Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Adult Stem Cell Research in Light of the Bovine Mammary Gland Regenerative Medicine

Author(s): Mudasir Bashir Gugjoo*, Fajar Farooq, Ejaz Rasool Dar, Syed Mudasir Ahmad, Riaz Ahmad Shah, Amarpal and Jalal ud Din Parrah

Volume 18, Issue 6, 2023

Published on: 13 October, 2022

Page: [740 - 749] Pages: 10

DOI: 10.2174/1574888X17666220705162810

Price: $65

Abstract

The bovine mammary gland has vital importance in the dairy sector, as it is considered a source of basic dairy product, milk. Mammary gland affections are widespread, which affect the dairy industry economically and pose a potential public health hazard. Current therapeutic options are ineffective in controlling the infection and regenerating the gland effectively. Antimicrobials commonly used against mastitis make their way into the milk . In order to find a solution to these problems, advanced therapeutic options, like the one for stem cells, are considered. Mammary gland stem cells (MaSCs) are considered to maintain tissue homeostasis. The characterization of these cells and their derived lineages (progenitor cells and mammary epithelial cells) may potentially provide the physiological status or production potential of the gland. However, current isolation methods are cumbersome and fall short to isolate a pure line of cattle MaSCs from progenitors or other differentiated epithelial cells. An alternative to the therapeutic application of MaSCs is the mesenchymal stem cell (MSC). These cells can potentially control microbial infection, show anti-inflammatory and other pro-healing effects, and furthermore enhance mammary epithelial cell secretory potential to ensure tissue regeneration. The current review focuses on MaSCs and MSCs properties in light of the bovine mammary gland regeneration.

Keywords: Bovine, Characterization, Mammary gland, Mesenchymal stem cell, Mammary stem/ progenitor cells, Regeneration

Graphical Abstract

[1]
Niemann H, Kuhla B, Flachowsky G. Perspectives for feed-efficient animal production. J Anim Sci 2011; 89(12): 4344-63.
[http://dx.doi.org/10.2527/jas.2011-4235] [PMID: 21705634]
[2]
Peaker M. The mammary gland in mammalian evolution: A brief commentary on some of the concepts. J Mammary Gland Biol Neoplasia 2002; 7(3): 347-53.
[http://dx.doi.org/10.1023/A:1022860902083] [PMID: 12751896]
[3]
Li L, Xie T. Stem cell niche: Structure and function. Annu Rev Cell Dev Biol 2005; 21: 605-31.
[http://dx.doi.org/10.1146/annurev.cellbio.21.012704.131525] [PMID: 16212509]
[4]
Hovey RC, Auldist DE, Mackenzie DD, McFadden TB. Preparation of an epithelium-free mammary fat pad and subsequent mammogenesis in ewes. J Anim Sci 2000; 78(8): 2177-85.
[http://dx.doi.org/10.2527/2000.7882177x] [PMID: 10947106]
[5]
Parmar H, Cunha GR. Epithelial-stromal interactions in the mouse and human mammary gland in vivo. Endocr Relat Cancer 2004; 11(3): 437-58.
[http://dx.doi.org/10.1677/erc.1.00659] [PMID: 15369447]
[6]
Holland MS, Holland RE. The cellular perspective on mammary gland development: Stem/progenitor cells and beyond. J Dairy Sci 2005; 88 (Suppl. 1): E1-8.
[http://dx.doi.org/10.3168/jds.S0022-0302(05)73132-5] [PMID: 15876573]
[7]
Watson CJ, Khaled WT. Mammary development in the embryo and adult: A journey of morphogenesis and commitment. Development 2008; 135(6): 995-1003.
[http://dx.doi.org/10.1242/dev.005439] [PMID: 18296651]
[8]
Geiger AJ. Review: The pre-pubertal bovine mammary gland: Unlocking the potential of the future herd. Animal 2019; 13(S1): s4-s10.
[http://dx.doi.org/10.1017/S1751731119001204] [PMID: 31280752]
[9]
Ellis S, Capuco AV. Cell proliferation in bovine mammary epithelium: Identification of the primary proliferative cell population. Tissue Cell 2002; 34(3): 155-63.
[http://dx.doi.org/10.1016/S0040-8166(02)00025-3] [PMID: 12182808]
[10]
Martignani E, Cravero D, Miretti S, Accornero P, Baratta M. Bovine mammary stem cells: New perspective for dairy science. Vet Q 2014; 34(1): 52-8.
[http://dx.doi.org/10.1080/01652176.2014.894262] [PMID: 24624999]
[11]
Li JX, Zhang Y, Ma LB, Sun JH, Yin BY. Isolation and culture of bovine mammary epithelial stem cells. J Vet Med Sci 2009; 71(1): 15-9.
[http://dx.doi.org/10.1292/jvms.71.15] [PMID: 19194071]
[12]
Stingl J. Detection and analysis of mammary gland stem cells. J Pathol 2009; 217(2): 229-41.
[http://dx.doi.org/10.1002/path.2457] [PMID: 19009588]
[13]
Rauner G, Barash I. Cell hierarchy and lineage commitment in the bovine mammary gland. PLoS One 2012; 7(1): e30113.
[http://dx.doi.org/10.1371/journal.pone.0030113] [PMID: 22253899]
[14]
Choudhary RK, Capuco AV. Expression of NR5A2, NUP153, HNF4A, USP15 and FNDC3B is consistent with their use as novel biomarkers for bovine mammary stem/progenitor cells. J Mol Histol 2021; 52(2): 289-300.
[http://dx.doi.org/10.1007/s10735-020-09948-8] [PMID: 33400051]
[15]
Bae H, Jeong CH, Cheng WN, Hong K, Seo HG, Han SG. Oxidative stress-induced inflammatory responses and effects of N-acetylcysteine in bovine mammary alveolar cells. J Dairy Res 2017; 84(4): 418-25.
[http://dx.doi.org/10.1017/S002202991700067X] [PMID: 29154739]
[16]
González RN, Wilson DJ. Mycoplasmal mastitis in dairy herds. Vet Clin North Am Food Anim Pract 2003; 19(1): 199-221.
[http://dx.doi.org/10.1016/S0749-0720(02)00076-2] [PMID: 12682943]
[17]
Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res 2003; 34(5): 475-91.
[http://dx.doi.org/10.1051/vetres:2003027] [PMID: 14556691]
[18]
Gugjoo MB. Amarpal, Fazili MR, Shah RA, Sharma GT. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. J Cell Physiol 2019; 234(6): 8618-35.
[http://dx.doi.org/10.1002/jcp.27846] [PMID: 30515790]
[19]
Sharun K, Dhama K, Tiwari R, et al. Advances in therapeutic and managemental approaches of bovine mastitis: A comprehensive review. Vet Q 2021; 41(1): 107-36.
[http://dx.doi.org/10.1080/01652176.2021.1882713] [PMID: 33509059]
[20]
Oliver SP, Murinda SE. Antimicrobial resistance of mastitis pathogens. Vet Clin North Am Food Anim Pract 2012; 28(2): 165-85.
[http://dx.doi.org/10.1016/j.cvfa.2012.03.005] [PMID: 22664201]
[21]
Misk N, Misk T, El-Khamary A, Semeika M. A retrospective study of surgical affections of mammary glands in cattle and buffaloes and their management in the field. J Vet Med Sci 2018; 80(10): 1576-83.
[http://dx.doi.org/10.1292/jvms.17-0586] [PMID: 30022777]
[22]
Bardhan D. Estimates of economic losses due to clinical mastitis in organized dairy farms. Indian J Dairy Sci 2013; 66: 168-72.
[23]
Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 2001; 67(2): 93-109.
[http://dx.doi.org/10.1023/A:1010615124301] [PMID: 11519870]
[24]
Gudjonsson T, Villadsen R, Nielsen HL, Rønnov-Jessen L, Bissell MJ, Petersen OW. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 2002; 16(6): 693-706.
[http://dx.doi.org/10.1101/gad.952602] [PMID: 11914275]
[25]
Clayton H, Titley I, Vivanco Md. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res 2004; 297(2): 444-60.
[http://dx.doi.org/10.1016/j.yexcr.2004.03.029] [PMID: 15212947]
[26]
Holland MS, Tai MH, Trosko JE, et al. Isolation and differentiation of bovine mammary gland progenitor cell populations. Am J Vet Res 2003; 64(4): 396-403.
[http://dx.doi.org/10.2460/ajvr.2003.64.396] [PMID: 12693527]
[27]
Capuco AV. Identification of putative bovine mammary epithelial stem cells by their retention of labeled DNA strands. Exp Biol Med (Maywood) 2007; 232(10): 1381-90.
[http://dx.doi.org/10.3181/0703-RM-58] [PMID: 17959851]
[28]
Motyl T, Bier JB. Koz1owski M, Gajewska M, Gajkowska B, Koronkiewicz K. Identification, quantification and transcriptional profile of potential stem cells in bovine mammary gland. Livest Sci 2010; 136: 136-49.
[http://dx.doi.org/10.1016/j.livsci.2010.08.011]
[29]
Martignani E, Eirew P, Eaves C, Baratta M. Functional identification of bovine mammary epithelial stem/progenitor cells. Vet Res Commun 2009; 33 (Suppl. 1): 101-3.
[http://dx.doi.org/10.1007/s11259-009-9254-z] [PMID: 19578962]
[30]
Martignani E, Eirew P, Accornero P, Eaves CJ, Baratta M. Human milk protein production in xenografts of genetically engineered bovine mammary epithelial stem cells. PLoS One 2010; 5(10): e13372.
[http://dx.doi.org/10.1371/journal.pone.0013372] [PMID: 20976049]
[31]
Finot L, Chanat E, Dessauge F. Molecular signature of the putative stem/progenitor cells committed to the development of the bovine mammary gland at puberty. Sci Rep 2018; 8(1): 16194.
[http://dx.doi.org/10.1038/s41598-018-34691-2] [PMID: 30385815]
[32]
Finot L, Chanat E, Dessauge F. Mammary epithelial cell lineage changes during cow’s life. J Mammary Gland Biol Neoplasia 2019; 24(2): 185-97.
[http://dx.doi.org/10.1007/s10911-019-09427-1] [PMID: 30758700]
[33]
Choudhary RK, Capuco AV. In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment. BMC Cell Biol 2012; 13: 14.
[http://dx.doi.org/10.1186/1471-2121-13-14] [PMID: 22698263]
[34]
Capuco AV, Evock-Clover CM, Minuti A, Wood DL. In vivo expansion of the mammary stem/progenitor cell population by xanthosine infusion. Exp Biol Med (Maywood) 2009; 234(4): 475-82.
[http://dx.doi.org/10.3181/0811-RM-320] [PMID: 19176874]
[35]
Boutinaud M, Herve L, Lollivier V. Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts. Front Genet 2015; 6: 323.
[http://dx.doi.org/10.3389/fgene.2015.00323] [PMID: 26579195]
[36]
Herve L, Quesnel H, Lollivier V, Boutinaud M. Regulation of cell number in the mammary gland by controlling the exfoliation process in milk in ruminants. J Dairy Sci 2016; 99(1): 854-63.
[http://dx.doi.org/10.3168/jds.2015-9964] [PMID: 26433413]
[37]
Baratta M, Miretti S, Macchi E, Accornero P, Martignani E. Mammary stem cells in domestic animals: The role of ROS. Antioxidants 2018; 8(1): 6.
[http://dx.doi.org/10.3390/antiox8010006] [PMID: 30587765]
[38]
Bhat SA, Ahmad SM, Ibeagha-Awemu EM, et al. Comparative transcriptome analysis of mammary epithelial cells at different stages of lactation reveals wide differences in gene expression and pathways regulating milk synthesis between Jersey and Kashmiri cattle. PLoS One 2019; 14(2): e0211773.
[http://dx.doi.org/10.1371/journal.pone.0211773] [PMID: 30721247]
[39]
Bhat SA, Ahmad SM, Ibeagha-Awemu EM, et al. Comparative milk proteome analysis of Kashmiri and Jersey cattle identifies differential expression of key proteins involved in immune system regulation and milk quality. BMC Genomics 2020; 21(1): 161.
[http://dx.doi.org/10.1186/s12864-020-6574-4] [PMID: 32059637]
[40]
Abdelfattah-Hassan A, Saadeldin IM, Ghonimi W. Optimization of the isolation process of putative bovine mammary stem cells. Jpn J Vet Res 2016; 64: 65-71.
[41]
Hu H, Zheng N, Gao H, et al. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro. Cell Biol Int 2016; 40(8): 861-72.
[http://dx.doi.org/10.1002/cbin.10624] [PMID: 27189858]
[42]
Ledet MM, Vasquez AK, Rauner G, et al. The secretome from bovine mammosphere-derived cells (MDC) promotes angiogenesis, epithelial cell migration, and contains factors associated with defense and immunity. Sci Rep 2018; 8(1): 5378.
[http://dx.doi.org/10.1038/s41598-018-23770-z] [PMID: 29599438]
[43]
Park HJ, Lee WY, Jeong HY, Song H. Regeneration of bovine mammary gland in immunodeficient mice by transplantation of bovine mammary epithelial cells mixed with matrigel. Int J Stem Cells 2016; 9(2): 186-91.
[http://dx.doi.org/10.15283/ijsc16044] [PMID: 27788570]
[44]
Gugjoo MB, Sharma GT, Aithal HP, Kinjavdekar P. Cartilage tissue engineering: Role of mesenchymal stem cells along with growth factors & scaffolds. Indian J Med Res 2016; 144(3): 339-47.
[http://dx.doi.org/10.4103/0971-5916.198724] [PMID: 28139532]
[45]
Gugjoo MB. Amarpal, Chandra V, Wani MY, Dhama K, Sharma GT. Mesenchymal stem cell research in veterinary medicine. Curr Stem Cell Res Ther 2018; 13(8): 645-57.
[http://dx.doi.org/10.2174/1574888X13666180517074444] [PMID: 29769009]
[46]
Gugjoo MB. Amarpal, Fazili MR, Shah RA, Sharma GT Cattle/buffalo mesenchymal stem cell basic research and potential applications Mesenchymal stem cell in veterinary sciences. Pal A, Springer Nature 2020; pp. 181-96.
[http://dx.doi.org/10.1007/978-981-15-6037-8_9]
[47]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[48]
Gugjoo MB. Amarpal, Kinjavdekar P, Aithal HP, Ansari MM, Pawde AM, Sharma GT. Isolation, culturing and characterization of New Zealand White rabbit mesenchymal stem cells derived from bone marrow. Asian J Anim Vet Adv 2015; 10: 537-48.
[http://dx.doi.org/10.3923/ajava.2015.537.548]
[49]
Dar ER, Gugjoo MB, Javaid M, et al. Adipose tissue- and bone marrow-derived mesenchymal stem cells from sheep: Culture characteristics. Animals (Basel) 2021; 11(8): 2153.
[http://dx.doi.org/10.3390/ani11082153] [PMID: 34438611]
[50]
Gugjoo MB, Hussain S. Amarpal, Shah RA, Dhama K. Mesenchymal stem cell-mediated immuno-modulatory and anti- inflammatory mechanisms in immune and allergic disorders. Recent Pat Inflamm Allergy Drug Discov 2020; 14(1): 3-14.
[http://dx.doi.org/10.2174/1872213X14666200130100236] [PMID: 32000656]
[51]
Gugjoo MB, Pal A. Mesenchymal Stem Cell Immuno-Modulatory and/Anti-Inflammatory PropertiesMesenchymal stem cell in Veterinary sciences. Springer Nature 2020; pp. 47-66.
[http://dx.doi.org/10.1007/978-981-15-6037-8_4]
[52]
Patki S, Kadam S, Chandra V, Bhonde R. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell 2010; 23(2): 35-40.
[http://dx.doi.org/10.1111/j.1749-0774.2010.00083.x] [PMID: 20712706]
[53]
Sani M, Ebrahimi S, Aleahmad F, et al. Differentiation potential of breast milk-derived mesenchymal stem cells into hepatocyte-like cells. Tissue Eng Regen Med 2017; 14(5): 587-93.
[http://dx.doi.org/10.1007/s13770-017-0066-x] [PMID: 30603512]
[54]
Khamis T, Abdelalim AF, Abdallah SH, Saeed AA, Edress NM, Arisha AH. Early intervention with breast milk mesenchymal stem cells attenuates the development of diabetic-induced testicular dysfunction via hypothalamic Kisspeptin/Kiss1r-GnRH/GnIH system in male rats. Biochim Biophys Acta Mol Basis Dis 2020; 1866(1): 165577.
[http://dx.doi.org/10.1016/j.bbadis.2019.165577] [PMID: 31672553]
[55]
Pipino C, Mandatori D, Buccella F, et al. Identification and characterization of a stem cell-like population in bovine milk: A potential new source for regenerative medicine in veterinary. Stem Cells Dev 2018; 27(22): 1587-97.
[http://dx.doi.org/10.1089/scd.2018.0114] [PMID: 30142991]
[56]
Cardoso TC, Okamura LH, Baptistella JC, et al. Isolation, characterization and immunomodulatory-associated gene transcription of Wharton’s jelly-derived multipotent mesenchymal stromal cells at different trimesters of cow pregnancy. Cell Tissue Res 2017; 367(2): 243-56.
[http://dx.doi.org/10.1007/s00441-016-2504-9] [PMID: 27677269]
[57]
Gugjoo MB. Amarpal, Abdelbaset-Ismail A, et al. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother 2017; 93: 1165-74.
[http://dx.doi.org/10.1016/j.biopha.2017.07.032] [PMID: 28738525]
[58]
Gugjoo MB. Amarpal, Abdelbaset-Ismail A, et al. Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. Regen Med 2020; 15(2): 1261-75.
[http://dx.doi.org/10.2217/rme-2018-0138] [PMID: 32154762]
[59]
Wu S, Suzuki Y, Ejiri Y, et al. Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord. J Neurosci Res 2003; 72(3): 343-51.
[http://dx.doi.org/10.1002/jnr.10587] [PMID: 12692901]
[60]
Borena BM, Pawde AM. Amarpal, et al. Autologous bone marrow-derived cells for healing excisional dermal wounds of rabbits. Vet Rec 2009; 165(19): 563-8.
[http://dx.doi.org/10.1136/vr.165.19.563] [PMID: 19897871]
[61]
Casteilla L, Planat-Benard V, Laharrague P, Cousin B. Adipose-derived stromal cells: Their identity and uses in clinical trials, an update. World J Stem Cells 2011; 3(4): 25-33.
[http://dx.doi.org/10.4252/wjsc.v3.i4.25] [PMID: 21607134]
[62]
Cardoso TC, Novais JB, Antello TF, et al. Susceptibility of neuron-like cells derived from bovine Wharton’s jelly to bovine herpesvirus type 5 infections. BMC Vet Res 2012; 8: 242.
[http://dx.doi.org/10.1186/1746-6148-8-242] [PMID: 23227933]
[63]
Ayatollahi M, Hesami Z, Jamshidzadeh A, Gramizadeh B. Antioxidant effects of bone marrow mesenchymal stem cell against carbon tetrachloride-induced oxidative damage in rat livers. Int J Organ Transplant Med 2014; 5(4): 166-73.
[PMID: 25426285]
[64]
de Moraes CN, Maia L, de Oliveira E, et al. Shotgun proteomic analysis of the secretome of bovine endometrial mesenchymal progenitor/stem cells challenged or not with bacterial lipopolysaccharide. Vet Immunol Immunopathol 2017; 187: 42-7.
[http://dx.doi.org/10.1016/j.vetimm.2017.03.007] [PMID: 28494928]
[65]
Lara E, Velásquez A, Cabezas J, et al. Endometritis and in vitro PGE2 challenge modify properties of cattle endometrial mesenchymal stem cells and their transcriptomic profile. Stem Cells Int 2017; 2017: 4297639.
[http://dx.doi.org/10.1155/2017/4297639] [PMID: 29213289]
[66]
Brandl A, Meyer M, Bechmann V, Nerlich M, Angele P. Oxidative stress induces senescence in human mesenchymal stem cells. Exp Cell Res 2011; 317(11): 1541-7.
[http://dx.doi.org/10.1016/j.yexcr.2011.02.015] [PMID: 21376036]
[67]
Estrada JC, Torres Y, Benguría A, et al. Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death Dis 2013; 4: e691.
[http://dx.doi.org/10.1038/cddis.2013.211] [PMID: 23807220]
[68]
Vanella L, Sanford C Jr, Kim DH, Abraham NG, Ebraheim N. Oxidative stress and heme oxygenase-1 regulated human mesenchymal stem cells differentiation. Int J Hypertens 2012; 2012: 890671.
[http://dx.doi.org/10.1155/2012/890671] [PMID: 22518296]
[69]
Costa CRM, Feitosa MLT, Rocha AR, et al. Adipose stem cells in reparative goat mastitis mammary gland. PLoS One 2019; 14(10): e0223751.
[http://dx.doi.org/10.1371/journal.pone.0223751] [PMID: 31639137]
[70]
Zhao Y, Shao W, Luo C, Wu K, Yu X. Co-culture with umbilical cord mesenchymal stem cells promotes the synthesis and mechnism of milk protein in bovine mammary epithelial cells. Xibao Yu Fenzi Mianyixue Zazhi 2017; 33(2): 185-9.
[PMID: 29762986]
[71]
Oviedo-Boyso J, Valdez-Alarco´n JJ, Cajero-Jua´rez M, et al. Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Inf 2007; 54: 399e409.
[72]
He G, Ma M, Yang W, Wang H, Zhang Y, Gao M-Q. SDF-1 in mammary fibroblasts of bovine with mastitis induces EMT and inflammatory response of epithelial cells. Int J Biol Sci 2017; 13(5): 604-14.
[http://dx.doi.org/10.7150/ijbs.19591] [PMID: 28539833]
[73]
Lee WS, Suzuki Y, Graves SS, et al. Canine bone marrow-derived mesenchymal stromal cells suppress alloreactive lymphocyte proliferation in vitro but fail to enhance engraftment in canine bone marrow transplantation. Biol Blood Marrow Transplant 2011; 17(4): 465-75.
[http://dx.doi.org/10.1016/j.bbmt.2010.04.016] [PMID: 20457265]
[74]
Carrade DD, Lame MW, Kent MS, Clark KC, Walker NJ, Borjesson DL. Comparative analysis of the immunomodulatory properties of equine adult-derived mesenchymal stem cells. Cell Med 2012; 4(1): 1-11.
[http://dx.doi.org/10.3727/215517912X647217] [PMID: 23152950]
[75]
Cassano JM, Fortier LA, Hicks RB, Harman RM, Van de Walle GR. Equine mesenchymal stromal cells from different tissue sources display comparable immune-related gene expression profiles in response to interferon gamma (IFN)-γ. Vet Immunol Immunopathol 2018; 202: 25-30.
[http://dx.doi.org/10.1016/j.vetimm.2018.06.008] [PMID: 30078595]
[76]
Carrade DD, Borjesson DL. Immunomodulation by mesenchymal stem cells in veterinary species. Comp Med 2013; 63(3): 207-17.
[PMID: 23759523]
[77]
Gao F, Yu L, Zhang D, Zhang Y, Wang R, Zhao J. Long noncoding RNAs and their regulatory network: Potential therapeutic targets for adult moyamoya disease. World Neurosurg 2016; 93: 111-9.
[http://dx.doi.org/10.1016/j.wneu.2016.05.081] [PMID: 27268316]
[78]
Dostert G, Mesure B, Menu P, Velot É. How Do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication? Front Cell Dev Biol 2017; 5: 6.
[http://dx.doi.org/10.3389/fcell.2017.00006] [PMID: 28224125]
[79]
Khan A, Mann L, Papanna R, et al. Mesenchymal stem cells internalize Mycobacterium tuberculosis through scavenger receptors and restrict bacterial growth through autophagy. Sci Rep 2017; 7(1): 15010.
[http://dx.doi.org/10.1038/s41598-017-15290-z] [PMID: 29118429]
[80]
Marx C, Gardner S, Harman RM, Van de Walle GR. The mesenchymal stromal cell secretome impairs methicillin-resistant Staphylococcus aureus biofilms via cysteine protease activity in the equine model. Stem Cells Transl Med 2020; 9(7): 746-57.
[http://dx.doi.org/10.1002/sctm.19-0333] [PMID: 32216094]
[81]
Russell KA, Garbin LC, Wong JM, Koch TG. Mesenchymal stromal cells as potential antimicrobial for veterinary use-A comprehensive review. Front Microbiol 2020; 11: 606404.
[http://dx.doi.org/10.3389/fmicb.2020.606404] [PMID: 33335522]
[82]
Cahuascanco B, Bahamonde J, Huaman O, et al. Bovine fetal mesenchymal stem cells exert antiproliferative effect against mastitis causing pathogen Staphylococcus aureus. Vet Res 2019; 50(1): 25.
[http://dx.doi.org/10.1186/s13567-019-0643-1] [PMID: 30975214]
[83]
Cortés-Araya Y, Amilon K, Rink BE, et al. Comparison of antibacterial and immunological properties of mesenchymal stem/stromal cells from equine bone marrow, endometrium, and adipose tissue. Stem Cells Dev 2018; 27(21): 1518-25.
[http://dx.doi.org/10.1089/scd.2017.0241] [PMID: 30044182]
[84]
Däubener W, Schmidt SK, Heseler K, Spekker KH, MacKenzie CR. Antimicrobial and immunoregulatory effector mechanisms in human endothelial cells. Indoleamine 2,3-dioxygenase versus inducible nitric oxide synthase. Thromb Haemost 2009; 102(6): 1110-6.
[PMID: 19967141]
[85]
Harman RM, Yang S, He MK, Van de Walle GR. Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther 2017; 8(1): 157.
[http://dx.doi.org/10.1186/s13287-017-0610-6] [PMID: 28676123]
[86]
Bujňáková D, Čuvalová A, Čížek M, Humenik F, Salzet M, Čížková D. Canine bone marrow mesenchymal stem cell conditioned media affect bacterial growth, biofilm-associated Staphylococcus aureus and AHL-dependent quorum sensing. Microorganisms 2020; 8(10): 1478.
[http://dx.doi.org/10.3390/microorganisms8101478] [PMID: 32993120]
[87]
Sharma N, Huynh DL, Kim SW, et al. A PiggyBac mediated approach for lactoferricin gene transfer in bovine mammary epithelial stem cells for management of bovine mastitis. Oncotarget 2017; 8(61): 104272-85.
[http://dx.doi.org/10.18632/oncotarget.22210] [PMID: 29262639]
[88]
Peralta OA, Carrasco C, Vieytes C, et al. Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. Sci Rep 2020; 10(1): 2843.
[http://dx.doi.org/10.1038/s41598-020-59724-7] [PMID: 32071371]
[89]
Lange-Consiglio A, Gusmara C, Manfredi E, et al. Antimicrobial effects of conditioned medium from amniotic progenitor cells in vitro and in vivo: Toward tissue regenerative therapies for bovine mastitis. Front Vet Sci 2019; 6: 443.
[http://dx.doi.org/10.3389/fvets.2019.00443] [PMID: 31921904]
[90]
Ting WJ, Shaw SW, Hii L-Y, et al. Therapeutic effects of conditioned e DPBS from amniotic stem cells on lactating cow mastitis. Taiw J Obstet Gynecol 2020; 59: 520e526.
[http://dx.doi.org/10.1016/j.tjog.2020.05.009]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy