Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

What Happens in TBI? A Wide Talk on Animal Models and Future Perspective

Author(s): Satyabrata Kundu and Shamsher Singh*

Volume 21, Issue 5, 2023

Published on: 03 January, 2023

Page: [1139 - 1164] Pages: 26

DOI: 10.2174/1570159X20666220706094248

Price: $65

Abstract

Traumatic brain injury (TBI) is a global healthcare concern and a leading cause of death. The most common causes of TBI include road accidents, sports injuries, violence in warzones, and falls. TBI induces neuronal cell death independent of age, gender, and genetic background. TBI survivor patients often experience long-term behavioral changes like cognitive and emotional changes. TBI affects social activity, reducing the quality and duration of life. Over the last 40 years, several rodent models have been developed to mimic different clinical outcomes of human TBI for a better understanding of pathophysiology and to check the efficacy of drugs used for TBI. However, promising neuroprotective approaches that have been used preclinically have been found to be less beneficial in clinical trials. So, there is an urgent need to find a suitable animal model for establishing a new therapeutic intervention useful for TBI. In this review, we have demonstrated the etiology of TBI and post- TBI social life alteration, and also discussed various preclinical TBI models of rodents, zebrafish, and drosophila.

Keywords: Traumatic brain injury, Social impairment, Pathophysiology, Craniotomy, Neuroinflammation

Graphical Abstract

[1]
Iranzo, A.; Santamaria, J. Sleep in neurodegenerative diseases. In: Sleep medicine; Springer, 2015; pp. 271-283.
[http://dx.doi.org/10.1007/978-1-4939-2089-1_32]
[2]
Farrell, J.S.; Wolff, M.D.; Teskey, G.C. Neurodegeneration and pathology in epilepsy: Clinical and basic perspectives. In: Neurodegenerative diseases; Springer, 2017; pp. 317-334.
[http://dx.doi.org/10.1007/978-3-319-57193-5_12]
[3]
Thurman, D.J. Traumatic brain injury in the United States; a report to Congress. 1999.
[4]
Freire, M.A. Pathophysiology of neurodegeneration following traumatic brain injury. West Indian Med. J., 2012, 61(7), 751-755.
[PMID: 23620976]
[5]
Rosenfeld, J.V.; Maas, A.I.; Bragge, P.; Morganti-Kossmann, M.C.; Manley, G.T.; Gruen, R.L. Early management of severe traumatic brain injury. Lancet, 2012, 380(9847), 1088-1098.
[http://dx.doi.org/10.1016/S0140-6736(12)60864-2] [PMID: 22998718]
[6]
Krauss, J.K. Movement disorders secondary to craniocerebral trauma. In: Handbook of clinical neurology; Elsevier, 2015; Vol. 128, pp. 475-496.
[7]
Rabinowitz, A.R.; Levin, H.S. Cognitive sequelae of traumatic brain injury. Psychiatr. Clin. North Am., 2014, 37(1), 1-11.
[http://dx.doi.org/10.1016/j.psc.2013.11.004] [PMID: 24529420]
[8]
Peters, M.E.; Hsu, M.; Rao, V.; Roy, D.; Narapareddy, B.R.; Bechtold, K.T.; Sair, H.I.; Van Meter, T.E.; Falk, H.; Hall, A.J.; Lyketsos, C.G.; Korley, F.K. Influence of study population definition on the effect of age on outcomes after blunt head trauma. Brain Inj., 2018, 32(13-14), 1725-1730.
[http://dx.doi.org/10.1080/02699052.2018.1520301] [PMID: 30230916]
[9]
Toklu, H.Z.; Tümer, N. Oxidative stress, brain edema, blood–brain barrier permeability, and autonomic dysfunction from traumatic brain injury. In: Brain neurotrauma: Molecular, neuropsychological, and rehabilitation aspects; CRC Press/Taylor & Francis, 2015.
[http://dx.doi.org/10.1201/b18126-7]
[10]
Cobb, C.A.; Cole, M.P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis., 2015, 84, 4-21.
[http://dx.doi.org/10.1016/j.nbd.2015.04.020] [PMID: 26024962]
[11]
Yan, E.B.; Johnstone, V.P.A.; Alwis, D.S.; Morganti-Kossmann, M.C.; Rajan, R. Characterising effects of impact velocity on brain and behaviour in a model of diffuse traumatic axonal injury. Neuroscience, 2013, 248, 17-29.
[http://dx.doi.org/10.1016/j.neuroscience.2013.05.045] [PMID: 23735754]
[12]
Hellewell, S.C.; Ziebell, J.M.; Lifshitz, J.; Morganti-Kossmann, M.C. Impact acceleration model of diffuse traumatic brain injury. In: Injury Models of the Central Nervous System; Springer, 2016; pp. 253-266.
[http://dx.doi.org/10.1007/978-1-4939-3816-2_15]
[13]
Kharlamov, E.A.; Lepsveridze, E.; Meparishvili, M.; Solomonia, R.O.; Lu, B.; Miller, E.R.; Kelly, K.M.; Mtchedlishvili, Z. Alterations of GABAA and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Res., 2011, 95(1-2), 20-34.
[http://dx.doi.org/10.1016/j.eplepsyres.2011.02.008] [PMID: 21439793]
[14]
Guimarães, J.S.; Freire, M.A.; Lima, R.R.; Souza-Rodrigues, R.D.; Costa, A.M.; dos Santos, C.D.; Picanço-Diniz, C.W.; Gomes-Leal, W. Mechanisms of secondary degeneration in the central nervous system during acute neural disorders and white matter damage. Rev. Neurol., 2009, 48(6), 304-310.
[PMID: 19291655]
[15]
Farrant, M.; Nusser, Z. Variations on an inhibitory theme: Phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci., 2005, 6(3), 215-229.
[http://dx.doi.org/10.1038/nrn1625] [PMID: 15738957]
[16]
Furukawa, H.; Singh, S.K.; Mancusso, R.; Gouaux, E. Subunit arrangement and function in NMDA receptors. Nature, 2005, 438(7065), 185-192.
[http://dx.doi.org/10.1038/nature04089] [PMID: 16281028]
[17]
Zhou, X.; Moon, C.; Zheng, F.; Luo, Y.; Soellner, D.; Nuñez, J.L.; Wang, H. N-methyl-D-aspartate-stimulated ERK1/2 signaling and the transcriptional up-regulation of plasticity-related genes are developmentally regulated following in vitro neuronal maturation. J. Neurosci. Res., 2009, 87(12), 2632-2644.
[http://dx.doi.org/10.1002/jnr.22103] [PMID: 19396876]
[18]
Choo, A.M.; Geddes-Klein, D.M.; Hockenberry, A.; Scarsella, D.; Mesfin, M.N.; Singh, P.; Patel, T.P.; Meaney, D.F. NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem. Int., 2012, 60(5), 506-516.
[http://dx.doi.org/10.1016/j.neuint.2012.02.007] [PMID: 22366650]
[19]
Atkins, C.M.; Chen, S.; Alonso, O.F.; Dietrich, W.D.; Hu, B.R. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J. Cereb. Blood Flow Metab., 2006, 26(12), 1507-1518.
[http://dx.doi.org/10.1038/sj.jcbfm.9600301] [PMID: 16570077]
[20]
Bell, J.D.; Park, E.; Ai, J.; Baker, A.J. PICK1-mediated GluR2 endocytosis contributes to cellular injury after neuronal trauma. Cell Death Differ., 2009, 16(12), 1665-1680.
[http://dx.doi.org/10.1038/cdd.2009.106] [PMID: 19644508]
[21]
Isaac, J.T.R.; Ashby, M.C.; McBain, C.J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron, 2007, 54(6), 859-871.
[http://dx.doi.org/10.1016/j.neuron.2007.06.001] [PMID: 17582328]
[22]
Merry, D.E.; Korsmeyer, S.J. Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci., 1997, 20(1), 245-267.
[http://dx.doi.org/10.1146/annurev.neuro.20.1.245] [PMID: 9056714]
[23]
LW. Z.X.C.Y.J.; RS, K.P.C. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury crit. Care, 2005, 96675(20), 66-75.
[24]
Kalimuthu, S.; Se-Kwon, K. Cell survival and apoptosis signaling as therapeutic target for cancer: Marine bioactive compounds. Int. J. Mol. Sci., 2013, 14(2), 2334-2354.
[http://dx.doi.org/10.3390/ijms14022334] [PMID: 23348928]
[25]
Belizário, J.; Vieira-Cordeiro, L.; Enns, S. Necroptotic cell death signaling and execution pathway: Lessons from knockout mice. Mediators Inflamm., 2015, 2015, 128076.
[http://dx.doi.org/10.1155/2015/128076]
[26]
Chehab, T. The role of calcium signalling in autophagy; The Open University, 2018.
[27]
Lo Vasco, V.R. Role of the phosphoinositide signal transduction pathway in the endometrium. Asian Pac. J. Reprod., 2012, 1(3), 247-252.
[http://dx.doi.org/10.1016/S2305-0500(13)60086-X]
[28]
Ryan, M.J.; Gross, K.W.; Hajduczok, G. Calcium-dependent activation of phospholipase C by mechanical distension in renin-expressing As4.1 cells. Am. J. Physiol. Endocrinol. Metab., 2000, 279(4), E823-E829.
[http://dx.doi.org/10.1152/ajpendo.2000.279.4.E823] [PMID: 11001764]
[29]
Weber, J.T. Altered calcium signaling following traumatic brain injury. Front. Pharmacol., 2012, 3, 60.
[http://dx.doi.org/10.3389/fphar.2012.00060] [PMID: 22518104]
[30]
Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94(2), 329-354.
[http://dx.doi.org/10.1152/physrev.00040.2012] [PMID: 24692350]
[31]
Kumar, A.; Sasmal, D.; Sharma, N. An insight into deltamethrin induced apoptotic calcium, p53 and oxidative stress signalling pathways. Toxicol. Environ. Health Sci., 2015, 7(1), 25-34.
[http://dx.doi.org/10.1007/s13530-015-0217-1]
[32]
Love, S. Oxidative stress in brain ischemia. Brain Pathol., 1999, 9(1), 119-131.
[http://dx.doi.org/10.1111/j.1750-3639.1999.tb00214.x] [PMID: 9989455]
[33]
Guix, F.X.; Uribesalgo, I.; Coma, M.; Muñoz, F.J. The physiology and pathophysiology of nitric oxide in the brain. Prog. Neurobiol., 2005, 76(2), 126-152.
[http://dx.doi.org/10.1016/j.pneurobio.2005.06.001] [PMID: 16115721]
[34]
Garthwaite, J.; Charles, S.L.; Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 1988, 336(6197), 385-388.
[http://dx.doi.org/10.1038/336385a0] [PMID: 2904125]
[35]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[36]
Lutton, E.M.; Razmpour, R.; Andrews, A.M.; Cannella, L.A.; Son, Y.J.; Shuvaev, V.V.; Muzykantov, V.R.; Ramirez, S.H. Acute administration of catalase targeted to ICAM-1 attenuates neuropathology in experimental traumatic brain injury. Sci. Rep., 2017, 7(1), 3846.
[http://dx.doi.org/10.1038/s41598-017-03309-4] [PMID: 28630485]
[37]
Modak, J.; McCullough, L. Oxidative and nitrosative stress. In: Primer on Cerebrovascular Diseases; Elsevier, 2017; pp. 240-246.
[http://dx.doi.org/10.1016/B978-0-12-803058-5.00049-7]
[38]
Nagata, S. Biddable death. Nat. Cell Biol., 1999, 1(6), E143-E145.
[http://dx.doi.org/10.1038/14094] [PMID: 10559972]
[39]
Huang, Y.N.; Yang, L.Y.; Greig, N.H.; Wang, Y.C.; Lai, C.C.; Wang, J.Y. Neuroprotective effects of pifithrin-α against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Sci. Rep., 2018, 8(1), 2368.
[http://dx.doi.org/10.1038/s41598-018-19654-x] [PMID: 29402897]
[40]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[41]
Streit, W.J. Microglia as neuroprotective, immunocompetent cells of the CNS. Glia, 2002, 40(2), 133-139.
[http://dx.doi.org/10.1002/glia.10154] [PMID: 12379901]
[42]
Loane, D.J.; Byrnes, K.R. Role of microglia in neurotrauma. Neurotherapeutics, 2010, 7(4), 366-377.
[http://dx.doi.org/10.1016/j.nurt.2010.07.002] [PMID: 20880501]
[43]
Colton, C.A. Heterogeneity of microglial activation in the innate immune response in the brain. J. Neuroimmune Pharmacol., 2009, 4(4), 399-418.
[http://dx.doi.org/10.1007/s11481-009-9164-4] [PMID: 19655259]
[44]
Corrigan, F.; Mander, K.A.; Leonard, A.V.; Vink, R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J. Neuroinflammation, 2016, 13(1), 264.
[http://dx.doi.org/10.1186/s12974-016-0738-9] [PMID: 27724914]
[45]
Arachchige Don, A.S.; Tsang, C.K.; Kazdoba, T.M.; D’Arcangelo, G.; Young, W.; Steven Zheng, X.F. Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discov. Today, 2012, 17(15-16), 861-868.
[http://dx.doi.org/10.1016/j.drudis.2012.04.010] [PMID: 22569182]
[46]
Wang, X.; Seekaew, P.; Gao, X.; Chen, J. Traumatic brain injury stimulates neural stem cell proliferation via mammalian target of rapamycin signaling pathway activation. eNeuro, 2016, 3(5), ENEURO.0162-16.2016.
[http://dx.doi.org/10.1523/ENEURO.0162-16.2016] [PMID: 27822507]
[47]
Franke, T.F.; Hornik, C.P.; Segev, L.; Shostak, G.A.; Sugimoto, C. PI3K/Akt and apoptosis: Size matters. Oncogene, 2003, 22(56), 8983-8998.
[http://dx.doi.org/10.1038/sj.onc.1207115] [PMID: 14663477]
[48]
Manning, B.D.; Cantley, L.C. AKT/PKB signaling: Navigating downstream. Cell, 2007, 129(7), 1261-1274.
[http://dx.doi.org/10.1016/j.cell.2007.06.009] [PMID: 17604717]
[49]
Huang, J.; Manning, B.D. The TSC1–TSC2 complex: A molecular switchboard controlling cell growth. Biochem. J., 2008, 412(2), 179-190.
[http://dx.doi.org/10.1042/BJ20080281] [PMID: 18466115]
[50]
Oddy, M.; Humphrey, M.; Uttley, D. Subjective impairment and social recovery after closed head injury. J. Neurol. Neurosurg. Psychiatry, 1978, 41(7), 611-616.
[http://dx.doi.org/10.1136/jnnp.41.7.611] [PMID: 690638]
[51]
Whiteneck, G.; Brooks, C.A.; Mellick, D.; Harrison-Felix, C.; Terrill, M.S.; Noble, K. Population-based estimates of outcomes after hospitalization for traumatic brain injury in Colorado11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Arch. Phys. Med. Rehabil., 2004, 85(4)(Suppl. 2), 73-81.
[http://dx.doi.org/10.1016/j.apmr.2003.08.107] [PMID: 15083425]
[52]
Lan, Y-L.; Li, S.; Lou, J-C.; Ma, X-C.; Zhang, B. The potential roles of dopamine in traumatic brain injury: A preclinical and clinical update. Am. J. Transl. Res., 2019, 11(5), 2616-2631.
[PMID: 31217842]
[53]
Avila-Luna, A.; Gálvez-Rosas, A.; Alfaro-Rodríguez, A.; Reyes-Legorreta, C.; Garza-Montaño, P.; González-Piña, R.; Bueno-Nava, A. Dopamine D 1 receptor activation maintains motor coordination in injured rats but does not accelerate the recovery of the motor coordination deficit. Behav. Brain Res., 2018, 336, 145-150.
[http://dx.doi.org/10.1016/j.bbr.2017.08.026] [PMID: 28842271]
[54]
de Beaurepaire, R. The dopamine system and mental disorders: Clinical and psychopharmacological overview. In: Brain Dopaminergic Systems: Imaging with Positron Tomography; Springer, 1991; pp. 147-167.
[http://dx.doi.org/10.1007/978-94-011-3528-3_12]
[55]
Baudry, A.; Pietri, M.; Launay, J.M.; Kellermann, O.; Schneider, B. Multifaceted regulations of the serotonin transporter: Impact on antidepressant response. Front. Neurosci., 2019, 13, 91.
[http://dx.doi.org/10.3389/fnins.2019.00091] [PMID: 30809118]
[56]
Abe, K.; Shimada, R.; Okada, Y.; Kibayashi, K. Traumatic brain injury decreases serotonin transporter expression in the rat cerebrum. Neurol. Res., 2016, 38(4), 358-363.
[http://dx.doi.org/10.1080/01616412.2015.1110402] [PMID: 27082144]
[57]
Albert, P.R.; Benkelfat, C. The neurobiology of depression—revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies; The Royal Society, 2013.
[http://dx.doi.org/10.1098/rstb.2012.0535]
[58]
Hashimoto, K.; Sawa, A.; Iyo, M. Increased levels of glutamate in brains from patients with mood disorders. Biol. Psychiatry, 2007, 62(11), 1310-1316.
[http://dx.doi.org/10.1016/j.biopsych.2007.03.017] [PMID: 17574216]
[59]
Duric, V.; Banasr, M.; Stockmeier, C.A.; Simen, A.A.; Newton, S.S.; Overholser, J.C.; Jurjus, G.J.; Dieter, L.; Duman, R.S. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int. J. Neuropsychopharmacol., 2013, 16(1), 69-82.
[http://dx.doi.org/10.1017/S1461145712000016] [PMID: 22339950]
[60]
Kerwin, R.; Patel, S.; Meldrum, B. Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience, 1990, 39(1), 25-32.
[http://dx.doi.org/10.1016/0306-4522(90)90219-T] [PMID: 1982465]
[61]
Toru, M.; Kurumaji, A.; Ishimaru, M. Excitatory amino acids: Implications for psychiatric disorders research. Life Sci., 1994, 55(22), 1683-1699.
[http://dx.doi.org/10.1016/0024-3205(94)00337-8] [PMID: 7968248]
[62]
Rao, J.S.; Kellom, M.; Reese, E.A.; Rapoport, S.I.; Kim, H-W. RETRACTED: Dysregulated glutamate and dopamine transporters in postmortem frontal cortex from bipolar and schizophrenic patients; Elsevier, 2012.
[63]
Maes, M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(3), 664-675.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.014] [PMID: 20599581]
[64]
Suzuki, H.; Colasanti, M.N.O. A molecule with two masks of ‘NO’ theatre. Biofactors, 2001, 15(2-4), 123-125.
[http://dx.doi.org/10.1002/biof.5520150216] [PMID: 12016341]
[65]
Dhir, A.; Kulkarni, S.K. Nitric oxide and major depression. Nitric Oxide, 2011, 24(3), 125-131.
[http://dx.doi.org/10.1016/j.niox.2011.02.002] [PMID: 21335097]
[66]
Gawryluk, J.W.; Wang, J.F.; Andreazza, A.C.; Shao, L.; Young, L.T. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol., 2011, 14(1), 123-130.
[http://dx.doi.org/10.1017/S1461145710000805] [PMID: 20633320]
[67]
Andreazza, A.C.; Kauer-Sant’Anna, M.; Frey, B.N.; Bond, D.J.; Kapczinski, F.; Young, L.T.; Yatham, L.N. Oxidative stress markers in bipolar disorder: A meta-analysis. J. Affect. Disord., 2008, 111(2-3), 135-144.
[http://dx.doi.org/10.1016/j.jad.2008.04.013] [PMID: 18539338]
[68]
Machado-Vieira, R.; Andreazza, A.C.; Viale, C.I.; Zanatto, V.; Cereser, V., Jr; Vargas, R.S.; Kapczinski, F.; Portela, L.V.; Souza, D.O.; Salvador, M.; Gentil, V. Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: A possible role for lithium antioxidant effects. Neurosci. Lett., 2007, 421(1), 33-36.
[http://dx.doi.org/10.1016/j.neulet.2007.05.016] [PMID: 17548157]
[69]
Deb, S.; Lyons, I.; Koutzoukis, C.; Ali, I.; McCarthy, G. Rate of psychiatric illness 1 year after traumatic brain injury. Am. J. Psychiatry, 1999, 156(3), 374-378.
[PMID: 10080551]
[70]
Oyesanya, T.O.; Ward, E.C. Mental health in women with traumatic brain injury: A systematic review on depression and hope. Health Care Women Int., 2016, 37(1), 45-74.
[http://dx.doi.org/10.1080/07399332.2015.1005307] [PMID: 25635844]
[71]
Tate, R.; Simpson, G.; Flanagan, S.; Coffey, M. Completed suicide after traumatic brain injury. J. Head Trauma Rehabil., 1997, 12(6), 16-28.
[http://dx.doi.org/10.1097/00001199-199712000-00003]
[72]
Nowak, G.; Ordway, G.A.; Paul, I.A. Alterations in the N-Methyl-D-Asparatate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Res., 1995, 675(1-2), 157-164.
[http://dx.doi.org/10.1016/0006-8993(95)00057-W] [PMID: 7796124]
[73]
Starkstein, S.E.; Mayberg, H.S.; Berthier, M.L.; Fedoroff, P.; Price, T.R.; Dannals, R.F.; Wagner, H.N.; Leiguarda, R.; Robinson, R.G. Mania after brain injury: Neuroradiological and metabolic findings. Ann. Neurol., 1990, 27(6), 652-659.
[http://dx.doi.org/10.1002/ana.410270612] [PMID: 2360802]
[74]
Zgaljardic, D.J.; Seale, G.S.; Schaefer, L.A.; Temple, R.O.; Foreman, J.; Elliott, T.R. Psychiatric disease and post-acute traumatic brain injury. J. Neurotrauma, 2015, 32(23), 1911-1925.
[http://dx.doi.org/10.1089/neu.2014.3569] [PMID: 25629222]
[75]
Uehara, T. Psychiatric Disorders: Worldwide Advances; BoD–Books on Demand, 2011.
[http://dx.doi.org/10.5772/1289]
[76]
Morton, M.V.; Wehman, P. Psychosocial and emotional sequelae of individuals with traumatic brain injury: A literature review and recommendations. Brain Inj., 1995, 9(1), 81-92.
[http://dx.doi.org/10.3109/02699059509004574] [PMID: 7874099]
[77]
Wise, E.K.; Mathews-Dalton, C.; Dikmen, S.; Temkin, N.; Machamer, J.; Bell, K.; Powell, J.M. Impact of traumatic brain injury on participation in leisure activities. Arch. Phys. Med. Rehabil., 2010, 91(9), 1357-1362.
[http://dx.doi.org/10.1016/j.apmr.2010.06.009] [PMID: 20801252]
[78]
Forte, M.; Conti, V.; Damato, A.; Ambrosio, M.; Puca, A.A.; Sciarretta, S.; Frati, G.; Vecchione, C.; Carrizzo, A. Targeting nitric oxide with natural derived compounds as a therapeutic strategy in vascular diseases. Oxidative Med. Cell. Longev., 2016, 2016
[http://dx.doi.org/10.1155/2016/7364138]
[79]
Ponsford, J. Sexual changes associated with traumatic brain injury. Neuropsychol. Rehabil., 2003, 13(1-2), 275-289.
[http://dx.doi.org/10.1080/09602010244000363] [PMID: 21854338]
[80]
Elliott, M.L.; Biever, L.S. Head injury and sexual dysfunction. Brain Inj., 1996, 10(10), 703-718.
[http://dx.doi.org/10.1080/026990596123972] [PMID: 8879661]
[81]
Sander, A.M.; Maestas, K.L.; Pappadis, M.R.; Sherer, M.; Hammond, F.M.; Hanks, R. Sexual functioning 1 year after traumatic brain injury: Findings from a prospective traumatic brain injury model systems collaborative study. Arch. Phys. Med. Rehabil., 2012, 93(8), 1331-1337.
[http://dx.doi.org/10.1016/j.apmr.2012.03.037] [PMID: 22840831]
[82]
Lieberman, S.A.; Oberoi, A.L.; Gilkison, C.R.; Masel, B.E.; Urban, R.J. Prevalence of neuroendocrine dysfunction in patients recovering from traumatic brain injury. J. Clin. Endocrinol. Metab., 2001, 86(6), 2752-2756.
[http://dx.doi.org/10.1210/jc.86.6.2752] [PMID: 11397882]
[83]
Young, T.P.; Hoaglin, H.M.; Burke, D.T. The role of serum testosterone and TBI in the in-patient rehabilitation setting. Brain Inj., 2007, 21(6), 645-649.
[http://dx.doi.org/10.1080/02699050701210426] [PMID: 17577715]
[84]
Brann, D.W.; Dhandapani, K.; Wakade, C.; Mahesh, V.B.; Khan, M.M. Neurotrophic and neuroprotective actions of estrogen: Basic mechanisms and clinical implications. Steroids, 2007, 72(5), 381-405.
[http://dx.doi.org/10.1016/j.steroids.2007.02.003] [PMID: 17379265]
[85]
Ripley, D.L.; Harrison-Felix, C.; Sendroy-Terrill, M.; Cusick, C.P.; Dannels-McClure, A.; Morey, C. The impact of female reproductive function on outcomes after traumatic brain injury. Arch. Phys. Med. Rehabil., 2008, 89(6), 1090-1096.
[http://dx.doi.org/10.1016/j.apmr.2007.10.038] [PMID: 18503804]
[86]
Vink, R. Large animal models of traumatic brain injury. J. Neurosci. Res., 2018, 96(4), 527-535.
[http://dx.doi.org/10.1002/jnr.24079] [PMID: 28500771]
[87]
Walker, A.E. The physiological basis of concussion: 50 years later. J. Neurosurg., 1994, 81(3), 493-494.
[http://dx.doi.org/10.3171/jns.1994.81.3.0493] [PMID: 8057163]
[88]
Marmarou, A.; Foda, M.A.A.E.; Brink, W.; Campbell, J.; Kita, H.; Demetriadou, K. A new model of diffuse brain injury in rats. J. Neurosurg., 1994, 80(2), 291-300.
[http://dx.doi.org/10.3171/jns.1994.80.2.0291] [PMID: 8283269]
[89]
Viano, D.C.; Hamberger, A.; Bolouri, H.; Säljö, A. Evaluation of three animal models for concussion and serious brain injury. Ann. Biomed. Eng., 2012, 40(1), 213-226.
[http://dx.doi.org/10.1007/s10439-011-0386-2] [PMID: 22012080]
[90]
Flierl, M.A.; Stahel, P.F.; Beauchamp, K.M.; Morgan, S.J.; Smith, W.R.; Shohami, E. Mouse closed head injury model induced by a weight-drop device. Nat. Protoc., 2009, 4(9), 1328-1337.
[http://dx.doi.org/10.1038/nprot.2009.148]
[91]
Dehghan, F.; Khaksari Hadad, M.; Asadikram, G.; Najafipour, H.; Shahrokhi, N. Effect of melatonin on intracranial pressure and brain edema following traumatic brain injury: Role of oxidative stresses. Arch. Med. Res., 2013, 44(4), 251-258.
[http://dx.doi.org/10.1016/j.arcmed.2013.04.002] [PMID: 23608674]
[92]
Marmarou, C.R.; Prieto, R.; Taya, K.; Young, H.F.; Marmarou, A. Marmarou weight drop injury model. In: Animal models of acute neurological injuries; Springer, 2009; pp. 393-407.
[http://dx.doi.org/10.1007/978-1-60327-185-1_34]
[93]
Albert-Weißenberger, C.; Várrallyay, C.; Raslan, F.; Kleinschnitz, C.; Sirén, A.L. An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice. Exp. Transl. Stroke Med., 2012, 4(1), 1-5.
[http://dx.doi.org/10.1186/2040-7378-4-1] [PMID: 22300472]
[94]
Chen, Y.; Constantini, S.; Trembovler, V.; Weinstock, M.; Shohami, E. An experimental model of closed head injury in mice: Pathophysiology, histopathology, and cognitive deficits. J. Neurotrauma, 1996, 13(10), 557-568.
[http://dx.doi.org/10.1089/neu.1996.13.557] [PMID: 8915907]
[95]
Tsenter, J.; Beni-Adani, L.; Assaf, Y.; Alexandrovich, A.G.; Trembovler, V.; Shohami, E. Dynamic changes in the recovery after traumatic brain injury in mice: Effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J. Neurotrauma, 2008, 25(4), 324-333.
[http://dx.doi.org/10.1089/neu.2007.0452] [PMID: 18373482]
[96]
Goldstein, L.E.; Fisher, A.M.; Tagge, C.A.; Zhang, X.L.; Velisek, L.; Sullivan, J.A.; Upreti, C.; Kracht, J.M.; Ericsson, M.; Wojnarowicz, M.W.; Goletiani, C.J.; Maglakelidze, G.M.; Casey, N.; Moncaster, J.A.; Minaeva, O.; Moir, R.D.; Nowinski, C.J.; Stern, R.A.; Cantu, R.C.; Geiling, J.; Blusztajn, J.K.; Wolozin, B.L.; Ikezu, T.; Stein, T.D.; Budson, A.E.; Kowall, N.W.; Chargin, D.; Sharon, A.; Saman, S.; Hall, G.F.; Moss, W.C.; Cleveland, R.O.; Tanzi, R.E.; Stanton, P.K.; McKee, A.C. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med., 2012, 4(134), 134ra60.
[http://dx.doi.org/10.1126/scitranslmed.3003716] [PMID: 22593173]
[97]
Khalin, I.; Jamari, N.A.; Abdul, R.N.B.; Hasain, Z. Mohd. Nor, M.A.; Zainudin, M.A.; Omar, A.; Alyautdin, R. A mouse model of weight-drop closed head injury: Emphasis on cognitive and neurological deficiency. Neural Regen. Res., 2016, 11(4), 630-635.
[http://dx.doi.org/10.4103/1673-5374.180749] [PMID: 27212925]
[98]
Feeney, D.M.; Boyeson, M.G.; Linn, R.T.; Murray, H.M.; Dail, W.G. Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res., 1981, 211(1), 67-77.
[http://dx.doi.org/10.1016/0006-8993(81)90067-6] [PMID: 7225844]
[99]
Holmin, S.; Schalling, M.; Höjeberg, B.; Sandberg Nordqvist, A-C.; Skeftruna, A.K.; Mathiesen, T. Delayed cytokine expression in rat brain following experimental contusion. J. Neurosurg., 1997, 86(3), 493-504.
[http://dx.doi.org/10.3171/jns.1997.86.3.0493] [PMID: 9046307]
[100]
Nilsson, P.; Gazelius, B.; Carlson, H.; Hillered, L.I. Continuous measurement of changes in regional cerebral blood flow following cortical compression contusion trauma in the rat. J. Neurotrauma, 1996, 13(4), 201-207.
[http://dx.doi.org/10.1089/neu.1996.13.201] [PMID: 8860200]
[101]
Lyeth, B.G. Historical review of the fluid-percussion TBI model. Front. Neurol., 2016, 7, 217.
[http://dx.doi.org/10.3389/fneur.2016.00217] [PMID: 27994570]
[102]
Hayman, E.; Kaledjian, K.; Gerzanich, V.; Simard, J.M. Development of a rodent model of closed head injury: The maryland model. In: Pre-Clinical and Clinical Methods in Brain Trauma Research; Springer, 2018; pp. 111-121.
[http://dx.doi.org/10.1007/978-1-4939-8564-7_7]
[103]
Kilbourne, M.; Kuehn, R.; Tosun, C.; Caridi, J.; Keledjian, K.; Bochicchio, G.; Scalea, T.; Gerzanich, V.; Simard, J.M. Novel model of frontal impact closed head injury in the rat. J. Neurotrauma, 2009, 26(12), 2233-2243.
[http://dx.doi.org/10.1089/neu.2009.0968] [PMID: 19929375]
[104]
Kobeissy, F. Modeling Fluid Percussion Injury: Relevance to Human Traumatic Brain Injury-Brain Neurotrauma: Molecular; Neuropsychological, and Rehabilitation Aspects, 2015.
[105]
Lindgren, S.; Rinder, L. Experimental studies in head injury. Radiat. Environ. Biophys., 1966, 3(2), 174-180.
[http://dx.doi.org/10.1007/BF01191611] [PMID: 5982794]
[106]
Alder, J.; Fujioka, W.; Lifshitz, J.; Crockett, D.P.; Thakker-Varia, S. Lateral fluid percussion: Model of traumatic brain injury in mice. J. Vis. Exp., 2011, (54), e3063.
[http://dx.doi.org/10.3791/3063] [PMID: 21876530]
[107]
Floyd, C.L.; Golden, K.M.; Black, R.T.; Hamm, R.J.; Lyeth, B.G. Craniectomy position affects morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. J. Neurotrauma, 2002, 19(3), 303-316.
[http://dx.doi.org/10.1089/089771502753594873] [PMID: 11939498]
[108]
Hayes, R.L.; Stalhammar, D.; Povlishock, J.T.; Allen, A.M.; Galinat, B.J.; Becker, D.P.; Stonnington, H.H. A new model of concussive brain injury in the cat produced by extradural fluid volume loading: II. Physiological and neuropathological observations. Brain Inj., 1987, 1(1), 93-112.
[http://dx.doi.org/10.3109/02699058709034449] [PMID: 3454676]
[109]
Mcintosh, T.K.; Noble, L.; Andrews, B.; Faden, A. Traumatic brain injury in the rat: Characterization of a midline fluid-percussion model. Cent. Nerv. Syst. Trauma, 1987, 4(2), 119-134.
[http://dx.doi.org/10.1089/cns.1987.4.119] [PMID: 3690695]
[110]
Mckee, A.C.; Daneshvar, D.H. The neuropathology of traumatic brain injury. Handb. Clin. Neurol., 2015, 127, 45-66.
[http://dx.doi.org/10.1016/B978-0-444-52892-6.00004-0] [PMID: 25702209]
[111]
Graham, D.I.; McIntosh, T.K.; Maxwell, W.L.; Nicoll, J.A.R. Recent advances in neurotrauma. J. Neuropathol. Exp. Neurol., 2000, 59(8), 641-651.
[http://dx.doi.org/10.1093/jnen/59.8.641] [PMID: 10952055]
[112]
Faden, A.I.; Demediuk, P.; Panter, S.S.; Vink, R. The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science, 1989, 244(4906), 798-800.
[http://dx.doi.org/10.1126/science.2567056] [PMID: 2567056]
[113]
Katayama, Y.; Becker, D.P.; Tamura, T.; Hovda, D.A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg., 1990, 73(6), 889-900.
[http://dx.doi.org/10.3171/jns.1990.73.6.0889] [PMID: 1977896]
[114]
Dietrich, W.D.; Alonso, O.; Halley, M. Early microvascular and neuronal consequences of traumatic brain injury: A light and electron microscopic study in rats. J. Neurotrauma, 1994, 11(3), 289-301.
[http://dx.doi.org/10.1089/neu.1994.11.289] [PMID: 7996583]
[115]
Osier, N.D.; Dixon, C.E. The controlled cortical impact model: Applications, considerations for researchers, and future directions. Front. Neurol., 2016, 7, 134.
[http://dx.doi.org/10.3389/fneur.2016.00134] [PMID: 27582726]
[116]
Wahab, R.A.; Neuberger, E.J.; Lyeth, B.G.; Santhakumar, V.; Pfister, B.J. Fluid percussion injury device for the precise control of injury parameters. J. Neurosci. Methods, 2015, 248, 16-26.
[http://dx.doi.org/10.1016/j.jneumeth.2015.03.010] [PMID: 25800515]
[117]
Chitturi, J.; Li, Y.; Santhakumar, V.; Kannurpatti, S.S. Early behavioral and metabolomic change after mild to moderate traumatic brain injury in the developing brain. Neurochem. Int., 2018, 120, 75-86.
[http://dx.doi.org/10.1016/j.neuint.2018.08.003] [PMID: 30098378]
[118]
Lighthall, J.W.; Goshgarian, H.G.; Pinderski, C.R. Characterization of axonal injury produced by controlled cortical impact. J. Neurotrauma, 1990, 7(2), 65-76.
[http://dx.doi.org/10.1089/neu.1990.7.65] [PMID: 2376865]
[119]
Edward, D.C.; Clifton, G.L.; Lighthall, J.W.; Yaghmai, A.A.; Hayes, R.L. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods, 1991, 39(3), 253-262.
[http://dx.doi.org/10.1016/0165-0270(91)90104-8] [PMID: 1787745]
[120]
Brody, D.L.; Mac Donald, C.; Kessens, C.C.; Yuede, C.; Parsadanian, M.; Spinner, M.; Kim, E.; Schwetye, K.E.; Holtzman, D.M.; Bayly, P.V. Electromagnetic controlled cortical impact device for precise, graded experimental traumatic brain injury. J. Neurotrauma, 2007, 24(4), 657-673.
[http://dx.doi.org/10.1089/neu.2006.0011] [PMID: 17439349]
[121]
Songarj, P.; Luh, C.; Staib-Lasarzik, I.; Engelhard, K.; Moosmann, B.; Thal, S.C. The antioxidative, non-psychoactive tricyclic phenothiazine reduces brain damage after experimental traumatic brain injury in mice. Neurosci. Lett., 2015, 584, 253-258.
[http://dx.doi.org/10.1016/j.neulet.2014.10.037] [PMID: 25449871]
[122]
Yu, S.; Kaneko, Y.; Bae, E.; Stahl, C.E.; Wang, Y.; van Loveren, H.; Sanberg, P.R.; Borlongan, C.V. Severity of controlled cortical impact traumatic brain injury in rats and mice dictates degree of behavioral deficits. Brain Res., 2009, 1287, 157-163.
[http://dx.doi.org/10.1016/j.brainres.2009.06.067] [PMID: 19573519]
[123]
Washington, P.M.; Forcelli, P.A.; Wilkins, T.; Zapple, D.N.; Parsadanian, M.; Burns, M.P. The effect of injury severity on behavior: A phenotypic study of cognitive and emotional deficits after mild, moderate, and severe controlled cortical impact injury in mice. J. Neurotrauma, 2012, 29(13), 2283-2296.
[http://dx.doi.org/10.1089/neu.2012.2456] [PMID: 22642287]
[124]
Wang, X.; Gao, X.; Michalski, S.; Zhao, S.; Chen, J. Traumatic brain injury severity affects neurogenesis in adult mouse hippocampus. J. Neurotrauma, 2016, 33(8), 721-733.
[http://dx.doi.org/10.1089/neu.2015.4097] [PMID: 26414411]
[125]
Siebold, L.; Obenaus, A.; Goyal, R. Criteria to define mild, moderate, and severe traumatic brain injury in the mouse controlled cortical impact model. Exp. Neurol., 2018, 310, 48-57.
[http://dx.doi.org/10.1016/j.expneurol.2018.07.004] [PMID: 30017882]
[126]
Donovan, V.; Kim, C.; Anugerah, A.K.; Coats, J.S.; Oyoyo, U.; Pardo, A.C.; Obenaus, A. Repeated mild traumatic brain injury results in long-term white-matter disruption. J. Cereb. Blood Flow Metab., 2014, 34(4), 715-723.
[http://dx.doi.org/10.1038/jcbfm.2014.6] [PMID: 24473478]
[127]
Briones, T.L.; Woods, J.; Rogozinska, M. Retracted article: Decreased neuroinflammation and increased brain energy homeostasis following environmental enrichment after mild traumatic brain injury is associated with improvement in cognitive function. Acta Neuropathol. Commun., 2013, 1(1), 57.
[http://dx.doi.org/10.1186/2051-5960-1-57] [PMID: 24252176]
[128]
Stemper, B.D.; Shah, A.S.; Chiariello, R.; Olsen, C.M.; Budde, M.D.; Glavaski-Joksimovic, A.; McCrea, M.; Kurpad, S.N.; Pintar, F.A. Prediction of post-concussive behavioral changes in a rodent model based on head rotational acceleration characteristics. Ann. Biomed. Eng., 2016, 44(11), 3252-3265.
[http://dx.doi.org/10.1007/s10439-016-1647-x] [PMID: 27188340]
[129]
Goodman, J.C.; Cherian, L.; Bryan, R.M., Jr; Robertson, C.S. Lateral cortical impact injury in rats: Pathologic effects of varying cortical compression and impact velocity. J. Neurotrauma, 1994, 11(5), 587-597.
[http://dx.doi.org/10.1089/neu.1994.11.587] [PMID: 7861450]
[130]
Saatman, K.E.; Feeko, K.J.; Pape, R.L.; Raghupathi, R. Differential behavioral and histopathological responses to graded cortical impact injury in mice. J. Neurotrauma, 2006, 23(8), 1241-1253.
[http://dx.doi.org/10.1089/neu.2006.23.1241] [PMID: 16928182]
[131]
Long, J.B.; Bentley, T.L.; Wessner, K.A.; Cerone, C.; Sweeney, S.; Bauman, R.A. Blast overpressure in rats: Recreating a battlefield injury in the laboratory. J. Neurotrauma, 2009, 26(6), 827-840.
[http://dx.doi.org/10.1089/neu.2008.0748] [PMID: 19397422]
[132]
Reneer, D.V.; Hisel, R.D.; Hoffman, J.M.; Kryscio, R.J.; Lusk, B.T.; Geddes, J.W. A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J. Neurotrauma, 2011, 28(1), 95-104.
[http://dx.doi.org/10.1089/neu.2010.1513] [PMID: 21083431]
[133]
Risling, M.; Davidsson, J. Experimental animal models for studies on the mechanisms of blast-induced neurotrauma. Front. Neurol., 2012, 3, 30.
[http://dx.doi.org/10.3389/fneur.2012.00030] [PMID: 22485104]
[134]
Clemedson, C.J.; Criborn, C.O. A detonation chamber for physiological blast research. J. Aviat. Med., 1955, 26(5), 373-381.
[PMID: 13263274]
[135]
Säljö, A.; Bao, F.; Haglid, K.G.; Hansson, H.A. Blast exposure causes redistribution of phosphorylated neurofilament subunits in neurons of the adult rat brain. J. Neurotrauma, 2000, 17(8), 719-726.
[136]
Risling, M.; Plantman, S.; Angeria, M.; Rostami, E.; Bellander, B.M.; Kirkegaard, M.; Arborelius, U.; Davidsson, J. Mechanisms of blast induced brain injuries, experimental studies in rats. Neuroimage, 2011, 54(Suppl. 1), S89-S97.
[http://dx.doi.org/10.1016/j.neuroimage.2010.05.031] [PMID: 20493951]
[137]
Liu, M.; Zhang, C.; Liu, W.; Luo, P.; Zhang, L.; Wang, Y.; Wang, Z.; Fei, Z. A novel rat model of blast-induced traumatic brain injury simulating different damage degree: Implications for morphological, neurological, and biomarker changes. Front. Cell. Neurosci., 2015, 9, 168.
[http://dx.doi.org/10.3389/fncel.2015.00168] [PMID: 25983677]
[138]
Cernak, I.; Noble-Haeusslein, L.J. Traumatic brain injury: An overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab., 2010, 30(2), 255-266.
[http://dx.doi.org/10.1038/jcbfm.2009.203] [PMID: 19809467]
[139]
Säljö, A.; Svensson, B.; Mayorga, M.; Hamberger, A.; Bolouri, H. Low-level blasts raise intracranial pressure and impair cognitive function in rats. J. Neurotrauma, 2009, 26(8), 1345-1352.
[http://dx.doi.org/10.1089/neu.2008.0856] [PMID: 19317610]
[140]
Cernak, I.; Merkle, A.C.; Koliatsos, V.E.; Bilik, J.M.; Luong, Q.T.; Mahota, T.M.; Xu, L.; Slack, N.; Windle, D.; Ahmed, F.A. The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol. Dis., 2011, 41(2), 538-551.
[http://dx.doi.org/10.1016/j.nbd.2010.10.025] [PMID: 21074615]
[141]
Mishra, V.; Skotak, M.; Schuetz, H.; Heller, A.; Haorah, J.; Chandra, N. Primary blast causes mild, moderate, severe and lethal TBI with increasing blast overpressures: Experimental rat injury model. Sci. Rep., 2016, 6(1), 26992.
[http://dx.doi.org/10.1038/srep26992] [PMID: 27270403]
[142]
Studlack, P.E.; Keledjian, K.; Farooq, T.; Akintola, T.; Gerzanich, V.; Simard, J.M.; Keller, A. Blast-induced brain injury in rats leads to transient vestibulomotor deficits and persistent orofacial pain. Brain Inj., 2018, 32(13-14), 1866-1878.
[http://dx.doi.org/10.1080/02699052.2018.1536282] [PMID: 30346868]
[143]
Meyer, K.; Helmick, K.; Doncevic, S.; Park, R. Severe and penetrating traumatic brain injury in the context of war. J. Trauma Nurs., 2008, 15(4), 185-189.
[http://dx.doi.org/10.1097/01.JTN.0000343324.55087.de] [PMID: 19092508]
[144]
Risling, M.; Sköld, M.; Larsson, I.; Davidsson, J. New model for high velocity penetration injury to the brain: 34th NeuroSience Conference; Nov 8-12, 2003New Orleans, USA, 2003.
[145]
Cernak, I.; Wing, I.D.; Davidsson, J.; Plantman, S. A novel mouse model of penetrating brain injury. Front. Neurol., 2014, 5, 209.
[http://dx.doi.org/10.3389/fneur.2014.00209] [PMID: 25374559]
[146]
Williams, A.J.; Hartings, J.A.; Lu, X.C.M.; Rolli, M.L.; Tortella, F.C. Penetrating ballistic-like brain injury in the rat: Differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J. Neurotrauma, 2006, 23(12), 1828-1846.
[http://dx.doi.org/10.1089/neu.2006.23.1828] [PMID: 17184192]
[147]
Shear, D.A.; Lu, X.C.M.; Pedersen, R.; Wei, G.; Chen, Z.; Davis, A.; Yao, C.; Dave, J.; Tortella, F.C. Severity profile of penetrating ballistic-like brain injury on neurofunctional outcome, blood-brain barrier permeability, and brain edema formation. J. Neurotrauma, 2011, 28(10), 2185-2195.
[http://dx.doi.org/10.1089/neu.2011.1916] [PMID: 21644814]
[148]
Yin, V.P.; Poss, K.D. New regulators of vertebrate appendage regeneration. Curr. Opin. Genet. Dev., 2008, 18(4), 381-386.
[http://dx.doi.org/10.1016/j.gde.2008.06.008] [PMID: 18644447]
[149]
Vilella, A.J.; Severin, J.; Ureta-Vidal, A.; Heng, L.; Durbin, R.; Birney, E. Ensemblcompara genetrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res., 2009, 19(2), 327-335.
[http://dx.doi.org/10.1101/gr.073585.107] [PMID: 19029536]
[150]
Kernie, S.G.; Parent, J.M. Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol. Dis., 2010, 37(2), 267-274.
[http://dx.doi.org/10.1016/j.nbd.2009.11.002] [PMID: 19909815]
[151]
Chapouton, P.; Jagasia, R.; Bally-Cuif, L. Adult neurogenesis in non-mammalian vertebrates. BioEssays, 2007, 29(8), 745-757.
[http://dx.doi.org/10.1002/bies.20615] [PMID: 17621643]
[152]
Hannah, R.M.; Smith, A.; Yin, V.P. An open-head traumatic brain injury model in adult zebrafish (Danio rerio).
[153]
Kishimoto, N.; Shimizu, K.; Sawamoto, K. Neuronal regeneration in a zebrafish model of adult brain injury. Dis. Model. Mech., 2012, 5(2), 200-209.
[http://dx.doi.org/10.1242/dmm.007336] [PMID: 22028327]
[154]
Mychasiuk, R.; Farran, A.; Angoa-Perez, M.; Briggs, D.; Kuhn, D.; Esser, M.J. A novel model of mild traumatic brain injury for juvenile rats. J. Vis. Exp., 2014, (94), e51820.
[http://dx.doi.org/10.3791/51820] [PMID: 25548960]
[155]
Maheras, A.L.; Dix, B.; Carmo, O.M.S.; Young, A.E.; Gill, V.N.; Sun, J.L.; Booker, A.R.; Thomason, H.A.; Ibrahim, A.E.; Stanislaw, L.; Dallego, J.C.; Ngo, C.N.; Chen, A.; Fortini, B.K.; Spence, R.D. Genetic pathways of neuroregeneration in a novel mild traumatic brain injury model in adult zebrafish. eNeuro, 2018, 5(1), ENEURO.0208-17.2017.
[http://dx.doi.org/10.1523/ENEURO.0208-17.2017] [PMID: 29302617]
[156]
Kroehne, V.; Freudenreich, D.; Hans, S.; Kaslin, J.; Brand, M. Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development, 2011, 138(22), 4831-4841.
[http://dx.doi.org/10.1242/dev.072587] [PMID: 22007133]
[157]
Kyritsis, N.; Kizil, C.; Zocher, S.; Kroehne, V.; Kaslin, J.; Freudenreich, D.; Iltzsche, A.; Brand, M. Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science, 2012, 338(6112), 1353-1356.
[http://dx.doi.org/10.1126/science.1228773] [PMID: 23138980]
[158]
Meshalkina, D.A.; Kysil, E.V.; Warnick, J.E.; Demin, K.A.; Kalueff, A.V. Adult zebrafish in CNS disease modeling: A tank that’s half-full, not half-empty, and still filling. Lab Anim. (NY), 2017, 46(10), 378-387.
[http://dx.doi.org/10.1038/laban.1345] [PMID: 28984854]
[159]
Ugur, B.; Chen, K.; Bellen, H.J. Drosophila tools and assays for the study of human diseases. Dis. Model. Mech., 2016, 9(3), 235-244.
[http://dx.doi.org/10.1242/dmm.023762] [PMID: 26935102]
[160]
Pandey, U.B.; Nichols, C.D. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev., 2011, 63(2), 411-436.
[http://dx.doi.org/10.1124/pr.110.003293] [PMID: 21415126]
[161]
Chintapalli, V.R.; Wang, J.; Dow, J.A.T. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet., 2007, 39(6), 715-720.
[http://dx.doi.org/10.1038/ng2049] [PMID: 17534367]
[162]
Perrimon, N.; Bonini, N.M.; Dhillon, P. Fruit flies on the front line: The translational impact of Drosophila; The Company of Biologists Ltd, 2016.
[163]
Reichert, H. A tripartite organization of the urbilaterian brain: Developmental genetic evidence from Drosophila. Brain Res. Bull., 2005, 66(4-6), 491-494.
[http://dx.doi.org/10.1016/j.brainresbull.2004.11.028] [PMID: 16144638]
[164]
Katzenberger, R.J.; Loewen, C.A.; Wassarman, D.R.; Petersen, A.J.; Ganetzky, B.; Wassarman, D.A. A Drosophila model of closed head traumatic brain injury. Proc. Natl. Acad. Sci. USA, 2013, 110(44), E4152-E4159.
[http://dx.doi.org/10.1073/pnas.1316895110] [PMID: 24127584]
[165]
Katzenberger, R.J.; Loewen, C.A.; Bockstruck, R.T.; Woods, M.A.; Ganetky, B.; Wassarman, D.A. A method to inflict closed head traumatic brain injury in Drosophila. J. Vis. Exp., 2015, (100), e52905.
[http://dx.doi.org/10.3791/52905] [PMID: 26168076]
[166]
Levin, H.S.; Grossman, R.G.; Rose, J.E.; Teasdale, G. Long-term neuropsychological outcome of closed head injury. J. Neurosurg., 1979, 50(4), 412-422.
[http://dx.doi.org/10.3171/jns.1979.50.4.0412] [PMID: 311378]
[167]
Barekat, A.; Gonzalez, A.; Mauntz, R.E.; Kotzebue, R.W.; Molina, B.; El-Mecharrafie, N.; Conner, C.J.; Garza, S.; Melkani, G.C.; Joiner, W.J.; Lipinski, M.M.; Finley, K.D.; Ratliff, E.P. Using Drosophila as an integrated model to study mild repetitive traumatic brain injury. Sci. Rep., 2016, 6(1), 25252.
[http://dx.doi.org/10.1038/srep25252] [PMID: 27143646]
[168]
van Alphen, B.; Stewart, S.; Iwanaszko, M.; Xu, F.; Bang, E.; Rozenfeld, S.; Ramakrishnan, A.; Itoh, T.Q.; Braun, R.I.; Allada, R. Glial immune-related pathways as mediators of closed head TBI effects on behavior in Drosophila. BioRxiv, 2018, 422535.
[http://dx.doi.org/10.1101/422535]
[169]
Sen, A.; Gurdziel, K.; Liu, J.; Qu, W.; Nuga, O.O.; Burl, R.B.; Hüttemann, M.; Pique-Regi, R.; Ruden, D.M. Smooth, an hnRNP-L homolog, might decrease mitochondrial metabolism by post-transcriptional regulation of isocitrate dehydrogenase (Idh) and other metabolic genes in the sub-acute phase of traumatic brain injury. Front. Genet., 2017, 8, 175.
[http://dx.doi.org/10.3389/fgene.2017.00175] [PMID: 29187863]
[170]
Saikumar, J.; Byrns, C.N.; Hemphill, M.; Meaney, D.F.; Bonini, N.M. Dynamic neural and glial responses of a head-specific model for traumatic brain injury in Drosophila. Proc. Natl. Acad. Sci. USA, 2020, 117(29), 17269-17277.
[http://dx.doi.org/10.1073/pnas.2003909117] [PMID: 32611818]
[171]
Shah, E.J.; Gurdziel, K.; Ruden, D.M. Mammalian models of traumatic brain injury and a place for Drosophila in TBI research. Front. Neurosci., 2019, 13, 409.
[http://dx.doi.org/10.3389/fnins.2019.00409] [PMID: 31105519]
[172]
Ayaz, D.; Leyssen, M.; Koch, M.; Yan, J.; Srahna, M.; Sheeba, V.; Fogle, K.J.; Holmes, T.C.; Hassan, B.A. Axonal injury and regeneration in the adult brain of Drosophila. J. Neurosci., 2008, 28(23), 6010-6021.
[http://dx.doi.org/10.1523/JNEUROSCI.0101-08.2008] [PMID: 18524906]
[173]
Vidal, S.; Khush, R.S.; Leulier, F.; Tzou, P.; Nakamura, M.; Lemaitre, B. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev., 2001, 15(15), 1900-1912.
[http://dx.doi.org/10.1101/gad.203301] [PMID: 11485985]
[174]
Miñambres, E.; Ballesteros, M.A.; Mayorga, M.; Marin, M.J.; Muñoz, P.; Figols, J.; López-Hoyos, M. Cerebral apoptosis in severe traumatic brain injury patients: An in vitro, in vivo, and postmortem study. J. Neurotrauma, 2008, 25(6), 581-591.
[http://dx.doi.org/10.1089/neu.2007.0398] [PMID: 18363508]
[175]
Cackovic, J.; Gutierrez-Luke, S.; Call, G.B.; Juba, A.; O’Brien, S.; Jun, C.H.; Buhlman, L.M. Vulnerable parkin loss-of-function Drosophila dopaminergic neurons have advanced mitochondrial aging, mitochondrial network loss and transiently reduced autophagosome recruitment. Front. Cell. Neurosci., 2018, 12, 39.
[http://dx.doi.org/10.3389/fncel.2018.00039] [PMID: 29497364]
[176]
Blennow, K.; Hardy, J.; Zetterberg, H. The neuropathology and neurobiology of traumatic brain injury. Neuron, 2012, 76(5), 886-899.
[http://dx.doi.org/10.1016/j.neuron.2012.11.021] [PMID: 23217738]
[177]
Hughes, T.T.; Allen, A.L.; Bardin, J.E.; Christian, M.N.; Daimon, K.; Dozier, K.D.; Hansen, C.L.; Holcomb, L.M.; Ahlander, J. Drosophila as a genetic model for studying pathogenic human viruses. Virology, 2012, 423(1), 1-5.
[http://dx.doi.org/10.1016/j.virol.2011.11.016] [PMID: 22177780]
[178]
Laskowski, A.; Schmidt, W.; Dinkel, K.; Martínez-Sánchez, M.; Reymann, K.G. bFGF and EGF modulate trauma-induced proliferation and neurogenesis in juvenile organotypic hippocampal slice cultures. Brain Res., 2005, 1037(1-2), 78-89.
[http://dx.doi.org/10.1016/j.brainres.2004.12.035] [PMID: 15777755]
[179]
Morrison, B., III; Elkin, B.S.; Dollé, J.P.; Yarmush, M.L. in vitro models of traumatic brain injury. Annu. Rev. Biomed. Eng., 2011, 13(1), 91-126.
[http://dx.doi.org/10.1146/annurev-bioeng-071910-124706] [PMID: 21529164]
[180]
Faden, A.I.; Knoblach, S.M.; Movsesyan, V.A.; Cernak, I. Novel small peptides with neuroprotective and nootropic properties. J. Alzheimers Dis., 2004, 6(6)(Suppl.), S93-S97.
[PMID: 15665420]
[181]
Allen, J.W.; Knoblach, S.M.; Faden, A.I. Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor‐dependent neuronal cell death and caspase‐3‐dependent apoptosis. FASEB J., 1999, 13(13), 1875-1882.
[http://dx.doi.org/10.1096/fasebj.13.13.1875] [PMID: 10506592]
[182]
Blank-Reid, C.; Reid, P.C. Penetrating trauma to the head. Crit. Care Nurs. Clin. North Am., 2000, 12(4), 477-487.
[http://dx.doi.org/10.1016/S0899-5885(18)30084-4] [PMID: 11855251]
[183]
Church, A.J.; Andrew, R.D. Spreading depression expands traumatic injury in neocortical brain slices. J. Neurotrauma, 2005, 22(2), 277-290.
[http://dx.doi.org/10.1089/neu.2005.22.277] [PMID: 15716633]
[184]
Ellis, E.F.; McKinney, J.S.; Willoughby, K.A.; Liang, S.; Povlishock, J.T. A new model for rapid stretch-induced injury of cells in culture: Characterization of the model using astrocytes. J. Neurotrauma, 1995, 12(3), 325-339.
[http://dx.doi.org/10.1089/neu.1995.12.325] [PMID: 7473807]
[185]
Morrison, B., III; Cater, H.L.; Benham, C.D.; Sundstrom, L.E. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures. J. Neurosci. Methods, 2006, 150(2), 192-201.
[http://dx.doi.org/10.1016/j.jneumeth.2005.06.014] [PMID: 16098599]
[186]
Effgen, G.B.; Morrison, B. III Memantine reduced cell death, astrogliosis, and functional deficits in an in vitro model of repetitive mild traumatic brain injury. J. Neurotrauma, 2017, 34(4), 934-942.
[http://dx.doi.org/10.1089/neu.2016.4528] [PMID: 27450515]
[187]
Olney, J. Excitotoxicity: An overview. Canada diseases weekly report= Rapport hebdomadaire des maladies au Canada, 1990, 16, 47-57.
[188]
Choi, D.W. Excitotoxic cell death. J. Neurobiol., 1992, 23(9), 1261-1276.
[http://dx.doi.org/10.1002/neu.480230915] [PMID: 1361523]
[189]
Kumaria, A. in vitro models as a platform to investigate traumatic brain injury. Altern. Lab. Anim., 2017, 45(4), 201-211.
[http://dx.doi.org/10.1177/026119291704500405] [PMID: 28994300]
[190]
Taylor, P.A.; Ford, C.C. Simulation of blast-induced early-time intracranial wave physics leading to traumatic brain injury. J. Biomech. Eng., 2009, 131(6), 061007.
[http://dx.doi.org/10.1115/1.3118765] [PMID: 19449961]
[191]
Trovato Salinaro, A.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L.; Calabrese, E.J.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: Modulation by nutritional mushrooms. Immun. Ageing, 2018, 15(1), 8.
[http://dx.doi.org/10.1186/s12979-017-0108-1] [PMID: 29456585]
[192]
Calabrese, E.; Calabrese, V.; Giordano, J. The role of hormesis in the functional performance and protection of neural systems. Brain Circ., 2017, 3(1), 1-13.
[http://dx.doi.org/10.4103/2394-8108.203257] [PMID: 30276298]
[193]
Brunetti, G.; Di Rosa, G.; Scuto, M.; Leri, M.; Stefani, M.; Schmitz-Linneweber, C.; Calabrese, V.; Saul, N. Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int. J. Mol. Sci., 2020, 21(7), 2588.
[http://dx.doi.org/10.3390/ijms21072588] [PMID: 32276415]
[194]
Pennisi, M.; Crupi, R.; Di Paola, R.; Ontario, M.L.; Bella, R.; Calabrese, E.J.; Crea, R.; Cuzzocrea, S.; Calabrese, V. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J. Neurosci. Res., 2017, 95(7), 1360-1372.
[http://dx.doi.org/10.1002/jnr.23986] [PMID: 27862176]
[195]
Calabrese, V.; Cornelius, C.; Dinkova-Kostova, A.T.; Iavicoli, I.; Di Paola, R.; Koverech, A.; Cuzzocrea, S.; Rizzarelli, E.; Calabrese, E.J. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(5), 753-783.
[http://dx.doi.org/10.1016/j.bbadis.2011.11.002] [PMID: 22108204]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy