(4), 560-566.
[http://dx.doi.org/10.1542/peds.99.4.560] [PMID: 9093299]
[59]
Yasuhara, A. Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD). Brain Dev., 2010, 32(10), 791-798.
[http://dx.doi.org/10.1016/j.braindev.2010.08.010] [PMID: 20826075]
[60]
Binnie, C.D.; Channon, S.; Marston, D.L. Behavioral correlates of interictal spikes. Adv. Neurol., 1991, 55, 113-126.
[PMID: 2003401]
[61]
Scott, R.C.; Neville, B.G.R. Developmental perspectives on epilepsy. Curr. Opin. Neurol., 1998, 11(2), 115-118.
[http://dx.doi.org/10.1097/00019052-199804000-00006] [PMID: 9551290]
[62]
Deonna, T. Rolandic epilepsy: Neuropsychology of the active epilepsy phase. Epileptic Disord., 2000, 2(Suppl. 1), S59-S61.
[PMID: 11231227]
[63]
Hernan, A.E.; Alexander, A.; Jenks, K.R.; Barry, J.; Lenck-Santini, P.P.; Isaeva, E.; Holmes, G.L.; Scott, R.C. Focal epileptiform activity in the prefrontal cortex is associated with long-term attention and sociability deficits. Neurobiol. Dis., 2014, 63, 25-34.
[http://dx.doi.org/10.1016/j.nbd.2013.11.012] [PMID: 24269731]
[64]
Kavros, P.M.; Clarke, T.; Strug, L.J.; Halperin, J.M.; Dorta, N.J.; Pal, D.K. Attention impairment in rolandic epilepsy: Systematic review. Epilepsia, 2008, 49(9), 1570-1580.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01610.x] [PMID: 18410358]
[65]
Kossoff, E.H.; Los, J.G.; Boatman, D.F. A pilot study transitioning children onto levetiracetam monotherapy to improve language dysfunction associated with benign rolandic epilepsy. Epilepsy Behav., 2007, 11(4), 514-517.
[http://dx.doi.org/10.1016/j.yebeh.2007.07.011] [PMID: 17936689]
[66]
Lewine, J.D.; Andrews, R.; Chez, M.; Patil, A.A.; Devinsky, O.; Smith, M.; Kanner, A.; Davis, J.T.; Funke, M.; Jones, G.; Chong, B.; Provencal, S.; Weisend, M.; Lee, R.R.; Orrison, W.W., Jr; Md, J. Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics, 1999, 104(3), 405-418.
[http://dx.doi.org/10.1542/peds.104.3.405] [PMID: 10469763]
[67]
Shinnar, S.; Rapin, I.; Arnold, S.; Tuchman, R.F.; Shulman, L.; Ballaban-Gil, K.; Maw, M.; Deuel, R.K.; Volkmar, F.R. Language regression in childhood. Pediatr. Neurol., 2001, 24(3), 185-191.
[http://dx.doi.org/10.1016/S0887-8994(00)00266-6] [PMID: 11301218]
[68]
Spence, S.J.; Schneider, M.T. The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr. Res., 2009, 65(6), 599-606.
[http://dx.doi.org/10.1203/PDR.0b013e31819e7168] [PMID: 19454962]
[69]
Nabbout, R.; Dulac, O. Epileptic encephalopathies: A brief overview. Epilepsy Res. Treat., 2003, 2012, 403592-403606.
[http://dx.doi.org/10.1097/00004691-200311000-00002] [PMID: 23213494]
[70]
Patry, G.; Lyagoubi, S.; Tassinari, C.A. Subclinical “electrical status epilepticus” induced by sleep in children. A clinical and electroencephalographic study of six cases. Arch. Neurol., 1971, 24(3), 242-252.
[http://dx.doi.org/10.1001/archneur.1971.00480330070006] [PMID: 5101616]
[71]
Burd, L.; Fisher, W.; Kerbeshian, J. Pervasive disintegrative disorder: Are Rett syndrome and Heller dementia infantilis subtypes? Dev. Med. Child Neurol., 1989, 31(5), 609-616.
[http://dx.doi.org/10.1111/j.1469-8749.1989.tb04046.x] [PMID: 2806742]
[72]
Nickels, K.; Wirrell, E. Electrical status epilepticus in sleep. Semin. Pediatr. Neurol., 2008, 15(2), 50-60.
[http://dx.doi.org/10.1016/j.spen.2008.03.002] [PMID: 18555191]
[73]
Tuchman, R. Autism and epilepsy: What has regression got to do with it? Epilepsy Curr., 2006, 6(4), 107-111.
[http://dx.doi.org/10.1111/j.1535-7511.2006.00113.x] [PMID: 17260027]
[74]
Jeste, S.S.; Tuchman, R. Autism spectrum disorder and epilepsy. J. Child Neurol., 2015, 30(14), 1963-1971.
[http://dx.doi.org/10.1177/0883073815601501] [PMID: 26374786]
[75]
Liu, Y.J.; Chen, J.; Li, X.; Zhou, X.; Hu, Y.M.; Chu, S.F. Research progress on adenosine in central nervous system diseases. CNS Neurosci. Ther., 2019, 25(9), 899-910.
[http://dx.doi.org/10.1111/cns.13190]
[76]
Weltha, L.; Reemmer, J.; Boison, D. The role of adenosine in epilepsy. Brain Res. Bull., 2019, 151, 46-54.
[http://dx.doi.org/10.1016/j.brainresbull.2018.11.008] [PMID: 30468847]
[77]
Tescarollo, F.C.; Rombo, D.M.; DeLiberto, L.K.; Fedele, D.E.; Alharfoush, E.; Tomé, Â.R.; Cunha, R.A.; Sebastião, A.M.; Boison, D. Role of adenosine in epilepsy and seizures. J. Caffeine Adenosine Res., 2020, 10(2), 45-60.
[http://dx.doi.org/10.1089/caff.2019.0022] [PMID: 32566903]
[78]
Boison, D.; Rho, J.M. Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies. Neuropharmacology, 2020, 167, 107741.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107741] [PMID: 31419398]
[79]
Li, T.; Ren, G.; Lusardi, T.; Wilz, A.; Lan, J.Q.; Iwasato, T.; Itohara, S.; Simon, R.P.; Boison, D. Adenosine kinase is a target for the prediction and prevention of epileptogenesis in mice. J. Clin. Invest., 2008, 118(2), 571-582.
[http://dx.doi.org/10.1172/JCI33737] [PMID: 18172552]
[80]
Boison, D.; Steinhäuser, C. Epilepsy and astrocyte energy metabolism. Glia, 2018, 66(6), 1235-1243.
[http://dx.doi.org/10.1002/glia.23247] [PMID: 29044647]
[81]
Boison, D.; Aronica, E. Comorbidities in Neurology: Is adenosine the common link? Neuropharmacology, 2015, 97, 18-34.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.031] [PMID: 25979489]
[82]
Aronica, E.; Zurolo, E.; Iyer, A.; de Groot, M.; Anink, J.; Carbonell, C.; van Vliet, E.A.; Baayen, J.C.; Boison, D.; Gorter, J.A. Upregulation of adenosine kinase in astrocytes in experimental and human temporal lobe epilepsy. Epilepsia, 2011, 52(9), 1645-1655.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03115.x] [PMID: 21635241]
[83]
Masino, S.A.; Kawamura, M., Jr; Ruskin, D.N.; Geiger, J.D.; Boison, D. Purines and neuronal excitability: Links to the ketogenic diet. Epilepsy Res., 2012, 100(3), 229-238.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.07.014] [PMID: 21880467]
[84]
Girardi, E.S.; Canitrot, J.; Antonelli, M.; González, N.N.; Coirini, H. Differential expression of cerebellar metabotropic glutamate receptors mGLUR2/3 and mGLUR4a after the administration of a convulsant drug and the adenosine analogue cyclopentyladenosine. Neurochem. Res., 2007, 32(7), 1120-1128.
[http://dx.doi.org/10.1007/s11064-006-9275-8] [PMID: 17401670]
[85]
Muzzi, M.; Coppi, E.; Pugliese, A.M.; Chiarugi, A. Anticonvulsant effect of AMP by direct activation of adenosine A1 receptor. Exp. Neurol., 2013, 250, 189-193.
[http://dx.doi.org/10.1016/j.expneurol.2013.09.010] [PMID: 24056265]
[86]
Glass, M.; Faull, R.L.M.; Bullock, J.Y.; Jansen, K.; Mee, E.W.; Walker, E.B.; Synek, B.J.L.; Dragunow, M. Loss of A1 adenosine receptors in human temporal lobe epilepsy. Brain Res., 1996, 710(1-2), 56-68.
[http://dx.doi.org/10.1016/0006-8993(95)01313-X] [PMID: 8963679]
[87]
Benarroch, E.E. Adenosine and its receptors: Multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology, 2008, 70(3), 231-236.
[http://dx.doi.org/10.1212/01.wnl.0000297939.18236.ec] [PMID: 18195269]
[88]
Canas, P.M.; Porciúncula, L.O.; Cunha, G.M.A.; Silva, C.G.; Machado, N.J.; Oliveira, J.M.A.; Oliveira, C.R.; Cunha, R.A. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J. Neurosci., 2009, 29(47), 14741-14751.
[http://dx.doi.org/10.1523/JNEUROSCI.3728-09.2009] [PMID: 19940169]
[89]
Calker, D.; Biber, K.; Domschke, K.; Serchov, T. The role of adenosine receptors in mood and anxiety disorders. J. Neurochem., 2019, 151(1), 11-27.
[http://dx.doi.org/10.1111/jnc.14841] [PMID: 31361031]
[90]
Viana da Silva, S.; Haberl, M.G.; Zhang, P.; Bethge, P.; Lemos, C.; Gonçalves, N.; Gorlewicz, A.; Malezieux, M.; Gonçalves, F.Q.; Grosjean, N.; Blanchet, C.; Nägerl, U.V.; Cunha, R.A.; Mulle, C. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. Nat. Commun., 2016, 7, 11915.
[http://dx.doi.org/10.1038/ncomms11915] [PMID: 27312972]
[91]
Yu, L.; Shen, H.Y.; Coelho, J.E.; Araújo, I.M.; Huang, Q.Y.; Day, Y.J.; Rebola, N.; Canas, P.M.; Rapp, E.K.; Ferrara, J.; Taylor, D.; Müller, C.E.; Linden, J.; Cunha, R.A.; Chen, J.F. Adenosine A 2A receptor antagonists exert motor and neuroprotective effects by distinct cellular mechanisms. Ann. Neurol., 2008, 63(3), 338-346.
[http://dx.doi.org/10.1002/ana.21313] [PMID: 18300283]
[92]
Gonçalves, N.; Simões, A.T.; Prediger, R.D.; Hirai, H.; Cunha, R.A.; Almeida, L.P. Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia. Ann. Neurol., 2017, 81(3), 407-418.
[http://dx.doi.org/10.1002/ana.24867] [PMID: 28032667]
[93]
Kerkhofs, A.; Canas, P.M.; Timmerman, A.J.; Heistek, T.S.; Real, J.I.; Xavier, C.; Cunha, R.A.; Mansvelder, H.D.; Ferreira, S.G. Adenosine A2A receptors control glutamatergic synaptic plasticity in fast spiking interneurons of the prefrontal cortex. Front. Pharmacol., 2018, 9, 133.
[http://dx.doi.org/10.3389/fphar.2018.00133] [PMID: 29615897]
[94]
Real, J.I.; Simões, A.P.; Cunha, R.A.; Ferreira, S.G.; Rial, D. Adenosine A 2A receptors modulate the dopamine D 2 receptor-mediated inhibition of synaptic transmission in the mouse prefrontal cortex. Eur. J. Neurosci., 2018, 47(9), 1127-1134.
[http://dx.doi.org/10.1111/ejn.13912] [PMID: 29570875]
[95]
Gomes, C.A.R.V.; Simões, P.F.; Canas, P.M.; Quiroz, C.; Sebastião, A.M.; Ferré, S.; Cunha, R.A.; Ribeiro, J.A. GDNF control of the glutamatergic cortico-striatal pathway requires tonic activation of adenosine A 2A receptors. J. Neurochem., 2009, 108(5), 1208-1219.
[http://dx.doi.org/10.1111/j.1471-4159.2009.05876.x] [PMID: 19141075]
[96]
Rebola, N.; Lujan, R.; Cunha, R.A.; Mulle, C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron, 2008, 57(1), 121-134.
[http://dx.doi.org/10.1016/j.neuron.2007.11.023] [PMID: 18184569]
[97]
Costenla, A.R.; Diógenes, M.J.; Canas, P.M.; Rodrigues, R.J.; Nogueira, C.; Maroco, J.; Agostinho, P.M.; Ribeiro, J.A.; Cunha, R.A.; de Mendonça, A. Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur. J. Neurosci., 2011, 34(1), 12-21.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07719.x] [PMID: 21615561]
[98]
Leffa, D.T.; Pandolfo, P.; Gonçalves, N.; Machado, N.J.; de Souza, C.M.; Real, J.I.; Silva, A.C.; Silva, H.B.; Köfalvi, A.; Cunha, R.A.; Ferreira, S.G. Adenosine A2A receptors in the rat prelimbic medial prefrontal cortex control delay-based cost-benefit decision making. Front. Mol. Neurosci., 2018, 11, 475.
[http://dx.doi.org/10.3389/fnmol.2018.00475] [PMID: 30618621]
[99]
Simões, A.P.; Machado, N.J. Adenosine A 2A receptors in the amygdala control synaptic plasticity and contextual fear memory. Neuropsychopharmacology, 2016, 41(12), 2862-2871.
[http://dx.doi.org/10.1038/npp.2016.98] [PMID: 27312408]
[100]
Gonçalves, F.Q.; Lopes, J.P.; Silva, H.B.; Lemos, C.; Silva, A.C.; Gonçalves, N.; Tomé, Â.R.; Ferreira, S.G.; Canas, P.M.; Rial, D.; Agostinho, P.; Cunha, R.A. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol. Dis., 2019, 132, 104570.
[http://dx.doi.org/10.1016/j.nbd.2019.104570] [PMID: 31394204]
[101]
Murray, M.L.; Hsia, Y.; Glaser, K.; Simonoff, E.; Murphy, D.G.M.; Asherson, P.J.; Eklund, H.; Wong, I.C.K. Pharmacological treatments prescribed to people with autism spectrum disorder (ASD) in primary health care. Psychopharmacology (Berl.), 2014, 231(6), 1011-1021.
[http://dx.doi.org/10.1007/s00213-013-3140-7] [PMID: 23681164]
[102]
Lewis, M.H.; Rajpal, H.; Muehlmann, A.M. Reduction of repetitive behavior by co-administration of adenosine receptor agonists in C58 mice. Pharmacol. Biochem. Behav., 2019, 181, 110-116.
[http://dx.doi.org/10.1016/j.pbb.2019.04.006] [PMID: 31054946]
[103]
Amodeo, D.A.; Cuevas, L.; Dunn, J.T.; Sweeney, J.A.; Ragozzino, M.E. The adenosine A 2A receptor agonist, CGS 21680, attenuates a probabilistic reversal learning deficit and elevated grooming behavior in BTBR mice. Autism Res., 2018, 11(2), 223-233.
[http://dx.doi.org/10.1002/aur.1901] [PMID: 29193861]
[104]
Hettinger, J.A.; Liu, X.; Holden, J.J.A. The G22A polymorphism of the ADA gene and susceptibility to autism spectrum disorders. J. Autism Dev. Disord., 2008, 38(1), 14-19.
[http://dx.doi.org/10.1007/s10803-006-0354-0] [PMID: 17340203]
[105]
Masino, S.A.; Kawamura, M., Jr; Plotkin, L.M.; Svedova, J.; DiMario, F.J., Jr; Eigsti, I.M. The relationship between the neuromodulator adenosine and behavioral symptoms of autism. Neurosci. Lett., 2011, 500(1), 1-5.
[http://dx.doi.org/10.1016/j.neulet.2011.06.007] [PMID: 21693172]
[106]
Johansson, B.; Halldner, L.; Dunwiddie, T.V.; Masino, S.A.; Poelchen, W.; Giménez-Llort, L.; Escorihuela, R.M.; Fernández-Teruel, A.; Wiesenfeld-Hallin, Z.; Xu, X.J.; Hårdemark, A.; Betsholtz, C.; Herlenius, E.; Fredholm, B.B. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A 1 receptor. Proc. Natl. Acad. Sci. USA, 2001, 98(16), 9407-9412.
[http://dx.doi.org/10.1073/pnas.161292398] [PMID: 11470917]
[107]
Tanimura, Y.; Vaziri, S.; Lewis, M.H. Indirect basal ganglia pathway mediation of repetitive behavior: Attenuation by adenosine receptor agonists. Behav. Brain Res., 2010, 210(1), 116-122.
[http://dx.doi.org/10.1016/j.bbr.2010.02.030] [PMID: 20178817]
[108]
López-Cruz, L.; Carbó-Gas, M.; Pardo, M.; Bayarri, P.; Valverde, O.; Ledent, C.; Salamone, J.D.; Correa, M. Adenosine A 2A receptor deletion affects social behaviors and anxiety in mice: Involvement of anterior cingulate cortex and amygdala. Behav. Brain Res., 2017, 321, 8-17.
[http://dx.doi.org/10.1016/j.bbr.2016.12.020] [PMID: 28007538]
[109]
Matute, C.; Alberdi, E.; Domercq, M.; Pérez-Cerdá, F.; Pérez-Samartín, A.; Sánchez-Gómez, M.V. The link between excitotoxic oligodendroglial death and demyelinating diseases. Trends Neurosci., 2001, 24(4), 224-230.
[http://dx.doi.org/10.1016/S0166-2236(00)01746-X] [PMID: 11250007]
[110]
Cook, E.H. Reduction of increased repetitive self-grooming in ASD mouse model by metabotropic 5 glutamate receptor antagonism; Randomized controlled trial of Early Start Denver Model. Autism Res., 2010, 3(1), 40-42.
[111]
Mei, F.; Lehmann-Horn, K.; Shen, Y.A.; Rankin, K.A.; Stebbins, K.J.; Lorrain, D.S.; Pekarek, K.; Sagan, S.A.; Xiao, L.; Teuscher, C.; Büdingen, H.C.; Wess, J.; Lawrence, J.; Green, A.J.; Fancy, S.P.; Zamvil, S.; Chan, J.R. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. eLife, 2016, 5, e18246.
[http://dx.doi.org/10.7554/eLife.18246] [PMID: 27671734]
[112]
Lee, Y.; Kim, H.; Kim, J.E.; Park, J.Y.; Choi, J.; Lee, J.E.; Lee, E.H.; Han, P.L. Excessive D1 dopamine receptor activation in the dorsal striatum promotes autistic-like behaviors. Mol. Neurobiol., 2018, 55(7), 5658-5671.
[http://dx.doi.org/10.1007/s12035-017-0770-5] [PMID: 29027111]
[113]
Boison, D.; Singer, P.; Shen, H.Y.; Feldon, J.; Yee, B.K. Adenosine hypothesis of schizophrenia – Opportunities for pharmacotherapy. Neuropharmacology, 2012, 62(3), 1527-1543.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.048] [PMID: 21315743]
[114]
Zhao, C.; Dong, C.; Frah, M.; Deng, Y.; Marie, C.; Zhang, F.; Xu, L.; Ma, Z.; Dong, X.; Lin, Y.; Koenig, S.; Nait-Oumesmar, B.; Martin, D.M.; Wu, L.N.; Xin, M.; Zhou, W.; Parras, C.; Lu, Q.R. Dual requirement of CHD8 for chromatin landscape establishment and histone methyltransferase recruitment to promote cns myelination and repair. Dev. Cell, 2018, 45(6), 753-768.e8.
[http://dx.doi.org/10.1016/j.devcel.2018.05.022] [PMID: 29920279]
[115]
Lee, R.W.Y.; Corley, M.J.; Pang, A.; Arakaki, G.; Abbott, L.; Nishimoto, M.; Miyamoto, R.; Lee, E.; Yamamoto, S.; Maunakea, A.K.; Lum-Jones, A.; Wong, M. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol. Behav., 2018, 188, 205-211.
[http://dx.doi.org/10.1016/j.physbeh.2018.02.006] [PMID: 29421589]
[116]
Levy, M.L.; Levy, K.M.; Hoff, D.; Amar, A.P.; Park, M.S.; Conklin, J.M.; Baird, L.; Apuzzo, M.L.J. Vagus nerve stimulation therapy in patients with autism spectrum disorder and intractable epilepsy: Results from the vagus nerve stimulation therapy patient outcome registry. J. Neurosurg. Pediatr., 2010, 5(6), 595-602.
[http://dx.doi.org/10.3171/2010.3.PEDS09153] [PMID: 20515333]
[117]
Zhang, Y.; Wang, X.; Tang, C.; Guan, Y.; Chen, F.; Gao, Q.; Wang, J.; Zhou, J.; Zhai, F.; Boison, D.; Luan, G.; Li, T. Genetic variations of adenosine kinase as predictable biomarkers of efficacy of vagus nerve stimulation in patients with pharmacoresistant epilepsy. J. Neurosurg., 2022, 136(3), 726-735.
[http://dx.doi.org/10.3171/2021.3.JNS21141] [PMID: 34479194]
[118]
Katz, J.B.; Owusu, K.; Nussbaum, I.; Beekman, R.; DeFilippo, N.A.; Gilmore, E.J.; Hirsch, L.J.; Cervenka, M.C.; Maciel, M.B. Pearls and pitfalls of introducing ketogenic diet in adult status epilepticus: A practical guide for the intensivist. J. Clin. Med., 2021, 10(4), 881.
[http://dx.doi.org/10.3390/jcm10040881] [PMID: 33671485]
[119]
Ułamek-Kozioł, M.; Czuczwar, S.J.; Januszewski, S.; Pluta, R. Ketogenic diet and epilepsy. Nutrients, 2019, 11(10), 2510.
[http://dx.doi.org/10.3390/nu11102510] [PMID: 31635247]
[120]
Rusek, M.; Pluta, R.; Kozioł, M.U.; Czuczwar, S.J. Ketogenic diet in alzheimer’s disease. Int. J. Mol. Sci., 2019, 20(16), 3892.
[http://dx.doi.org/10.3390/ijms20163892] [PMID: 31405021]
[121]
Packer, R.M.; Law, T.H.; Davies, E.; Zanghi, B.; Pan, Y.; Volk, H.A. Effects of a ketogenic diet on ADHD-like behavior in dogs with idiopathic epilepsy. Epilepsy Behav., 2016, 55, 62-68.
[http://dx.doi.org/10.1016/j.yebeh.2015.11.014] [PMID: 26773515]
[122]
Mierau, S.B.; Neumeyer, A.M. Metabolic interventions in Autism Spectrum Disorder. Neurobiol. Dis., 2019, 132, 104544.
[http://dx.doi.org/10.1016/j.nbd.2019.104544] [PMID: 31351171]
[123]
Fukao, T.; Lopaschuk, G.D.; Mitchell, G.A. Pathways and control of ketone body metabolism: On the fringe of lipid biochemistry. Prostaglandins Leukot. Essent. Fatty Acids, 2004, 70(3), 243-251.
[http://dx.doi.org/10.1016/j.plefa.2003.11.001] [PMID: 14769483]
[124]
Owen, O.E.; Morgan, A.P.; Kemp, H.G.; Sullivan, J.M.; Herrera, M.G.; Cahill, G.F. Jr Brain metabolism during fasting. J. Clin. Invest., 1967, 46(10), 1589-1595.
[http://dx.doi.org/10.1172/JCI105650] [PMID: 6061736]
[125]
Cheng, N.; Rho, J.M.; Masino, S.A. Metabolic dysfunction underlying autism spectrum disorder and potential treatment approaches. Front. Mol. Neurosci., 2017, 10, 34.
[http://dx.doi.org/10.3389/fnmol.2017.00034] [PMID: 28270747]
[126]
Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry, 2012, 17(3), 290-314.
[http://dx.doi.org/10.1038/mp.2010.136] [PMID: 21263444]
[127]
Sook Noh, H.; Po Lee, H.; Wook Kim, D.; Soo Kang, S.; Jae Cho, G.; Rho, J.M.; Sung Choi, W. A cDNA microarray analysis of gene expression profiles in rat hippocampus following a ketogenic diet. Brain Res. Mol. Brain Res., 2004, 129(1-2), 80-87.
[http://dx.doi.org/10.1016/j.molbrainres.2004.06.020] [PMID: 15469884]
[128]
Nylen, K.; Velazquez, J.L.P.; Sayed, V.; Gibson, K.M.; Burnham, W.M.; Snead, O.C., III The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1−/− mice. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(3), 208-212.
[http://dx.doi.org/10.1016/j.bbagen.2008.12.005] [PMID: 19168117]
[129]
Bough, K.J.; Wetherington, J.; Hassel, B.; Pare, J.F.; Gawryluk, J.W.; Greene, J.G.; Shaw, R.; Smith, Y.; Geiger, J.D.; Dingledine, R.J. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol., 2006, 60(2), 223-235.
[http://dx.doi.org/10.1002/ana.20899] [PMID: 16807920]
[130]
Martin-McGill, K.J.; Jackson, C.F.; Bresnahan, R.; Levy, R.G.; Cooper, P.N. Ketogenic diets for drug-resistant epilepsy. Cochrane Database Syst. Rev., 2018, 11(11), CD001903.
[PMID: 30403286]
[131]
Martinez, C.C.; Pyzik, P.L.; Kossoff, E.H. Discontinuing the ketogenic diet in seizure-free children: recurrence and risk factors. Epilepsia, 2007, 48(1), 187-190.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00911.x] [PMID: 17241227]
[132]
O’Neill, B.; Raggi, P. The ketogenic diet: Pros and cons. Atherosclerosis, 2020, 292, 119-126.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.11.021] [PMID: 31805451]
[133]
Ruskin, D.N.; Svedova, J.; Cote, J.L.; Sandau, U.; Rho, J.M.; Kawamura, M., Jr; Boison, D.; Masino, S.A. Ketogenic diet improves core symptoms of autism in BTBR mice. PLoS One, 2013, 8(6), e65021.
[http://dx.doi.org/10.1371/journal.pone.0065021] [PMID: 23755170]
[134]
Evangeliou, A.; Vlachonikolis, I.; Mihailidou, H.; Spilioti, M.; Skarpalezou, A.; Makaronas, N.; Prokopiou, A.; Christodoulou, P.; Liapi-Adamidou, G.; Helidonis, E.; Sbyrakis, S.; Smeitink, J. Application of a ketogenic diet in children with autistic behavior: Pilot study. J. Child Neurol., 2003, 18(2), 113-118.
[http://dx.doi.org/10.1177/08830738030180020501] [PMID: 12693778]
[135]
Mantis, J.G.; Fritz, C.L.; Marsh, J.; Heinrichs, S.C.; Seyfried, T.N. Improvement in motor and exploratory behavior in Rett syndrome mice with restricted ketogenic and standard diets. Epilepsy Behav., 2009, 15(2), 133-141.
[http://dx.doi.org/10.1016/j.yebeh.2009.02.038] [PMID: 19249385]
[136]
Haas, R.H.; Rice, M.A.; Trauner, D.A.; Merritt, T.A.; Opitz, J.M.; Reynolds, J.F. Therapeutic effects of a ketogenic diet in rett syndrome. Am. J. Med. Genet., 1986, 25(S1), 225-246.
[http://dx.doi.org/10.1002/ajmg.1320250525] [PMID: 3087185]
[137]
Salberg, S.; Weerwardhena, H.; Collins, R.; Reimer, R.A.; Mychasiuk, R. The behavioural and pathophysiological effects of the ketogenic diet on mild traumatic brain injury in adolescent rats. Behav. Brain Res., 2019, 376, 112225.
[http://dx.doi.org/10.1016/j.bbr.2019.112225] [PMID: 31518660]
[138]
Jensen, N.J.; Wodschow, H.Z.; Nilsson, M.; Rungby, J. Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(22), 8767.
[http://dx.doi.org/10.3390/ijms21228767] [PMID: 33233502]
[139]
Hallböök, T.; Lundgren, J.; Rosén, I. Ketogenic diet improves sleep quality in children with therapy-resistant epilepsy. Epilepsia, 2007, 48(1), 59-65.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00834.x] [PMID: 17241208]
[140]
Operto, F.F.; Matricardi, S.; Pastorino, G.M.G.; Verrotti, A.; Coppola, G. The ketogenic diet for the treatment of mood disorders in comorbidity with epilepsy in children and adolescents. Front. Pharmacol., 2020, 11, 578396.
[http://dx.doi.org/10.3389/fphar.2020.578396] [PMID: 33381032]
[141]
Engineer, C.T.; Hays, S.A.; Kilgard, M.P. Vagus nerve stimulation as a potential adjuvant to behavioral therapy for autism and other neurodevelopmental disorders. J. Neurodev. Disord., 2017, 9(1), 20.
[http://dx.doi.org/10.1186/s11689-017-9203-z] [PMID: 28690686]
[142]
Toffa, D.H.; Touma, L.; El Meskine, T.; Bouthillier, A.; Nguyen, D.K. Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure, 2020, 83, 104-123.
[http://dx.doi.org/10.1016/j.seizure.2020.09.027] [PMID: 33120323]
[143]
Bottomley, J.M.; LeReun, C.; Diamantopoulos, A.; Mitchell, S.; Gaynes, B.N. Vagus nerve stimulation (VNS) therapy in patients with treatment resistant depression: A systematic review and meta-analysis. Compr. Psychiatry, 2020, 98, 152156.
[http://dx.doi.org/10.1016/j.comppsych.2019.152156] [PMID: 31978785]
[144]
Panebianco, M.; Rigby, A.; Weston, J.; Marson, A.G. Vagus nerve stimulation for partial seizures. Cochrane Database Syst. Rev., 2015, 2015(4), CD002896.
[PMID: 25835947]
[145]
Zeiler, F.A.; Zeiler, K.J.; Teitelbaum, J.; Gillman, L.M.; West, M. VNS for refractory status epilepticus. Epilepsy Res., 2015, 112, 100-113.
[http://dx.doi.org/10.1016/j.eplepsyres.2015.02.014] [PMID: 25847345]
[146]
Orosz, I.; McCormick, D.; Zamponi, N.; Varadkar, S.; Feucht, M.; Parain, D.; Griens, R.; Vallée, L.; Boon, P.; Rittey, C.; Jayewardene, A.K.; Bunker, M.; Arzimanoglou, A.; Lagae, L. Vagus nerve stimulation for drug-resistant epilepsy: A European long-term study up to 24 months in 347 children. Epilepsia, 2014, 55(10), 1576-1584.
[http://dx.doi.org/10.1111/epi.12762] [PMID: 25231724]
[147]
Rychlicki, F.; Zamponi, N.; Trignani, R.; Ricciuti, R.A.; Iacoangeli, M.; Scerrati, M. Vagus nerve stimulation: Clinical experience in drug-resistant pediatric epileptic patients. Seizure, 2006, 15(7), 483-490.
[http://dx.doi.org/10.1016/j.seizure.2006.06.001] [PMID: 16899378]
[148]
Patwardhan, R.V.; Stong, B.; Bebin, E.M.; Mathisen, J.; Grabb, P.A. Efficacy of vagal nerve stimulation in children with medically refractory epilepsy. Neurosurgery, 2000, 47(6), 1353-1358.
[http://dx.doi.org/10.1097/00006123-200012000-00016] [PMID: 11126906]
[149]
Nagarajan, L.; Walsh, P.; Gregory, P.; Lee, M. VNS therapy in clinical practice in children with refractory epilepsy. Acta Neurol. Scand., 2002, 105(1), 13-17.
[http://dx.doi.org/10.1034/j.1600-0404.2002.00129.x] [PMID: 11903103]
[150]
van Hoorn, A.; Carpenter, T.; Oak, K.; Laugharne, R.; Ring, H.; Shankar, R. Neuromodulation of autism spectrum disorders using vagal nerve stimulation. J. Clin. Neurosci., 2019, 63, 8-12.
[http://dx.doi.org/10.1016/j.jocn.2019.01.042] [PMID: 30732986]
[151]
Huffman, W.J.; Subramaniyan, S.; Rodriguiz, R.M.; Wetsel, W.C.; Grill, W.M.; Terrando, N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul., 2019, 12(1), 19-29.
[http://dx.doi.org/10.1016/j.brs.2018.10.005] [PMID: 30337243]
[152]
Cheshire, W.P. Highlights in clinical autonomic neuroscience: New insights into autonomic dysfunction in autism. Auton. Neurosci., 2012, 171(1-2), 4-7.
[http://dx.doi.org/10.1016/j.autneu.2012.08.003] [PMID: 23040840]
[153]
Fan, J.J.; Shan, W.; Wu, J.P.; Wang, Q. Research progress of vagus nerve stimulation in the treatment of epilepsy. CNS Neurosci. Ther., 2019, 25(11), 1222-1228.
[http://dx.doi.org/10.1111/cns.13209] [PMID: 31429206]
[154]
Terra, V.C.; Furlanetti, L.L.; Nunes, A.A.; Thomé, U.; Nisyiama, M.A.; Sakamoto, A.C.; Machado, H.R. Vagus nerve stimulation in pediatric patients: Is it really worthwhile? Epilepsy Behav., 2014, 31, 329-333.
[http://dx.doi.org/10.1016/j.yebeh.2013.10.011] [PMID: 24210463]
[155]
Alonso-Vanegas, M.A.; Austria-Velásquez, J.; López-Gómez, M.; Brust-Mascher, E. Chronic intermittent vagal nerve stimulation in the treatment of refractory epilepsy: Experience in Mexico with 35 cases. Cir. Cir., 2010, 78(1), 15-23.
[PMID: 20226124]
[156]
Henry, T.R. Therapeutic mechanisms of vagus nerve stimulation. Neurology, 2002, 59(6, Supplement 4)(Suppl. 4), S3-S14.
[http://dx.doi.org/10.1212/WNL.59.6_suppl_4.S3] [PMID: 12270962]
[157]
Steriade, M.; Contreras, D. Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J. Neurosci., 1995, 15(1), 623-642.
[http://dx.doi.org/10.1523/JNEUROSCI.15-01-00623.1995] [PMID: 7823168]
[158]
Milby, A.H.; Halpern, C.H.; Baltuch, G.H. Vagus nerve stimulation in the treatment of refractory epilepsy. Neurotherapeutics, 2009, 6(2), 228-237.
[http://dx.doi.org/10.1016/j.nurt.2009.01.010] [PMID: 19332314]
[159]
Meldrum, B. Amino acid neurotransmitters and new approaches to anticonvulsant drug action. Epilepsia, 1984, 25(s2)(Suppl. 2), S140-S149.
[http://dx.doi.org/10.1111/j.1528-1157.1984.tb05646.x] [PMID: 6146519]
[160]
Strigo, I.A.; Craig, A.D.B. Interoception, homeostatic emotions and sympathovagal balance. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, 371(1708), 20160010.
[http://dx.doi.org/10.1098/rstb.2016.0010] [PMID: 28080968]
[161]
Richey, J.A.; Damiano, C.R.; Sabatino, A.; Rittenberg, A.; Petty, C.; Bizzell, J.; Voyvodic, J.; Heller, A.S.; Coffman, M.C.; Smoski, M.; Davidson, R.J.; Dichter, G.S. Neural Mechanisms of Emotion Regulation in Autism Spectrum Disorder. J. Autism Dev. Disord., 2015, 45(11), 3409-3423.
[http://dx.doi.org/10.1007/s10803-015-2359-z] [PMID: 25618212]
[162]
Porges, S.W. The Polyvagal Theory: Phylogenetic contributions to social behavior. Physiol. Behav., 2003, 79(3), 503-513.
[http://dx.doi.org/10.1016/S0031-9384(03)00156-2] [PMID: 12954445]
[163]
Yirmiya, N.; Kasari, C.; Sigman, M.; Mundy, P. Facial expressions of affect in autistic, mentally retarded and normal children. J. Child Psychol. Psychiatry, 1989, 30(5), 725-735.
[http://dx.doi.org/10.1111/j.1469-7610.1989.tb00785.x] [PMID: 2793960]
[164]
Chan, K.K.L.; To, C.K.S. Do individuals with high-functioning autism who speak a tone language show intonation deficits? J. Autism Dev. Disord., 2016, 46(5), 1784-1792.
[http://dx.doi.org/10.1007/s10803-016-2709-5] [PMID: 26825662]
[165]
Miranda, M.F.; Hamani, C.; de Almeida, A.C.; Amorim, B.O.; Macedo, C.E.; Fernandes, M.J.; Nobrega, J.N.; Aarão, M.C.; Madureira, A.P.; Rodrigues, A.M.; Andersen, M.L.; Tufik, S.; Mello, L.E.; Covolan, L. Role of adenosine in the antiepileptic effects of deep brain stimulation. Front. Cell. Neurosci., 2014, 8, 312.
[http://dx.doi.org/10.3389/fncel.2014.00312] [PMID: 25324724]
[166]
Tawfik, V.L.; Chang, S.Y.; Hitti, F.L.; Roberts, D.W.; Leiter, J.C.; Jovanovic, S.; Lee, K.H. Deep brain stimulation results in local glutamate and adenosine release: Investigation into the role of astrocytes. Neurosurgery, 2010, 67(2), 367-375.
[http://dx.doi.org/10.1227/01.NEU.0000371988.73620.4C] [PMID: 20644423]
[167]
Guo, M.; Li, T. Adenosine dysfunction in epilepsy and associated comorbidities. Curr. Drug Targets, 2022, 23(4), 344-357.
[http://dx.doi.org/10.2174/1389450122666210928145258] [PMID: 34602036]
[168]
Wang, X.; Li, T. Role of adenosine kinase inhibitor in adenosine augmentation therapy for epilepsy: A potential novel drug for epilepsy. Curr. Drug Targets, 2020, 21(3), 252-257.
[http://dx.doi.org/10.2174/1389450119666191014104347] [PMID: 31633474]
[169]
Boison, D.; Scheurer, L.; Zumsteg, V.; Rülicke, T.; Litynski, P.; Fowler, B.; Brandner, S.; Mohler, H. Neonatal hepatic steatosis by disruption of the adenosine kinase gene. Proc. Natl. Acad. Sci. USA, 2002, 99(10), 6985-6990.
[http://dx.doi.org/10.1073/pnas.092642899] [PMID: 11997462]
[170]
Boison, D. Adenosine kinase: Exploitation for therapeutic gain. Pharmacol. Rev., 2013, 65(3), 906-943.
[http://dx.doi.org/10.1124/pr.112.006361] [PMID: 23592612]
[171]
Boison, D.; Scheurer, L.; Tseng, J.L.; Aebischer, P.; Mohler, H. Seizure suppression in kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer. Exp. Neurol., 1999, 160(1), 164-174.
[http://dx.doi.org/10.1006/exnr.1999.7209] [PMID: 10630201]
[172]
Li, T.; Steinbeck, J.A.; Lusardi, T.; Koch, P.; Lan, J.Q.; Wilz, A.; Segschneider, M.; Simon, R.P.; Brüstle, O.; Boison, D. Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain, 2007, 130(5), 1276-1288.
[http://dx.doi.org/10.1093/brain/awm057] [PMID: 17472985]
[173]
Kazemzadeh-Narbat, M.; Annabi, N.; Tamayol, A.; Oklu, R.; Ghanem, A.; Khademhosseini, A. Adenosine-associated delivery systems. J. Drug Target., 2015, 23(7-8), 580-596.
[http://dx.doi.org/10.3109/1061186X.2015.1058803] [PMID: 26453156]
[174]
Wheless, J.W.; Gienapp, A.J.; Ryvlin, P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav., 2018, 88S, 2-10.
[http://dx.doi.org/10.1016/j.yebeh.2018.06.032] [PMID: 30017839]
[175]
Li, Q.; Liang, J.; Fu, N.; Han, Y.; Qin, J. A ketogenic diet and the treatment of autism spectrum disorder. Front Pediatr., 2021, 9, 650624.
[http://dx.doi.org/10.3389/fped.2021.650624] [PMID: 34046374]
[176]
Peña, D.F.; Childs, J.E.; Willett, S.; Vital, A.; McIntyre, C.K.; Kroener, S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front. Behav. Neurosci., 2014, 8, 327.
[PMID: 25278857]
[177]
Peña, D.F.; Engineer, N.D.; McIntyre, C.K. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol. Psychiatry, 2013, 73(11), 1071-1077.
[http://dx.doi.org/10.1016/j.biopsych.2012.10.021] [PMID: 23245749]
[178]
Masino, S.A.; Kawamura, M., Jr; Ruskin, D.N. Adenosine receptors and epilepsy: Current evidence and future potential. Int. Rev. Neurobiol., 2014, 119, 233-255.
[http://dx.doi.org/10.1016/B978-0-12-801022-8.00011-8] [PMID: 25175969]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy