Research Article

Identification of Candidate Immune System MicroRNAs Differentially Found in Colostrum and Milk Exosomes

Author(s): Poonam Verma, Niharika Mohanty, Babita Pruseth, Sonali Sahoo, Amit Katiyar, Harpreet Singh, Saubhagya Kumar Jena, Rashmi Ranjan Das, Tapas Kumar Som, Sanjeeb Kumar Sahoo, Pranati Nanda and Amit Ghosh*

Volume 11, Issue 3, 2022

Published on: 23 September, 2022

Page: [216 - 226] Pages: 11

DOI: 10.2174/2211536611666220630102316

Price: $65

Abstract

Background: The fetus grows in a sterile womb environment. After birth, the newborn immune system has two immediate hurdles to clear. First immediate suppression of the womb compatible immune system and turn on the immune system of the newborn that can counter the antigenic world. The underlying mechanism of immune fluctuation by milk microRNAs (miRNAs) can be crucial for the treatment of critical or premature newborn.

Methods: We collected fourteen samples of each colostrum and mature milk from lactating mothers, four samples of each were used for microarray analysis, and the other ten were used for miRNA expression profiling by real-time PCR.

Results: From the microarray, 154 differentially expressed miRNAs were identified, whereas 49 miRNAs were revealed as immune-related miRNAs based on a literature study. Among the 49 miRNAs, 33 were already shown as strongly validated immune-related miRNAs (validated by qPCR, Western Blot, and Luciferase assay) and were considered for further analysis. Twenty-two miRNA expressions were analysed by real-time PCR as their Ct values were within considerable limits. Twelve numbers of miRNAs were significantly downregulated in mature milk compared to colostrum, which were again subjected to bioinformatics analysis to predict the biological mechanisms behind the differentially expressed miRNAs.

Conclusion: This study shed light on the human milk exosome miRNA expression dynamics during lactation and their possible role in the gradual skewing of the newborns' immune system. The information is crucial for the development and onset of sepsis in premature newborns in the NICU.

Keywords: miRNAs, mature milk, colostrum, microarray, immune regulatory miRNAs, PCR.

Graphical Abstract

[1]
Godfrey WR, Spoden DJ, Ge YG, et al. Cord blood CD4(+)CD25(+)-derived T regulatory cell lines express FoxP3 protein and manifest po-tent suppressor function. Blood 2005; 105(2): 750-8.
[http://dx.doi.org/10.1182/blood-2004-06-2467] [PMID: 15374887]
[2]
Thornton CA, Upham JW, Wikström ME, et al. Functional maturation of CD4+CD25+CTLA4+CD45RA+ T regulatory cells in human neonatal T cell responses to environmental antigens/allergens. J Immunol 2004; 173(5): 3084-92.
[http://dx.doi.org/10.4049/jimmunol.173.5.3084] [PMID: 15322168]
[3]
Wing K, Larsson P, Sandström K, Lundin SB, Suri-Payer E, Rudin A. CD4+ CD25+ FOXP3+ regulatory T cells from human thymus and cord blood suppress antigen-specific T cell responses. Immunology 2005; 115(4): 516-25.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02186.x] [PMID: 16011520]
[4]
Michaëlsson J, Mold JE, McCune JM, Nixon DF. Regulation of T cell responses in the developing human fetus. J Immunol 2006; 176(10): 5741-8.
[http://dx.doi.org/10.4049/jimmunol.176.10.5741] [PMID: 16670279]
[5]
Guller S, LaChapelle L. The role of placental Fas ligand in maintaining immune privilege at maternal-fetal interfaces. Semin Reprod Endocrinol 1999; 17(1): 39-44.
[http://dx.doi.org/10.1055/s-2007-1016210] [PMID: 10406074]
[6]
Gasparoni A, Ciardelli L, Avanzini A, et al. Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T lym-phocyte response and natural killer cell activity in newborns, children and adults. Biol Neonate 2003; 84(4): 297-303.
[http://dx.doi.org/10.1159/000073638] [PMID: 14593240]
[7]
Philbin VJ, Levy O. Developmental biology of the innate immune response: Implications for neonatal and infant vaccine development. Pediatr Res 2009; 65(5 Pt 2): 98R-105R.
[http://dx.doi.org/10.1203/PDR.0b013e31819f195d] [PMID: 19918215]
[8]
Marchant A, Goldman M. T cell-mediated immune responses in human newborns: Ready to learn? Clin Exp Immunol 2005; 141(1): 10-8.
[http://dx.doi.org/10.1111/j.1365-2249.2005.02799.x] [PMID: 15958064]
[9]
Simon AK, Hollander GA, McMichael A. Evolution of the immune system in humans from infancy to old age. Proc R Soc B 2015; 282(1821): 20143085.
[http://dx.doi.org/10.1098/rspb.2014.3085]
[10]
Savino F, Castagno E, Calabrese R, Viola S, Oggero R, Miniero R. High faecal calprotectin levels in healthy, exclusively breast-fed infants. Neonatology 2010; 97(4): 299-304.
[http://dx.doi.org/10.1159/000255161] [PMID: 19887860]
[11]
Raghupathy R. Pregnancy: Success and failure within the Th1/Th2/Th3 paradigm. Semin Immunol 2001; 13(4): 219-27.
[http://dx.doi.org/10.1006/smim.2001.0316] [PMID: 11437629]
[12]
Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212(1): 8-27.
[http://dx.doi.org/10.1111/j.0105-2896.2006.00427.x] [PMID: 16903903]
[13]
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008; 133(5): 775-87.
[http://dx.doi.org/10.1016/j.cell.2008.05.009] [PMID: 18510923]
[14]
Herman S, Krenbek D, Klimas M, et al. Regulatory T cells form stable and long-lasting cell cluster with myeloid Dendritic Cells (DC). Int Immunol 2012; 24(7): 417-26.
[http://dx.doi.org/10.1093/intimm/dxs039] [PMID: 22366044]
[15]
Zhou Q, Li M, Wang X, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 2012; 8(1): 118-23.
[http://dx.doi.org/10.7150/ijbs.8.118] [PMID: 22211110]
[16]
Lönnerdal B. Human milk microRNAs/exosomes: Composition and biological effects. Nestle Nutr Inst Workshop Ser 2019; 90: 83-92.
[http://dx.doi.org/10.1159/000490297] [PMID: 30865991]
[17]
Xue J, You L, Zhang Z, et al. Biological properties of milk-derived extracellular vesicles and their physiological functions in infant. Front Cell Dev Biol 2021; 9: 693534.
[http://dx.doi.org/10.3389/fcell.2021.693534]
[18]
Kosaka N, Izumi H, Sekine K, Ochiya T. MicroRNA as a new immune-regulatory agent in breast milk. Silence 2010; 1(1): 7.
[http://dx.doi.org/10.1186/1758-907X-1-7] [PMID: 20226005]
[19]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) method. Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[20]
Roy S. miRNA in macrophage development and function. Antioxid Redox Signal 2016; 25(15): 795-804.
[http://dx.doi.org/10.1089/ars.2016.6728] [PMID: 27353423]
[21]
Jia Y, Wei Y. Modulators of MicroRNA function in the immune system. Int J Mol Sci 2020; 21(7): 2357.
[http://dx.doi.org/10.3390/ijms21072357] [PMID: 32235299]
[22]
Xiao C. MicroRNA control in the immune system: Basic principles, cell. 2009; 136(1): 26-36.
[http://dx.doi.org/10.1016/j.cell.2008.12.027]
[23]
O’Brien J, Heyam H, Yara Z. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018; 9: 402.
[24]
Cione E, Lucente M, Gallelli L, De Sarro G, Luciani F, Cristina Caroleo M. Innate immunity and human milk microRNAs content: A new perspective for premature newborns. J Compr Ped 2017; 8(1): e43359.
[http://dx.doi.org/10.5812/compreped.43359]
[25]
Simpson MR, Brede G, Johansen J, et al. Human breast milk miRNA, maternal probiotic supplementation and atopic dermatitis in offspring. PLoS One 2015; 10(12): e0143496.
[http://dx.doi.org/10.1371/journal.pone.0143496] [PMID: 26657066]
[26]
van Herwijnen MJC, Driedonks TAP, Snoek BL, et al. Abundantly present miRNAs in milk-derived extracellular vesicles are conserved be-tween mammals. Front Nutr 2018; 5: 81.
[http://dx.doi.org/10.3389/fnut.2018.00081] [PMID: 30280098]
[27]
Kahn S, Liao Y, Du X, Xu W, Li J, Lönnerdal B. Exosomal MicroRNAs in milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells. Mol Nutr Food Res 2018; 62(11): e1701050.
[http://dx.doi.org/10.1002/mnfr.201701050] [PMID: 29644801]
[28]
Benmoussa A, Provost P. Milk microRNAs in health and disease. Compr Rev Food Sci Food Saf 2019; 18(3): 703-22.
[http://dx.doi.org/10.1111/1541-4337.12424] [PMID: 33336926]
[29]
Yu JC, Khodadadi H, Malik A, et al. Innate immunity of neonates and infants. Front Immunol 2018; 9: 1759.
[http://dx.doi.org/10.3389/fimmu.2018.01759] [PMID: 30105028]
[30]
Wang X, Mou W, Qi Z, et al. Neonates are armed with deviated immune cell proportion and cytokine reduction but higher T cell proliferation potentiality. Acta Biochim Biophys Sin 2018; 50(9): 934-7.
[http://dx.doi.org/10.1093/abbs/gmy079] [PMID: 30052714]
[31]
Tang X, Liu H, Yang S, Li Z, Zhong J, Fang R. Epidermal growth factor and intestinal barrier function. Mediators Inflamm 2016; 2016: 1927348.
[http://dx.doi.org/10.1155/2016/1927348] [PMID: 27524860]
[32]
McAuley JL, Linden SK, Png CW, et al. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest 2007; 117(8): 2313-24.
[http://dx.doi.org/10.1172/JCI26705] [PMID: 17641781]
[33]
Krishn SR, Batra SK, Kaur S. Advances in miRNA-mediated mucin regulation. Curr Pharmacol Rep 2015; 1(6): 355-64.
[http://dx.doi.org/10.1007/s40495-014-0010-x] [PMID: 27867838]
[34]
Martínez C, Rodiño-Janeiro BK, Lobo B, et al. miR-16 and miR-125b are involved in barrier function dysregulation through the modulation of Claudin-2 and cingulin expression in the Jejunum in IBS with diarrhea. Gut 2017; 66: 1537-8.
[http://dx.doi.org/10.1136/gutjnl-2016-311477]
[35]
Yu H-R, Huang L-H, Li S-C. Roles of microRNA in the immature immune system of neonates. Cancer Lett 2018; 433: 99-106.
[http://dx.doi.org/10.1016/j.canlet.2018.06.014] [PMID: 29908211]
[36]
VanDussen KL, Carulli AJ, Keeley TM, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 2012; 139(3): 488-97.
[http://dx.doi.org/10.1242/dev.070763] [PMID: 22190634]
[37]
Wölnerhanssen BK, Moran AW, Burdyga G, et al. Deregulation of transcription factors controlling intestinal epithelial cell differentiation; A predisposing factor for reduced enteroendocrine cell number in morbidly obese individuals. Sci Rep 2017; 7(1): 8174.
[http://dx.doi.org/10.1038/s41598-017-08487-9] [PMID: 28811552]
[38]
Li HJ, Ray SK, Pan N, Haigh J, Fritzsch B, Leiter AB. Intestinal Neurod1 expression impairs paneth cell differentiation and promotes entero-endocrine lineage specification. Sci Rep 2019; 9(1): 19489.
[http://dx.doi.org/10.1038/s41598-019-55292-7] [PMID: 31862906]
[39]
Ye DZ, Kaestner KH. Foxa1 and Foxa2 control the differentiation of goblet and enteroendocrine L- and D-cells in mice. Gastroenterology 2009; 137(6): 2052-62.
[http://dx.doi.org/10.1053/j.gastro.2009.08.059] [PMID: 19737569]
[40]
Morohashi H, Miyawaki T, Nomura H, et al. Expression of both types of human interleukin-8 receptors on mature neutrophils, monocytes, and natural killer cells. J Leukoc Biol 1995; 57(1): 180-7.
[http://dx.doi.org/10.1002/jlb.57.1.180] [PMID: 7829970]
[41]
Lippert U, Zachmann K, Henz BM, Neumann C, Human T. Human T lymphocytes and mast cells differentially express and regulate extra- and intracellular CXCR1 and CXCR2. Exp Dermatol 2004; 13(8): 520-5.
[http://dx.doi.org/10.1111/j.0906-6705.2004.00182.x] [PMID: 15265017]
[42]
Lee Y-C, Lin S-J. Neonatal natural killer cell function: Relevance to antiviral immune defense. Clin Dev Immunol 2013; 2013: 427696.
[http://dx.doi.org/10.1155/2013/427696] [PMID: 24066005]
[43]
Yun S, Lee SU, Kim JM, et al. Integrated mRNA-microRNA profiling of human NK cell differentiation identifies MiR-583 as a negative regu-lator of IL2Rγ expression. PLoS One 2014; 9(10): e108913.
[http://dx.doi.org/10.1371/journal.pone.0108913] [PMID: 25313504]
[44]
Chang M, Suen Y, Lee SM, et al. Transforming growth factor-beta 1, macrophage inflammatory protein-1 alpha, and interleukin-8 gene ex-pression is lower in stimulated human neonatal compared with adult mononuclear cells. Blood 1994; 84(1): 118-24.
[http://dx.doi.org/10.1182/blood.V84.1.118.118] [PMID: 8018911]
[45]
Penttila IA. Milk-derived transforming growth factor-β and the infant immune response. J Pediatr 2010; 156(2) (Suppl.): S21-5.
[http://dx.doi.org/10.1016/j.jpeds.2009.11.016] [PMID: 20105660]
[46]
Kang S, Brown HM, Hwang S. Direct antiviral mechanisms of interferon-gamma. Immune Netw 2018; 18(5): e33.
[http://dx.doi.org/10.4110/in.2018.18.e33] [PMID: 30402328]
[47]
Yao S, Buzo BF, Pham D, et al. Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation. Immunity 2013; 39(5): 833-45.
[http://dx.doi.org/10.1016/j.immuni.2013.10.007] [PMID: 24211184]
[48]
Terland O, Grønberg M, Flatmark T. The effect of calcium channel blockers on the H(+)-ATPase and bioenergetics of catecholamine storage vesicles. Eur J Pharmacol 1991; 207(1): 37-41.
[http://dx.doi.org/10.1016/S0922-4106(05)80035-5] [PMID: 1833213]
[49]
Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postna-tal growth. Nutr J 2013; 12: 103.
[http://dx.doi.org/10.1186/1475-2891-12-103] [PMID: 23883112]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy