Generic placeholder image

Current HIV Research

Editor-in-Chief

ISSN (Print): 1570-162X
ISSN (Online): 1873-4251

Research Article

Plasma Phage Load is Positively Related to the Immune Checkpoints in Patients Living with Human Immunodeficiency Virus

Author(s): Kai‑Zhao Huang, Hui Ye, Yang-Yang Fang, Tao Li, Shun-Jie Pei, Lian-Peng Wu, Fei-Fei Su* and Xiao‑Qun Zheng*

Volume 20, Issue 4, 2022

Published on: 08 September, 2022

Page: [301 - 308] Pages: 8

DOI: 10.2174/1570162X20666220630141926

Price: $65

Abstract

Background: Microbial Translocation (MT) and altered gut microbiota are involved in immune activation and inflammation, whereas immune checkpoint proteins play an important role in maintaining immune self-tolerance and preventing excessive immune activation.

Objective: This study aims to investigate the relationship between plasma phage load and immune homeostasis in people living with HIV(PLWH).

Methods: We recruited 15 antiretroviral therapy (ART)-naive patients, 23 ART-treated (AT) patients, and 34 Healthy Participants (HP) to explore the relationship between the plasma phage load and immune checkpoint proteins. The Deoxyribonucleic Acid (DNA) load of the lambda (λ) phage was detected using fluorescence quantitative Polymerase Chain Reaction (PCR). The Immune Checkpoints (ICPs) were detected using multiplex immunoassay.

Results: Our study demonstrated that the plasma phage load was increased in people living with HIV (PLWH) (P<0.05), but not in the ART-naive and AT groups (P>0.05). Plasma ICPs, including cluster of differentiation 27 (CD27), soluble glucocorticoid-induced Tumor Necrosis Factor (TNF) receptor (sGITR), soluble cluster of differentiation 80 (sCD80), sCD86, soluble glucocorticoidinduced TNF receptor-related ligand (sGITRL), soluble induced T-cell Costimulatory (sICOS), sCD40, soluble toll-like receptor 2 (sTLR2), and sCD28, were markedly decreased among the ARTnaive group (P<0.05) but not in the AT and HP groups (P>0.05). The plasma phage load was positively correlated with ICP and C-reactive protein (CRP) levels in PLWH (P<0.05).

Conclusion: Our study indicated that the plasma phage load in PLWH was positively related to the expression of ICPs and inflammation, which may be used as a promising marker for the immune level of PLWH.

Keywords: HIV, gut phage translocation, plasma phage load, immune checkpoint protein, microbial translocation, homeostatis.

Graphical Abstract

[1]
Brenchley JM, Douek DC. HIV infection and the gastrointestinal immune system. Mucosal Immunol 2008; 1(1): 23-30.
[http://dx.doi.org/10.1038/mi.2007.1] [PMID: 19079157]
[2]
Yin XR, Liu P, Xu X, et al. Elevated plasma phage load as a marker for intestinal permeability in leukemic patients. Med Microbiol Immunol (Berl) 2020; 209(6): 693-703.
[http://dx.doi.org/10.1007/s00430-020-00694-y] [PMID: 32995957]
[3]
Salmond GP, Fineran PC. A century of the phage: Past, present and future. Nat Rev Microbiol 2015; 13(12): 777-86.
[http://dx.doi.org/10.1038/nrmicro3564] [PMID: 26548913]
[4]
Górski A, Wazna E, Dabrowska BW, Dabrowska K. Switała-Jeleń K, Miedzybrodzki R. Bacteriophage translocation. FEMS Immunol Med Microbiol 2006; 46(3): 313-9.
[http://dx.doi.org/10.1111/j.1574-695X.2006.00044.x] [PMID: 16553803]
[5]
Ghose C, Ly M, Schwanemann LK, et al. The virome of cerebrospinal fluid: Viruses where we once thought there were none. Front Microbiol 2019; 10: 2061.
[http://dx.doi.org/10.3389/fmicb.2019.02061] [PMID: 31555247]
[6]
De Sordi L, Khanna V, Debarbieux L. The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 2017; 22(6): 801-808.e3.
[http://dx.doi.org/10.1016/j.chom.2017.10.010] [PMID: 29174401]
[7]
Tetz G, Tetz V. Bacteriophages as new human viral pathogens. Microorganisms 2018; 6(2): E54.
[http://dx.doi.org/10.3390/microorganisms6020054] [PMID: 29914145]
[8]
Dąbrowska K, Miernikiewicz P, Piotrowicz A, et al. Immunogenicity studies of proteins forming the T4 phage head surface. J Virol 2014; 88(21): 12551-7.
[http://dx.doi.org/10.1128/JVI.02043-14] [PMID: 25142581]
[9]
Duerkop BA, Hooper LV. Resident viruses and their interactions with the immune system. Nat Immunol 2013; 14(7): 654-9.
[http://dx.doi.org/10.1038/ni.2614] [PMID: 23778792]
[10]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[11]
Lefkowitz EJ, Dempsey DM, Hendrickson RC, Orton RJ, Siddell SG, Smith DB. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res 2018; 46(D1): D708-17.
[http://dx.doi.org/10.1093/nar/gkx932] [PMID: 29040670]
[12]
Edelman DC, Barletta J. Real-time PCR provides improved detection and titer determination of bacteriophage. Biotechniques 2003; 35(2): 368-75.
[http://dx.doi.org/10.2144/03352rr02] [PMID: 12951778]
[13]
Olesen R, Leth S, Nymann R, et al. Immune checkpoints and the HIV-1 reservoir: Proceed with caution. J Virus Erad 2016; 2(3): 183-6.
[http://dx.doi.org/10.1016/S2055-6640(20)30463-5] [PMID: 27482460]
[14]
Gogokhia L, Buhrke K, Bell R, et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 2019; 25(2): 285-299.e8.
[http://dx.doi.org/10.1016/j.chom.2019.01.008] [PMID: 30763538]
[15]
Tetz G, Brown SM, Hao Y, Tetz V. Parkinson’s disease and bacteriophages as its overlooked contributors. Sci Rep 2018; 8(1): 10812.
[http://dx.doi.org/10.1038/s41598-018-29173-4] [PMID: 30018338]
[16]
Tetz G, Brown SM, Hao Y, Tetz V. Type 1 Diabetes: An association between autoimmunity, the dynamics of gut amyloid-producing E. coli and their phages. Sci Rep 2019; 9(1): 9685.
[http://dx.doi.org/10.1038/s41598-019-46087-x] [PMID: 31273267]
[17]
Aziz S, Fackler OT, Meyerhans A, Müller-Lantzsch N, Zeitz M, Schneider T. Replication of M-tropic HIV-1 in activated human intestinal lamina propria lymphocytes is the main reason for increased virus load in the intestinal mucosa. J Acquir Immune Defic Syndr 2005; 38(1): 23-30.
[http://dx.doi.org/10.1097/00126334-200501010-00005] [PMID: 15608520]
[18]
Choudhury B, Brown J, Ransy DG, et al. Endothelial activation is associated with intestinal epithelial injury, systemic inflammation and treatment regimen in children living with vertically acquired HIV-1 infection. HIV Med 2021; 22(4): 273-82.
[http://dx.doi.org/10.1111/hiv.13012] [PMID: 33151601]
[19]
Breitbart M, Hewson I, Felts B, et al. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 2003; 185(20): 6220-3.
[http://dx.doi.org/10.1128/JB.185.20.6220-6223.2003] [PMID: 14526037]
[20]
Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young MJ. Healthy human gut phageome. Proc Natl Acad Sci USA 2016; 113(37): 10400-5.
[http://dx.doi.org/10.1073/pnas.1601060113] [PMID: 27573828]
[21]
Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361(9356): 512-9.
[http://dx.doi.org/10.1016/S0140-6736(03)12489-0] [PMID: 12583961]
[22]
Wiest R, Garcia-Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology 2005; 41(3): 422-33.
[http://dx.doi.org/10.1002/hep.20632] [PMID: 15723320]
[23]
Duerr DM, White SJ, Schluesener HJ. Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods 2004; 116(2): 177-80.
[http://dx.doi.org/10.1016/j.jviromet.2003.11.012] [PMID: 14738985]
[24]
Yamaguchi S, Ito S, Kurogi-Hirayama M, Ohtsuki S. Identification of cyclic peptides for facilitation of transcellular transport of phages across intestinal epithelium in vitro and in vivo. J Control Release 2017; 262: 232-8.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.037] [PMID: 28757359]
[25]
Van Belleghem JD. Dąbrowska K, Vaneechoutte M, Barr JJ, Bollyky PL. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 2018; 11(1): 10.
[http://dx.doi.org/10.3390/v11010010] [PMID: 30585199]
[26]
Núñez-Sánchez MA, Colom J, Walsh L, et al. Characterizing phage-host interactions in a simplified human intestinal barrier model. Microorganisms 2020; 8(9): 1374.
[http://dx.doi.org/10.3390/microorganisms8091374] [PMID: 32906839]
[27]
Geng ST, Zhang ZY, Wang YX, et al. Regulation of gut microbiota on immune reconstitution in patients with acquired immunodeficiency syndrome. Front Microbiol 2020; 11: 594820.
[http://dx.doi.org/10.3389/fmicb.2020.594820] [PMID: 33193273]
[28]
Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC Med 2016; 14(1): 83.
[http://dx.doi.org/10.1186/s12916-016-0625-3] [PMID: 27256449]
[29]
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 2016; 44(5): 1005-19.
[http://dx.doi.org/10.1016/j.immuni.2016.04.019] [PMID: 27192566]
[30]
Mizuno R, Maruhashi T, Sugiura D, et al. PD-1 efficiently inhibits T cell activation even in the presence of co-stimulation through CD27 and GITR. Biochem Biophys Res Commun 2019; 511(3): 491-7.
[http://dx.doi.org/10.1016/j.bbrc.2019.02.004] [PMID: 30771904]
[31]
Tesselaar K, Arens R, van Schijndel GM, et al. Lethal T cell immunodeficiency induced by chronic costimulation via CD27-CD70 interactions. Nat Immunol 2003; 4(1): 49-54.
[http://dx.doi.org/10.1038/ni869] [PMID: 12469117]
[32]
Widney D, Gundapp G, Said JW, et al. Aberrant expression of CD27 and soluble CD27 (sCD27) in HIV infection and in AIDS-associated lymphoma. Clin Immunol 1999; 93(2): 114-23.
[http://dx.doi.org/10.1006/clim.1999.4782] [PMID: 10527687]
[33]
De Paepe M, Leclerc M, Tinsley CR, Petit MA. Bacteriophages: An underestimated role in human and animal health? Front Cell Infect Microbiol 2014; 4: 39.
[http://dx.doi.org/10.3389/fcimb.2014.00039] [PMID: 24734220]
[34]
Cortés AJ. On how role versatility boosts an STI. J Theor Biol 2018; 440: 66-9.
[http://dx.doi.org/10.1016/j.jtbi.2017.12.018] [PMID: 29273545]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy