Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Functional and Toxicological Evaluation of MAA-41: A Novel Rationally Designed Antimicrobial Peptide Using Hybridization and Modification Methods from LL-37 and BMAP-28

Author(s): Majed Masadeh*, Afnan Ayyad, Razan Haddad, Mohammad Alsaggar, Karem Alzoubi and Nasr Alrabadi

Volume 28, Issue 26, 2022

Published on: 02 August, 2022

Page: [2177 - 2188] Pages: 12

DOI: 10.2174/1381612828666220705150817

Price: $65

Abstract

Background: Managing bacterial infections caused by multidrug-resistant (MDR) and biofilmforming bacteria is a global health concern. Therefore, enormous efforts were directed toward finding potential alternative antimicrobial agents, such as antimicrobial peptides (AMPs).

Aim: We aimed to synthesize a novel modified hybrid peptide designed from natural parents’ peptides with enhanced activity and reduced toxicity profile.

Methods: Rational design was used to hybridize the two antimicrobial peptides, in which the alpha-helical parts of BMAP-28 and LL-37 were combined. Then, several amino acid modifications were applied to generate a modified hybrid peptide named MAA-41. The physicochemical properties were checked using in silico methods. The MAA-41 was evaluated for its antimicrobial and anti-biofilm activities. Synergistic studies were performed with five conventional antibiotics. Finally, the cytotoxicity on mammalian cells and the hemolytic activity were assessed.

Results: The MAA-41 revealed a broad-spectrum activity against Gram-positive and Gram-negative bacteria, including standard and MDR bacterial strains. The concentration against planktonic cells ranged between 10 and 20 μM, with higher potency against Gram-negative bacteria. The MAA-41 displayed potent activity in eradicating biofilm-forming cells, and the MBECs were equal to the MIC values reported for planktonic cells. This new peptide exhibited reduced toxicity profiles against erythrocyte cells but not against Vero cells. Combining MAA-41 peptides with conventional antibiotics improved the antimicrobial activity of the combined agents. Either synergistic or additive effects were shown as a significant decrease in MIC to 0.25 μM.

Conclusion: This study proposes the validity of a novel peptide (MAA-41) with enhanced antimicrobial activity and reduced toxicity, especially when used as conventional antibiotic combinations.

Keywords: Antimicrobial peptides, rational design, hybridization, antimicrobial resistance, anti-biofilm activity, synergism, multi-drug resistance (MDR).

[1]
Pietsch F. Evolution of antibiotic resistance. Acta Universitatis Upsaliensis 2015.
[2]
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[3]
Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS One 2017; 12(12): e0189621.
[http://dx.doi.org/10.1371/journal.pone.0189621] [PMID: 29267306]
[4]
Mulani MS, Kamble EE, Kumkar SN, Tawre MS, Pardesi KR. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front Microbiol 2019; 10: 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[5]
Mwangi J, Hao X, Lai R, Zhang Z-Y. Antimicrobial peptides: New hope in the war against multidrug resistance. Zool Res 2019; 40(6): 488-505.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2019.062] [PMID: 31592585]
[6]
Ribeiro da Cunha B, Fonseca LP, Calado CRC. Antibiotic discovery: Where have we come from, where do we go? Antibiotics 2019; 8(2): 45.
[http://dx.doi.org/10.3390/antibiotics8020045] [PMID: 31022923]
[7]
Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018; 8(1): E4.
[http://dx.doi.org/10.3390/biom8010004] [PMID: 29351202]
[8]
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial peptides: An emerging category of therapeutic agents. Front Cell Infect Microbiol 2016; 6(194): 194.
[http://dx.doi.org/10.3389/fcimb.2016.00194] [PMID: 28083516]
[9]
Koo HB, Seo J. Antimicrobial peptides under clinical investigation. Pept Sci 2019; 111(5): e24122.
[http://dx.doi.org/10.1002/pep2.24122]
[10]
Torres MDT, Sothiselvam S, Lu TK, de la Fuente-Nunez C. Peptide design principles for antimicrobial applications. J Mol Biol 2019; 431(18): 3547-67.
[http://dx.doi.org/10.1016/j.jmb.2018.12.015] [PMID: 30611750]
[11]
Jiang Z, Vasil AI, Hale JD, Hancock RE, Vasil ML, Hodges RS. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Biopolymers 2008; 90(3): 369-83.
[http://dx.doi.org/10.1002/bip.20911] [PMID: 18098173]
[12]
Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res 2012; 51(2): 149-77.
[http://dx.doi.org/10.1016/j.plipres.2011.12.005] [PMID: 22245454]
[13]
Blondelle SE, Lohner K. Combinatorial libraries: A tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 2000; 55(1): 74-87.
[http://dx.doi.org/10.1002/1097-0282(2000)55:1<74::AID-BIP70>3.0.CO;2-S] [PMID: 10931443]
[14]
Almaaytah A, Tarazi S, Al-Fandi M, Abuilhaija A, Al-Balas Q, Abu-Awad A. The design and functional characterization of the antimicrobial and antibiofilm activities of BMAP27-melittin, a rationally designed hybrid peptide. Int J Pept Res Ther 2015; 21(2): 165-77.
[http://dx.doi.org/10.1007/s10989-014-9444-6]
[15]
Memariani H, Shahbazzadeh D, Ranjbar R, Behdani M, Memariani M, Pooshang Bagheri K. Design and characterization of short hybrid antimicrobial peptides from pEM-2, mastoparan-VT1, and mastoparan-B. Chem Biol Drug Des 2017; 89(3): 327-38.
[http://dx.doi.org/10.1111/cbdd.12864] [PMID: 27591703]
[16]
Almaaytah A, Qaoud MT, Abualhaijaa A, Al-Balas Q, Alzoubi KH. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist 2018; 11: 835-47.
[http://dx.doi.org/10.2147/IDR.S166236] [PMID: 29910626]
[17]
Bolosov IA, Kalashnikov AA, Panteleev PV, Ovchinnikova TV. Analysis of synergistic effects of antimicrobial peptide arenicin-1 and conventional antibiotics. Bull Exp Biol Med 2017; 162(6): 765-8.
[http://dx.doi.org/10.1007/s10517-017-3708-z] [PMID: 28429214]
[18]
Young-Speirs M, Drouin D, Cavalcante PA, Barkema HW, Cobo ER. Host defense cathelicidins in cattle: Types, production, bioactive functions and potential therapeutic and diagnostic applications. Int J Antimicrob Agents 2018; 51(6): 813-21.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.02.006] [PMID: 29476808]
[19]
Benincasa M, Skerlavaj B, Gennaro R, Pellegrini A, Zanetti M. in vitro and in vivo antimicrobial activity of two α-helical cathelicidin peptides and of their synthetic analogs. Peptides 2003; 24(11): 1723-31.
[http://dx.doi.org/10.1016/j.peptides.2003.07.025] [PMID: 15019203]
[20]
Skerlavaj B, Gennaro R, Bagella L, Merluzzi L, Risso A, Zanetti M. Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 1996; 271(45): 28375-81.
[http://dx.doi.org/10.1074/jbc.271.45.28375] [PMID: 8910461]
[21]
Risso A, Zanetti M, Gennaro R. Cytotoxicity and apoptosis mediated by two peptides of innate immunity. Cell Immunol 1998; 189(2): 107-15.
[http://dx.doi.org/10.1006/cimm.1998.1358] [PMID: 9790724]
[22]
Ahmad A, Asthana N, Azmi S, et al. Structure-function study of cathelicidin-derived bovine antimicrobial peptide BMAP-28: Design of its cell-selective analogs by amino acid substitutions in the heptad repeat sequences. Biochim Biophys Acta 2009; 1788(11): 2411-20.
[http://dx.doi.org/10.1016/j.bbamem.2009.08.021] [PMID: 19735644]
[23]
Azmi S, Verma NK, Tripathi JK, Srivastava S, Verma DP, Ghosh JK. Introduction of cell‐selectivity in bovine cathelicidin BMAP‐28 by exchanging heptadic isoleucine with the adjacent proline at a non‐heptadic position. Pept Sci 2021; 113: e24207.
[24]
Guo Y, Xun M, Han J. A bovine myeloid antimicrobial peptide (BMAP-28) and its analogs kill pan-drug-resistant acinetobacter baumannii by interacting with outer membrane protein A (OmpA). Medicine (Baltimore) 2018; 97(42): e12832.
[http://dx.doi.org/10.1097/MD.0000000000012832] [PMID: 30334982]
[25]
Wang J, Liu Q, Tian Y, Jian Z, Li H, Wang K. Biodegradable hydrophilic polyurethane PEGU25 loading antimicrobial peptide Bmap-28: A sustained-release membrane able to inhibit bacterial biofilm formation in vitro. Sci Rep 2015; 5: 8634.
[http://dx.doi.org/10.1038/srep08634] [PMID: 25727362]
[26]
Bandurska K, Berdowska A, Barczyńska-Felusiak R, Krupa P. Unique features of human cathelicidin LL-37. Biofactors 2015; 41(5): 289-300.
[http://dx.doi.org/10.1002/biof.1225] [PMID: 26434733]
[27]
Ramos R, Silva JP, Rodrigues AC, et al. Wound healing activity of the human antimicrobial peptide LL37. Peptides 2011; 32(7): 1469-76.
[http://dx.doi.org/10.1016/j.peptides.2011.06.005] [PMID: 21693141]
[28]
Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Biophys J 2010; 98(2): 248-57.
[http://dx.doi.org/10.1016/j.bpj.2009.09.060] [PMID: 20338846]
[29]
Al Tall Y, Abualhaijaa A, Alsaggar M, Almaaytah A, Masadeh M, Alzoubi KH. Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infect Drug Resist 2019; 12: 1035-45.
[http://dx.doi.org/10.2147/IDR.S199473] [PMID: 31118709]
[30]
Wei X-B, Wu R-J, Si D-Y, Liao X-D, Zhang L-L, Zhang R-J. Novel hybrid peptide cecropin A (1–8)-LL37 (17–30) with potential antibacterial activity. Int J Mol Sci 2016; 17(7): 983.
[http://dx.doi.org/10.3390/ijms17070983] [PMID: 27367675]
[31]
Wu R, Wang Q, Zheng Z, et al. Design, characterization and expression of a novel hybrid peptides melittin (1-13)-LL37 (17-30). Mol Biol Rep 2014; 41(7): 4163-9.
[http://dx.doi.org/10.1007/s11033-013-2900-0] [PMID: 24871991]
[32]
Zhang D, Wan L, Zhang J, Liu C, Sun H. Effect of BMAP-28 on human thyroid cancer TT cells is mediated by inducing apoptosis. Oncol Lett 2015; 10(4): 2620-6.
[http://dx.doi.org/10.3892/ol.2015.3612] [PMID: 26622900]
[33]
Combet C, Blanchet C, Geourjon C, Deléage G. NPS@: Network protein sequence analysis. Trends Biochem Sci 2000; 25(3): 147-50.
[http://dx.doi.org/10.1016/S0968-0004(99)01540-6] [PMID: 10694887]
[34]
Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 2008; 24(18): 2101-2.
[http://dx.doi.org/10.1093/bioinformatics/btn392] [PMID: 18662927]
[35]
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server.The proteomics protocols handbook. Springer 2005; pp. 571-607.
[http://dx.doi.org/10.1385/1-59259-890-0:571]
[36]
Patel JB. Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. Clinical & Laboratory Standards Institute 2014.
[37]
Sueke H, Kaye SB, Neal T, Hall A, Tuft S, Parry CM. An in vitro investigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Invest Ophthalmol Vis Sci 2010; 51(8): 4151-5.
[http://dx.doi.org/10.1167/iovs.09-4839] [PMID: 20335613]
[38]
Ruden S, Rieder A, Chis Ster I, Schwartz T, Mikut R, Hilpert K. Synergy pattern of short cationic antimicrobial peptides against multidrug-resistant pseudomonas aeruginosa. Front Microbiol 2019; 10: 2740.
[http://dx.doi.org/10.3389/fmicb.2019.02740] [PMID: 31849888]
[39]
Doern CD. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol 2014; 52(12): 4124-8.
[http://dx.doi.org/10.1128/JCM.01121-14] [PMID: 24920779]
[40]
Wang W, Tao R, Tong Z, et al. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides 2012; 33(2): 212-9.
[http://dx.doi.org/10.1016/j.peptides.2012.01.006] [PMID: 22281025]
[41]
Almaaytah A, Zhou M, Wang L, Chen T, Walker B, Shaw C. Antimicrobial/cytolytic peptides from the venom of the North African scorpion, androctonus amoreuxi: Biochemical and functional characterization of natural peptides and a single site-substituted analog. Peptides 2012; 35(2): 291-9.
[http://dx.doi.org/10.1016/j.peptides.2012.03.016] [PMID: 22484288]
[42]
Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant acinetobacter baumannii. Peptides 2013; 49: 131-7.
[http://dx.doi.org/10.1016/j.peptides.2013.09.007] [PMID: 24071034]
[43]
Miao X, Zhou T, Zhang J, et al. Enhanced cell selectivity of hybrid peptides with potential antimicrobial activity and immunomodulatory effect. Biochim Biophys Acta, Gen Subj 2020; 1864(4): 129532.
[http://dx.doi.org/10.1016/j.bbagen.2020.129532] [PMID: 31953126]
[44]
Tall YA, Al-Rawashdeh B, Abualhaijaa A, Almaaytah A, Masadeh M, Alzoubi KH. Functional characterization of a novel hybrid peptide with high potency against gram-negative bacteria. Curr Pharm Des 2020; 26(3): 376-85.
[http://dx.doi.org/10.2174/1381612826666200128090700] [PMID: 32003660]
[45]
Zerfas BL, Joo Y, Gao J, Gramicidin A. Gramicidin a mutants with antibiotic activity against both gram-positive and gram-negative bacteria. ChemMedChem 2016; 11(6): 629-36.
[http://dx.doi.org/10.1002/cmdc.201500602] [PMID: 26918268]
[46]
Boto A, Pérez de la Lastra JM, González CC. The road from host-defense peptides to a new generation of antimicrobial drugs. Molecules 2018; 23(2): 311.
[http://dx.doi.org/10.3390/molecules23020311] [PMID: 29389911]
[47]
Bolt H. Antimicrobial Peptoids: Design, Synthesis and Biological Applications. Durham University 2016.
[48]
Keun Kim H, Lee G, Park D, et al. Antibacterial activities of peptides designed as hybrids of antimicrobial peptides. Biotechnol Lett 2002; 24(5): 347-53.
[http://dx.doi.org/10.1023/A:1014573005866]
[49]
Xie J, Zhao Q, Li S, et al. Novel antimicrobial peptide CPF-C1 analogs with superior stabilities and activities against multidrug-resistant bacteria. Chem Biol Drug Des 2017; 90(5): 690-702.
[http://dx.doi.org/10.1111/cbdd.12988] [PMID: 28371431]
[50]
Li X, Li Y, Han H, Miller DW, Wang G. Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. J Am Chem Soc 2006; 128(17): 5776-85.
[http://dx.doi.org/10.1021/ja0584875] [PMID: 16637646]
[51]
Wang G. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem 2008; 283(47): 32637-43.
[http://dx.doi.org/10.1074/jbc.M805533200] [PMID: 18818205]
[52]
Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob Agents Chemother 2007; 51(4): 1398-406.
[http://dx.doi.org/10.1128/AAC.00925-06] [PMID: 17158938]
[53]
López Cascales JJ, Zenak S, García de la Torre J, Lezama OG, Garro A, Enriz RD. Small cationic peptides: Influence of charge on their antimicrobial activity. ACS Omega 2018; 3(5): 5390-8.
[http://dx.doi.org/10.1021/acsomega.8b00293] [PMID: 30221230]
[54]
Khara JS, Lim FK, Wang Y, et al. Designing α-helical peptides with enhanced synergism and selectivity against mycobacterium smegmatis: Discerning the role of hydrophobicity and helicity. Acta Biomater 2015; 28: 99-108.
[http://dx.doi.org/10.1016/j.actbio.2015.09.015] [PMID: 26380930]
[55]
Rončević T, Puizina J, Tossi A. Antimicrobial peptides as anti-infective agents in pre-post-antibiotic era? Int J Mol Sci 2019; 20(22): 5713.
[http://dx.doi.org/10.3390/ijms20225713] [PMID: 31739573]
[56]
Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta 2016; 1858(5): 936-46.
[http://dx.doi.org/10.1016/j.bbamem.2015.11.004] [PMID: 26577273]
[57]
Stone TA, Cole GB, Ravamehr-Lake D, et al. Positive charge patterning and hydrophobicity of membrane-active antimicrobial peptides as determinants of activity, toxicity, and pharmacokinetic stability. J Med Chem 2019; 62(13): 6276-86.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00657] [PMID: 31194548]
[58]
Amani J, Barjini KA, Moghaddam MM, Asadi A. in vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria. Protein Pept Lett 2015; 22(10): 940-51.
[http://dx.doi.org/10.2174/0929866522666150728115439] [PMID: 26216264]
[59]
Cassone M, Otvos L Jr. Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev Anti Infect Ther 2010; 8(6): 703-16.
[http://dx.doi.org/10.1586/eri.10.38] [PMID: 20521897]
[60]
Hollmann A, Martinez M, Maturana P, Semorile LC, Maffia PC. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front Chem 2018; 6(204): 204.
[http://dx.doi.org/10.3389/fchem.2018.00204] [PMID: 29922648]
[61]
Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock RE. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 2014; 58(9): 5363-71.
[http://dx.doi.org/10.1128/AAC.03163-14] [PMID: 24982074]
[62]
Ribeiro SM, de la Fuente-Núñez C, Baquir B, Faria-Junior C, Franco OL, Hancock RE. Antibiofilm peptides increase the susceptibility of carbapenemase-producing klebsiella pneumoniae clinical isolates to β-lactam antibiotics. Antimicrob Agents Chemother 2015; 59(7): 3906-12.
[http://dx.doi.org/10.1128/AAC.00092-15] [PMID: 25896694]
[63]
Walsh C. Antibiotics: Actions, origins, resistance. American Society for Microbiology (ASM) 2003.
[http://dx.doi.org/10.1128/9781555817886]
[64]
Zhang Y, Liu Y, Sun Y, et al. in vitro synergistic activities of antimicrobial peptide brevinin-2CE with five kinds of antibiotics against multidrug-resistant clinical isolates. Curr Microbiol 2014; 68(6): 685-92.
[http://dx.doi.org/10.1007/s00284-014-0529-4] [PMID: 24474334]
[65]
Dosler S, Mataraci E. in vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant staphylococcus aureus biofilms. Peptides 2013; 49: 53-8.
[http://dx.doi.org/10.1016/j.peptides.2013.08.008] [PMID: 23988790]
[66]
Rishi P, Vij S, Maurya IK, Kaur UJ, Bharati S, Tewari R. Peptides as adjuvants for ampicillin and oxacillin against methicillin-resistant staphylococcus aureus (MRSA). Microb Pathog 2018; 124: 11-20.
[http://dx.doi.org/10.1016/j.micpath.2018.08.023] [PMID: 30118800]
[67]
Greco I, Molchanova N, Holmedal E, et al. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 2020; 10(1): 13206.
[http://dx.doi.org/10.1038/s41598-020-69995-9] [PMID: 32764602]
[68]
Li J, Koh J-J, Liu S, Lakshminarayanan R, Verma CS, Beuerman RW. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front Neurosci 2017; 11: 73.
[http://dx.doi.org/10.3389/fnins.2017.00073] [PMID: 28261050]
[69]
Moravej H, Moravej Z, Yazdanparast M, et al. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microb Drug Resist 2018; 24(6): 747-67.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[70]
Zhang Y, Algburi A, Wang N, et al. Self-assembled cationic amphiphiles as antimicrobial peptides mimics: Role of hydrophobicity, linkage type, and assembly state. Nanomedicine 2017; 13(2): 343-52.
[http://dx.doi.org/10.1016/j.nano.2016.07.018] [PMID: 27520722]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy